Commentationes Mathematicae Universitatis Carolinae

Miroslav HuSek
Generalized proximity and uniform spaces. I

Commentationes Mathematicae Universitatis Carolinae, Vol. 5 (1964), No. 4, 247--266

Persistent URL: http://dml.cz/dmlcz/104981

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1964

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/104981
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinse
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GENERALIZED PROXIMITY AND UNIFORM SPACES I.
M. HUSEK, Praha

In this paper, generalized proximity end uniformity are
introduced =nd studied. Filter is a fundamental concept of
our generalizations. A semi-uniformity for a set P is a fil-
ter in exp (PxP) intersection of which contains the diago-
nal Ap ; a proximity for a set P 1is given, if for each
XcP afilter in exp P is given such that its intersection
contains X . Of course, these or similar generalizations and
its characterizations occur in various papers e.g. by A. App-
ert, I. Konishi, D, Tamari, N.C. Jarutkin, W.J. Pervin (see
(4)), C.H. Dowker (see [3]) (non-symmetric proximities and
uniformities), S, Leader, A, Goetz, V.S. Krishnan, V.A. Efre-
movidé ad A.S. Svarc (see [2]) (characterizations of uniform
spaces by means of nets). We shall prove that the categories
of proximity and semi-uniform spaces and some their subcate-
gories are S~categories over the category of sets with res-
pect to the forgetful functors (for S-categories see [5]). Hen-
ce it is easy to characterize subobjects factor-objects, pro-
ducts and sums in these categories by means of theorems in [5].

Next, special properties of functors and subcategories are
introduced (e.g. to be projectivity-preserving, hereditary,
productive etc.). The purpose of these definitions will be seen
in the part II which is in preparation. In that part we shall
investigate properties of functors from the introduced cate-
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gories in other ones (e.g. to preserve sub-objects, sums etc.).

I thank Zden&k Frol{k for help and valuable suggestions.

We use the terminology of [5] and now we shell introduce
some symbols and terms more, used in sequel (not necessary in
part I).

The category of all sets will be denoted by M . We mark
e.xp' P=exp P~ (f) for everyset P , DM = {xi(x,yd>eM
for some y}, EM= D ¥l for every relstion M and si-
milerly 3€=x , Ef=y for every pair f= {x,¥>. A
mapping is a single-valued relation unlike a morphism of a ca=-
tegory of structs, e.g. of topological spaces, which is a trip-
le (£f,<P, u?», (Q, v)>) where f is a continuous mapping
of (P, u ) into <(Q, v > (then £ = graph (f, (P, uj,
Q, v 2> ).

By Y (P) we denote the class of all nets ranging in a
set P ., A subnet of anet M is anet M/A where A is a
right-cofinal subset of 2 M .

We do not define the concept of forgetful functor but it
will be clear in every sitl}ation. E.g. the forgetful functor
from the category of all topological spaces into M is the
covariant functor F for which F (P, u ) = P , graph Fg =
= greph ¢ .

We shell write A ¢— u H{ZLJ Ixe P} if u is
a glogure for a set P , if every %, is the neighborhood sys-
temof x in (P, u > (i.e. U, ={UlUCP, xeP-nu
(P-U)}) and if A is the convergence class of ¢ P, u »(i.
e A ={(M, x>IMe¥(P), x€ P, M is eventually in
each Ue % }) .

The following properties are characteristic for u, u‘,‘ ’

b I
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up=0, XcuX forall XcP, .
u(x1 v Xz) *=uX vuX, for all X;c P (1 =1,2);

every U, is a filter in exp P intersection of which
containg x ;

(M, x)€ A whenever E M= (x)c P,
if (M, x>€.L @d if M  is a subnet of M then ( M", x>€
€A ,1f <M, x>€ L(P)x P=A then A n (€ (& M)
x (x)) = @ for some subnet M° of M . .

A closure u is called topological if uuX = uX for all
X ¢ P . The category of all closure spaces with continuous map=-
pings will be denoted by C . C is an S=-category over M
with respect to the forgetful functor.

l. Some specdial properties of functors in S-categories

In this section, let & be an S-category over € with
respect to a coveriant functor T; (i =1,2) , F be a cova=
riant functor from »E., in ,5,_ such that ’1‘1 a '1'2 o F . The or-~
der RA will be simply denoted by < .

Definition l.1. We shall say that F is projective (more
precisely projectivity-preserving), if for any nonvoid family
'{Cy;_’lie I { of morphisms of 61 P [k; - ‘Ié_m {q:ilig If] =
= J, - Lin { F ¢;| 1 € If provided the left side exists.

We shall say that F 1s hereditery if for any object X
of &, €Y’ £°> 1is a subobject of FX in A, if and only if

FY <Y'< FY , T, £’ = T, £ for some subobject (¥, £> of
X in &, .

We shell say that F 1s productive if for any nonvoid fa-
mily {xil i€ I? of objects of »E, F[&, -N{x;lie 13]=
=k, - N{FX,|1 € I} provided the left side exists.
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If 4k, is o subcategory of &, @d if F is the iden-
tity functor from A&, in A, then wé shall say that 4, is
projective (in A, ), hereditary (in Ak, ), productive (in
,ﬁz ) resp., provided F has the same property.

Dually inductive (more precisely inductivity-preserving),

cohereditary, coproductive functors and subcategories are de-
fined.

Theorem 1.,1. Let F be projective. Then F 1is heredita-
ry and productive. Dually for inductive functors.

Proof. Let < Y, £)> be a subobject of X in A, o Then
by theorem 5 in [5] (T, Y, T, £7 is a subobject of T, X
in € end Y= A, -Linf . It follows that (T, FY, T, F £)
is & subobject of T, FX end FY = A, - Lin P £ . Hence
{Ft , Ff > is a subobject of FX in 4, .

Let < Y’, £°)  be @ subobject of FX in AR, . Then
{1, Y, T, £°) is a subobject of T, FX in ¥ eand Y =
= A ~-Linf’ . There exists ( Y, £ ) such that ¥ =
= R -Linf, €f=2X, T,f£=T,£ ., (Y, £) isa
subobject of X in A&, &and by the first part of our proof
(¢ FI, F£ > 1is a subobject of FX 1in /5‘ « By remark 2 in [5]
FY < Y’ < FY . The assertion about products follows at once
from a special case of theorem 4 in [5].

Theorem 1.2.Assume that X = &, - Lim {g,/1 € If. Then
FX = "’z - g:i_._m_ {F g; /1€ I} if and only if there are morph-
isms y; in Ak, such that T, ¥; =T,9; , Ey =€g; for
el 1eI endthst Dy =Dyer LR, -Lin(Foglie 1]
for all <4, D €IxI.

Dually for inductive limits.

Proof. The necessity is obvious. We shall prove the suffi-
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ciency. Evidently FX < R, -(&__h{r g;lie If . By the as-
sumption there is an object Y & 1".1[52 -Mmn{F g |ie€I1}]
and morphisms Y € T;l (e, %1n Hon::m’ (1, qu-_) for each
i€ I.Hence Y<X and consequently £, - E._m{l? glie If<
< FX .

Corollary. Let K, be a full subcategory of ’Ez .
(a) ,51 is projective in »52 if and only if for eny nonvoid fa=
mily {g;l/ie I} of morphisms of 51 £, - %_i;l_l{q;ili e 1} .
is an object of »51 provided it exists.
(b) k, is projective in ’6’4 if each object X of ’ﬁz has its
upper modification (¥, ¢?> in ,5,1 such that Tzq = :l._Ex .
Dually for inductive subcategories.

2, Proximity spaces

Iheorem 2,;‘ Let P be a set. Consider the following condi-
tions for pc exp Pxexp P , So:‘ﬁ(P) > exp’ P, #c exp Px
x exp exp P :
(1) (X, D€ Pu p"l forno Xc P ;
(2) (X, ¥) € p vhenever X v Yc P, XA Yhf ;
(3) ir Lu !zc P then (X, Y, v Y, >ep if md only if either
(X, ¥)>ep or <X, % ,)€p;

() (M, X>ep vhenever E M= (x)c XcP;

(B) if (M, X>€ @ and if M’ is a subnet of M then (M’, Dep
(7)if (M, X>€€(P)x<expP-p then @n (€(ENU)x

» (X)) =@ for some subnet M  of M ;

(a) 74 1s a single_yalued relation :{?ZX | X e eip P?;

(b) n ”X 2 X for each XcP, 92’ = exp P ;

(ec) %X is @ filter in exp P for each X « exp P .
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Then:
R, ={(p,$o> lp={X, Y>ITc P end on (¢ (¥) >
* (XNE PP = {<p,pdip= {(M, X> | Me ¥ (P) {X,EMDe
€ p for each subnet M" of M} is a one-to-one relastion for
the class of all relations p on exp P satisfying (1),(2),
(3) and the class of all relations © c ¢ (P) x exp’ P sa-
tistying (), (B), (¥);

R, = {<p,%>Ip= {<(X, ¥> | YcP and P-Y¢ ¥, f=
= {<p,M>IN ={v(YcP and (X, P-Y> & p} for each
Xc P}
is a one-to-one relation for the class of all relations p on
exp P satisfying (1),(2),(3) and the class of all relations
Nc exp P x exp expP satisfying (a),(b), (e);

R, = {(59,92>lp ={<M,X>| Me € (P), M is
eventuslly in each  Yed, j}2{< o, N>, = {Y|Yc P and

en(€(P=-Y)x (X)) =P} for each Xc P}

is a one-to-one relation for the class of all relations
"@c € (P) = exp’ P satisfying (&), (8), (3) md the class of
all relations 91 c exp P = exp exp P sstisfying (a), (&), ).

We write @® ¢ p <> 3! provided ® s P 77  fulril
the above conditions and <(p,P>e€ R, , <p, 2 e R, (then

<P,N>e R4 , because Ry =R, o R:J' ).

Definition 2.1, Let @¢—> pe¢>{, | Xeexp P]. Then p 1is
called a proximity for P end the pair < P, p) 1is called a
proximity space. The relation'sb is the convergence class of
(P, p> &and every QZX is the neighborhood system of X in
{Pyp? &

Definition 2,2. A proximity p, a proximity space < P, p >
‘roap., is called monotone if one of the following equivalent con-
ditions is fulfilled (@P¢—> p ¢— {a’tx [XeP}) :
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1) ¢(X,¥>¢ P, P> 25X implies (2, YD €Dp ;

2) (MyX>6p, PO>ZOX implies (M, Z2>€p

3) PoXO5Y implies X, ¢ %, .

Definition 2.3. Let "r be a relation in exp” P . Then
p= {{X, Y>| either XA Y+ g or for each finite cover &
of Y there is &8 Z¢€ 0L such that (X, 2°>e r when~-

ever P> 2°5 2}n (exp’ Px exp’ P ) is a proximity which
is called generated by r .

We shall say that a relation 6 < ¢ (P) < exp” P gene-

rates a convergence class @ if P c ¥ (P)x exp’ P and
{b is the smallest relstion greater than 6 , satisfying
the conditions (o), (B), () of theorem 2.1.
(p = {<M,X>IMe €(P) and ' N (€ (€M)= (Xt
$#@ for each subnet M° of M} where 6 = {(M,X>| Me
€ € (P)y, Xc P and either € M= (x)c X or M is & sub-
net of anet ¥ for which < N, X>e 6 7).

Remark 2,1, (a) If r from definition 2.3 fulfils the con-
dition (2) of theorem 2.1 then p is the greatest proximity
smaller than r . The generating relations occurring in this
paper always satisfy (l),(2). and the part "if" of (3),(ax),(8)
resp. (i.e. 6 = 6’').

(b) In generating 27 we restrict ourselves on the well-
known concepts of sub-bases or bases of filtgru.'

(c) We shall write usually X p Y instead of < X, Y D6 p
and X nonpyY instead of (X, T > py, XuYcP.

Definition 2,4. Let £ be a mapping of a proximity space
<P, p > into another one <Q, q > and let Pe> pe>
> {U IXcP}, > qe>{Y [XcP}.

(A) We eay that f 1s upper proximelly continuous if one of
the following equivalent conditions is fulfilled:
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(a) if Xp Y then £[X])Jqf([Y];

(b) if (M, X D€ p then (fo M, £[X])> € ;

(c) if XcP, Ve V‘IXJ then £ 1[Vie U, .

(B) We say that £ is lower proximally continuous if one of the
following equivalent conditions is fulfilled:

() if XuY¥c Q, £i[x)p£tCY] then Xq¥;

(b) if XcQ, <M, f"ll'xJ)eso then {f e M, X > €8 ;

(c) if Ve ¥y then £71[V]e u-,m .

(C) We say that £ 1is proximelly gontinuoug if £ is both upper
and lower proximally eontinuous.

Remark 2.2. Evidently, the cless o all proximity spaces
with upper proximally continuous mappings, lower proximally
continuous mappings, proximelly eontinuous maeppings resp.,
forms a category pl , 2L , P resp.

Theorem 2,2. Let f be a mepping of a proximity space
¢ P, p ”» into another cne < Q, q ) .

(a) Let £ [P]=Q or let q be monotone. Then if f is up-
per proximally continuous it is also lower proximslly continu-
ous and hence proximally continuous.

(b) Let f ©be one-to-one or let p be monotone. Then if ¢
is lower proximelly continuous it is also upper proximally eeon~-
tinuous and hence proximally continuous.

Exapple 2.1, Let P=(a, b,¢), Q=(ex, ),
p=2{CA, B>l AAnB#f or A#(a, b)} N (exp” P x exp’P)
Q= {{X, TY I XnY#P or £ ¢ X?n (exp” Q x exp" Q) .

Ifwepit fa=fb=e«, fc=7 y 8x=c,
gﬁ = b then f 1is a lower proximally continuous mepping of
the proximity space < P, p » onto the monotone proximity spa-
ce < Q,q> which is not upper proximelly continuous and g

is an upper proximally continuous ox;:-—to-one mapping of the



monotone 'proximity space < Q, qQ ? into the proximity space
( P, p > vwhich is not lower proximelly continuous.
Definition 2,5. We say that a proximity p is finer than
a proximity q or that a proximity q ie coarser than & pro-
ximity p (sign p < qw) if p, qQ ere proximities for the
same set P and the identity mepping AP : { P, p>>CP, qQ
is proximally continuous (i.e, UPp = UL q and pc q ).
Theorem 2.3. The set of all proximities for a set P 1is .
complete in the order < . Let A4 @ and for each o« € A p
be a proxizﬁity for a set P and @, ¢

oC
18 e—-){'uxl!crf.
Let
61 > aqq = sup {p, lxe A}HV;IXC Pf,
‘ 2
6, ¢>q,=2inf {p, lx €A} >V |Xc P},
Then

1) q, =Ufp,laxeaf;
2) V= N{UTl«e L] for each Xc P ;
3) U{@ lxe A} generates 0’1 ;
4) N{p lx € A} generates q, ;
5) U{u;‘loce A% is a subbase of V)’rz for each Xc P ;
6) 6, =N{g lxe A},
It {p, lxeA} is left-directed then q, = n {pcclaceAf
and 1/;2=U{?L:l‘,e A} for all XcP, '
Theoreg 2.4. The categories P , P°  are S-categories
over M with respect to the forgetful functors.
Proof. The proof of the conditioms (1),(2),(5) of definition
1 io [5] is easy (notice that {(X, Y>| X UY¥c P, Xn Y0},
exp’ P x exp” P resp. is the finest, the coarsest resp., proxi-
mity for a set P ). (4) was proved in theorem 2.3 . It remains
to prove (3). Let (f£,<P, p>, <Q, q>) be a morphism of
PY, P resp. Let R be a set and g :P>R, y:R>
~> Q mappings with the compositiog 2?; :‘? = £, We'want to



Y

define a'proximi—ty r for R such that ¢ , Yy~ are upper
proximally continuous, lower proximally continuous resp. It
is sufficient to put

r={<X, ¥Y>IXu¥cR, ¥I[X] q[¥]} in the first
case and

r={{X, ¥YIXuYcR eand either Xn Y+ @£ or
o1 [x]p t‘,'-l [Y]} in the second case,

Remark 2.3. The category 7 fulfils all the conditions
of definition 1 in [5]) except (3) as follows from the follow-
ing proposition.

Let (P, p > be a non-monotone proximity space. Then
there is a proximity q for P and a mpoximally continuous
mapping £ : <P, p>» > < P, q> such that the mappings

g =f: <P,p?>—2<£[Pl, T ,
v =A<ftPJ : (£ [P], ) — (P,q)>
are proximally continuous for no proximity r for £[P].

We shall give a short proof of this proposition. There
are subsets k, My, N of P such thet MpN, KnonpN ,
KoM.Let £= Ap o (K =M x (n) vwhere m € M.
Then f 1is a proximally continuous mepping of < P, p,” in=-
to (P, q)> where q= {{X,Y>| XvuYc P and either
XnY P or £r[x)per[vlor £(Al =X, Apf£iry]
for some A c P}. Now, let r be a proximity for £ [P].
The proximal continuity of ¢ implies M r N and the pro-
ximal continuity of % implies Mnonr N , {

Remark 2,4. Let us denote by 7:4 the full subcategory
of P generated by all monotone proximity spaces. It follows
from theoream2.2 that 7;’4 is a full subcategory both of

PY enda Pt
Lemme 2.1, For each proximity Py there exists a
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coarsest monotone proximity p, finer then p, and a fi-
nest monotone proximity p, coarser than p, . If
@ <> py > { U} XEPJ, (1=0,1,2) then

1) {<X,Y¥>| Zp, Y whenever Z > X§ generates p, ;

2) U{Uy | Po>Y > X} is a subbase of 2(:, for each
Xc P

3) @ = {<(M, X>|Xeexp’P eand (M, Y)ep, when-
ever Xc YCcP}; :

4) p, ={¢(X, ¥Y>[P>X and Zp, Y for some Zc X7;

5) Uy = N{%, | ¥c X§ for each Xc P ;

6) {{M, X>IP>5>X and (M, Z)ep, for some Zc X}
generates PZ .

Theorem 2.5. Each object ( P, p,> of P" has its
lower modification << P, P, 58, {p, Py > s C Py PO
in ®, and each object (P, p,> of P“ hes its upper
modification (<P, p,> ,<A, , (Pyp, > <P, pz») in

Ry .+ Hence each object of P has its upper and lower mo-
difications in R .

Gorollary 1. R, 1is an S-category over M with res-
pect to the forgetful functor. .

Proof, See theorem 1 in [5].

Corollary 2. B, is projective in Y and inductive
in P,

Proof. See corollary (h) of theorem 1.2.

Remark 2,5, It follows from theorems 2.2, 2.4 and the fore-
going corollary that

P'-1p {g; [1e¢ I1f= B -Lin {g; | 1€ 17
1f {g,l 1€ I} is & nonvoid family of epimorphisms of 7,
and that

?L_H {qilizes'?I}: R, _2_12{%]151}



if {g; |1 eI} is a nonvoid family of monomorphisms of
P . Hence B 1is cohereditery in PY  and hereditary in
Pt
Lemma 2,2, Let & be an S-category over a catégory 4
"with respect to a covariant functor T , &' be a subcategory
of & ond an S-category over Y with respect to T/’ and
let £ have inversion property . Suppose that an object X of
AR hass an upper modification in A&’ . If there is an object
Y’ of &' such thet < X, ¥Y>e R (for R, see de-
finition 1 in [5]) then there is a smallest object Y of &’
greater than X in the order R,, (then Tg =i, for
some g € Homx (X, ¥)) and < Y, ¢ > is an upper modifica-
tion of X in R .
Proof. Let < Z, ¥ > be an upper modification of X 1in
&' . Evidently @ = { ° ¥ for some x & Hom . , (3, Y').
Hence ¥ is a monomorphism. It is easy to see that y is al-
80 an epimorphism and hence a bimorphism. Indeed, otherwise
y'eoy =1y"e ¥ for some different morphisms 3 ', y¥” of
&’ with €y’= Ev"” and this contradicts our assumption
that <2, ¥> dis an upper modification, As Ty is invertib-
le, there are isomorphisms %' , %' in £’ such that
Ty =Ty , y'eg = i, . It follows from the eqalities
T(& oy’) =TIOTV'=T{0 TY =T(yey)=T¢g =1TK ,
ME'ew )=TyeTy =Tg'ory’ =1,
that Py’ 1is an object of &’ greater than X and smeller
than Y° . Now, it is sufficient toput ¥ = Dy’ .
Iheorem 2,6. (a) The class of all objects of Pt having
the upper modificstions in %y is precisely the class of ob-
Jects of R, . (b) Let us put for a moment
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T = {(p, q Y {q is the coarsest monotone proximity finer

then p} and “q = {<¢pyad Ik ay, Ag> is a subobject
of {UDp, p> in PY7. A proximity space (P, p), as an
object of ®U , has its lower modificstion in R, if and only
if ‘r(u,ap = g TP for all Qe P (i.e, if QeP, q is
the coarsest monotone proximity finer than p N (exp Q x exp Q)
then K p N provided MqN, P5KoM).

Proof. (a) Let (P, p » be a non-monotone proximity space.
There are subsets K, M, N of P such thst Mp N , K non p N,
KoM.Put Q= (a,b,e), q=exp” Qrexp” Q- (< (a),(b)>),
£f=(K=(a))u(@x(b)) u ((P-(KuN))x(c)) . Then < Q, q)
is 2 monotone proximity space, f 1is a lower proximally conti-
nuous mapping ¢ P, p» —» <Q, ¢ » but f is not lower proxi-
melly continuous of {P, p’)> into ¢(Q, q > where p° is the
finest monotone proximity coarser than p . Hence < P, p)> has
no upper modification in -’/,3, (see the foregoing lemma).

(b) Our assertion follows from the characterization of sut
objects expressed in theorem 5 of [5) and from the fact that a
mapping f of a monotone proximity space < Q°, @°) into
{P, p? is upper proximally continuous if and only if the
monotone proximity of PY - Lin <{£, <Q°, q¢">,<£[GT1 ,

e p>)is finer then “ecer] P (see theorem 2 of
[5] and remerk 2.4.).

Exapple 2,2, Let P be & sat, P> X,+9 , card (P -'X)2
22, p=§<{X, ¥Y>I XuYcP, either XAnY+pf or X=
=X,, Y#@}. <P,p» is a non-monotone proximity space
fulfilling the condition of theorem 2.6(b).

Remark 2,6. It was said in the introduction that we can
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construct’ products, subobjects etc. in ?Y , 2+, R, Tesp.,
from those in M . It follows from theorems in [5] that for
this construction it is sufficienmt to know characterizations of
sup, inf in R, and of objects in Y , 2t , A resp.,
_projectively (inductively) generated by one morphism. Characte-
rizations of sup, inf are described in theorem 2.3 ; charac-

terizations of generated objects are left to the reader.

3. Semi-uniform spaces

Theorem J.l. Let P be a set, Consider the following con-
ditions for U ¢ exp (Px P), € c ¥ (Px P):

() U is 2 filter in exp(P x P) ;

(M- N U > 4,

.
)

() M € ¥ chenever EM=(<xy x> )c Px P ;

H
(B) if M e €  and if 1  is a submet of M then
Me <t ;
() if M e € (PxP)- € then €A L(EN) =g
for some subnet 1! of I .
Then R={{%U,€71¢ ={MIM e ¥ (P<P), M is eventual-
ly ineach U e U} ={<U,€C>IU = {UIuc Px P, each
M e ¥ is eventually in U} is a one-to-one relntion, for
- the class of all U ¢ exp(P = P) satisfying (a),(b) and the
class of all ¥ c ¢ (P P) sctisfying (o), (B), (7). ve
write U «—>'¢ provided %, ¥ fulfil the above conditions
and < Y%,f>e R. ’
Definition 3.1, Let % e+ ¢ ,P= YU U . Then we
call U ao_semi-uniformity for P, < P,% > a gemi-uniform

space and ¢ the convergence class of ( P, U > .
Definition 3,2, Let % «—>‘¢ . The semi-uniformity %,
- 260 =



the semi-uniform space (¢ P, % > resp. is called symmetric if
one of the following equivalent conditions is fulfilled:

1) if Ue¥ then U'e U ;

2) if Me € then {<a, CEM, , DM >>laeD Mje¥;
The semi-uniformity % , the semi-uniform space ¢ P, &> resp.,
is called uniformity, uniform space resp., if one of the follow-
ing equivalent conditions is fulfilled:

1) each e U containe Vo V for some Ve« ;

2)if Mef , Ne¥f , D¥=DN, EM,=TN, for
all aeD M, then f<a, DM, , € Nyg>>| a ¢ D Nfe .

Remark 3.l. We shall use this notation:
if Me € (P>=P) then «M={<a, I M,>| aed Ny},
AM={<a, £ M, >l ac 2 M7 . Hence we can assign in one-
to-one way to each Y c?@(P» P) the relation L = {<Cc M,

B WIMe€ion € (P) . If Uer¥ then Pp 1is reflexive.
By definition 3.2 % 1is symmetric if and only if e is sym-
metric, % is a uniformity if and only if £, is tremsitive. So
U is a symmetric uniformity if and only if f, is an equivalence,

Remark 3,2. Similarly as in definition 2.3 we shall say thet
Dc€(P > P) generates a convergence class ¢ if ¥ < € (P> P)
is the smallest class containing & and satisfying the conditi-
ons («¢),(/3),(7") of theoren 3.1 . (¥ = {M/Me ¥ (P= P) ,
Da€( €M )% P for each subnet M’ of M§, where 9’=
=Qu {MIMe€(PxP), €M=(<x,x>) for some xf.

As a rule '= 2D .)

Definition 3.3 « Let f be a mapping of a2 semi-uniform spa=-
ce ¢ P, ) into another one < Q, > and let Ue> ¢
Ve>D . We say thet f is uniformly continuous if
(£ £)~1 [V]eU for each V & ¥ or equivalently if (fx=f)o Me
€ for each M e ¥ .

Remark 3.3. Evidently, the sgéni-unifom spaces with uni=-
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formly continuous mappings form a category» % . We denote by

Ug » ﬂu ﬂsu resp., the full subcategory of % genera-
ted by symmetric seni-uniform spaces, uniform spacés, symmetric
uniform spaces resp.

Definition 3.4. We say that a semi-uniformity % is fi-
ner than another one 4 or that ¥ is goarser thean % (sign
U< V)if U , ¥V are semi-uniformities for the same
set P and if the identity mepping Ap : (P, U>—> (P, ¥)
is uniformly continuous (i.e. GUU =D UV , U oV ).

Theorem 3.2. The set of all semi-uniformities for a set P
is complete in the arder < . Let for each o € A (A=)
U, be a semi-uniformity for P and %, > ‘f, . Suppose
that ¥ =sup{ U la e AJe> D, , U, = inf {2%U | € Afe>
« 9.

Then

1 Y= n{U lcenp;

2) U{¥ l«x€ A} generates D, ;

3) U{U,lxe A} is a subbase of Ig ;

4) ﬂz = N{L,lc € A}.

If { U, lx € A}is left-directed then ¥ = U{Y lxe Af.

Theorem 3.3. YU is an S-category over J{ with respect
to the forgetful functor,

Proof. We shall prove only the condition (3) of definition
1 in [5). ((4) wes proved in theorem 3.2 end the remaining con~
ditions are trivially fulfilled; notice that (PxP) ,
{UIPxPoUOS A, } resp., is the coarsest, the finest
resp., semi-uniformity for P .) Let £ be a uniformly conti-
nuous mepping of < P, U ¥» into < Q, ¥}, £=ye @,
Dy =r.1r we'put W={WIR<RoW o (yxyv)lry]
for some V & V¢, then the fagg%nfa g : { P,U>ICR, W),



v ¢t (R,W)—><Q, V> are uniformly continuous.
Lemma 3,1. For every semi-uniformity %, there exists
a coarsest symmetric semi-uniformity %, finer than U, ,a
finest symmetric semi-uniformity %, coarser thean U, , =
finest uniformity. 2[3 coarser than X, and a finest symmet-
ric uniformity %, coerser than %, . If U;¢> €; for
i e (0,1,2,3,4) then
1) {UIU € U, or U'e U,} 1is a subbase for X, ;
(MIMe¥, sand {<a, (€ ¥, , fbl&))l a € D Mle¥lf=
= 'fq ;
2) {UlUe U, and U"e U, 7= U, ;
iMImMm e, or {<a, (M, iy | aeD Mje € } generates €,;
3) {U ] there is » sequence {U,} in ¥, such that U,c
c U and Upey o U

mn+1

.

c U, for each n}= % ;

4) {U | there is a sequence’ {U,fin #%, such that U, c
cU ana U,,, o U,,, c U, , Un= U;' for esch nf= u, .

Theorem 3.4. Each object ( P, %,> of U has its lo=-

wer modification (¢ P,U,> ,( AP 1 SPy Uy < PyUydd)
in ous y its upper modification {<{P,%,> , (A, <P %>,
{PyU,>>»> in Ug , its upper modification << P, Uy 7,
(8, < P,U,> ,<P,%;>>> in %, , its upper modification
Py U, > ,€Ap 4+ <Pyl >, < PyU,>>) in Py, d each
object (P, U,> of "ZL has its lower modification ({ P, %,
CBpy CPyU Y, (PyU D> in A, .

Proof follows from the foregoing lemma and for the upper mo=-
difications from the fact that if f : ( P, U) —<Q,wW'?> is a
uniformly continuous mapping then the semi-uniformity
{VIPxPavo (£ f)-l[ W] for some W& W'} ie cosrser
than % and it is symmetric semi-uniformity, uniformity, symmet-
ric uniformity resp., provided % has the same property.
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The laét agsertion is the consequence of the fact that Zé,, is
a un;Lformity provided %, is a uniformity.
Corollory. U, » U, MU, 8re S-categories over M
with »respect to the fopgetful functors.
( Proof., See theorem 1 in [5].

Corollary. ®Ugis projective and inductive in A . %,
is projective in 4f . g, is projective in U , Ug U,
and inductive in U, .

Proof. See corollary” (b) of theorem 1,2,

Remark 3.4. The upper modification of an object f of 9
in %U,, is the upper modification in 4, of the upper mo-
dification of § in WU, .

Exomple 3.1, 8) Let U = {U [ P=P>5U>(X=~X)vu
u (€>Y)f where XuY=P, XAa¥+0, X&P, Y4P,.
The symmetric semi-uniformity % hes neither the coarsest sym-
metric uniformity finer than % nor the coarsest uniforumity
finer than U . Indeed, sup (¥ IV <« U , ¥ is a symmet-
ric uniformity } = %U. Dbecause
U= {UIPxPoU 5> (Xx X.)UAP}/\ {Ul PxPa U > (Y = ¥u
vidpgi.

(b) The finest symmetric semi-uniformity coarser than the
uniformity {UIP»xPo U o5 (Px(a)) v 4p 2, vhere a
is an element. of at least three-point set P , is not a unifor-
mity. Hence, the upper modification of ean object § of @ in
usu need not be the upper modification in U of the upper
modification of § in WU, .

Theorem 3,5. Let < £, <P, U,> 5, < QU;>>=2" be a
morphism of U .Put (P, %> = Y - E_mf' y (2=
=Y-Lip £°, U;erty, Vi D; (i=0,1). Then

1) U= {Uulpx P:_Uzau(fx £)71[ V] for some Ve USH



2) €, ={M|M ¢ ¢ (PxP), (fxfloMe T, § ;

3) h={VIV>8,, (£ ) vieur= {viexes
2V o Agu (£ £)[U] for some Ue U, } ;

4) {MIMe €(Q»xQ), (fx f) e N=M for some
M e €, } generates Dy .

Corollary. @4, is coproductive in U and %Y, is co-
productive in U , U .

pProof. U; in theorem 3.5 is a uniformity provided %,
is a uniformity and f 1is one-to-one. Our corollary now fol=
lows from the following obvious statement:
it {Y,l«x € A} is a nonvoid set of uniformities for a set
P with the property
{k,an'>e hxA=- Dy , VoV, , Vo € Y, , implies
{x [ card V‘jq[x] >1} af{xlcard V, [x] > 1§=0 then
sup { Y lace A} is a uniformity.

Example 3.,2. Let P = (a,b,c,d) , Q= (eax,8, 9 ),
Uy, = (8, b) > (g, b) u (c, d)x(c, d) , ¥ = (o, B )
x(a, Alu(B,r)=x(B,7).

U = {UIP>xP > U>U,}is a symmetric uniformity for
Py, ¥={viQ=»Qo VoV, ?} is a symmetric semi-unifor-
u - }__1:31 £

where f = ((Lay,ay, (b, B , (¢, B> , <4 ),
<P3%>’(va>'

mity for Q vhich is not a uniformity, < Q, ¥ )

u

It follows that @M, 1is not cohereditary in % , U, end
hence U, is not cohereditery in U .
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