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ON PROJECTIONS IN BANACH SPACE
Jir{ VANICEK, Prahe

The. connections between linear and non-linear project-
ions in certain types of Banach spaces are studied in this
note.

Let Y be a Bsnach space and X a closed linear sub-
space of Y . By a projection from Y into X we mean in
general a mapping P from Y onto X such that Px = x
for x€ X . There may be considered many natural types of
projections in Banach spaces, such as linear projections,
continuous projections, uniformly continuous projections,
bounded linesr projections, norm preserving projections, etc.

The study of projections in Banach spaces has a close
relstion with the study of extending mappings of X into a
Banach space Z to amap of Y into Z , with the respecti-
ve properties. Such a connection is shown for exemple in{5].

It is well known that there always exists a linear pro-
jeetion from Y onto X and (see [4]) & continuous project-
ion from Y onto X . On the other hand it is known that a
projection‘which is both linear and continuous need not exist
in a Banach space (c.f., e.g. [2] pp 94-96).

The main problem studied in this paper is the existence
of projections which are_intermediate between continuous pro=-
Jections and bounded linear ones. We shall consider mostly
uniformly continuous projections and projections which satisfy
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a Lipschitz condition. -

It will be shown that in many 'situstions the existeice
of a uniformly continuous projectfom from Y onto X (where
X 1s a closed lineer subspace of Y: ) implies the existence
of a bounded linear projection. This is the case for example,
if X is a space conjugate to & Banach space. In view of
known results concerning the non-existence of bounded linear
projections from Y onto X ,: one may thus obtein results
on non-existence of uniformly continuous (nonlinear) project-
ions. A

Simultaneously with results concerning projections we
shall obtain gsome theorems on uniformly continuous lifting
problems.

All Banach spaces to be considered are taken over the
real number field. Let T be a mepping from a metric space
(E, @ ) dinto a metric space." (B’, @ ) ; then the function

(g) = Px )
T e T T TR

defined for & > O, is called the module of continuity of
T ; T is uniformly continuous if and only if

lim (e)=0.,
c-oo+9

In the case thet E 1is a convex subset of Banach space it
L]
cen be proved that the module of continuity of every uniform-
ly continuous mapping T is subsdditive, that is
glE, +€,) & g(E+ g(E,),

4 speclal type of uniformly continuous mappings are the Lip-
schitzian mappings, that is mappings from (E'P ) into
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(E°, @ ) for which

6 (Tx )
K TH= sup ____1_:_1"2___ is finite.
X%, @ (3, %)
The number KT |l is called a norm of Lipschitzity of the

mapping T .

The following lemmsn is & consequence of subeddivity of the
modules of continuity, and the proof is obvious.

Lemma: Let & be 2 convex subset of Banach space, and
T a uniformly continuous mapping from E into a metric spa=-
ce Y . Then for each 9 > O there exists a A< + ®©
such that

P(xg, %) &7 = 6 (Tx, T5,) & A P (x;, x5)

Let X be a Banach space; then X* denctes in the usu-
al sense the space of gll continuous linear functionels in
X . The symbol x? denotes the space of all lLipschitzian
meppings from X into the real number field El which va-
nish at the origin of X . The norm of an £ in XV 1is de-
fined as the constant of Lipschitzity of f . It is cleer that
XV is a Banach space and X* is a closed subspace of X7V.
The special cese of the results of Aronszajn and Panitchpakdi
{1] is an anslogue to the Hahn-Banach theorem which holds f.or
the gpace XV . .

As first step we shall prove that, under certain assumpt-
ions, the existence of uniformly continuous projections imp-
lies the existence of a Lipschitzian projection.

Theorem 1. Let Y be a Banach space and X a closed line-
ar subspace of Y . If there ~xists a uniformly continuous pro-
Jection P from Y onto X and a Lipschitzisn projection Q
from X** onto X , then there exists a Lipschitzian pro=
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Jection from Y onto X .
Froof: Lemma 1 implies the existence of a number A such
thet if Iy, - o § & 1 then

The seqience {P,} of projections

1
b (y) = —; P(n y)

may be considered as a sequence of projections from Y into
X %*X% guch that for every fixed y#+ 0 and n > ff yﬂ-l the=
re is

Le ) N sAlyl;

thus the sequence Pn(y) is bounded at every point y € Y .
Since cells in X** are w¥ -compact, there exists a sub-

sequence {Pkn(y)f of {P (y)} witha w*-limit P (y)

for each y € Y . Becaise P (x) = x for every x € X, the-

re is P,(x) = x for each x € X, and the inequality
hP,y -P oy, 082 Ny, -3, 0

holding for n > i y1< - yzﬂ'l implies that [P, & A . A

consequence of the assumption of the existence of a projection

Q 1is the existence of the mapping Q Po from Y into X

which is Lipschitzian.

The following theorem> is the dual result for lifting ope-
rators. The ﬁ)roof of this is similar to that of theorem 1, and
therefore we shall omit details.

Theorem 2. Let Y be a reflexive Banach space and X a
quotient space (with the quotient narm) of Y . Let R be the
quotient mapping. If there exists a uniformly continuous mapp-
ing T from X into Y such thet R T is the identity of
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X , then t!.re is 2 uipschitzion mapping To from X into Y
such that =R To is the idantity.
Proof: Again consider the secuence

Tn(x) = %—- T(n x), n= 1,2, oo
o marpings from X into Y . For each n = 1,2, ..., R T,
is the identity of X . Let T, be a limit of {T*'n} "in the
nointwise convergence topology, taking the w-topology in Y .
The rapping To is Lipschitzian and R To is the identity
of X .

Remork: I do not know whether, far every Banach space }_( ’
there »xists & Lipschitzien projection from X** onto X .
In a large class of spaces, for example for all conjugate
spaces and also for the space L1 s there exists a linear pro-
jection from X** onto X with norm 1 (cf. [3]), but this is

not valid for example in the space Co

Theorem 3: Let Y be 8 Banach spece and X & closed li-
n=ar subspace of Y . Then there exist linear projections of

norml , Py from Y¥ onto Y* and Py from XV onto

X*, such that Py Ry = R, Py , where R, and R, are the
natural restriction mappings from Y¥ onto X~ and Y* on-
to X* respectively.

Proof: 1) Firgt we shall construct a lineer projection
from Y™ onto Y* 1in the cese that Y is of finite dimen-
sion,

Denote by 44, 1 =1, ..., a basis of Y and take
a function ¥ on Y

which is non-negative, belongs to the
class cl(y)

(i.e, is continuously differentiable in ench va=-

risble), has a compact support in Y and setisfies the condi-
tion

- 163 -



/qr(y)dy=1.

lLet Fe YV , and define

m m
(1) PF (i.z;x, 4) = - lzi o / F(y) (y) ay .

It is cleer that P 1s a linesr mapping from Y”# into ¥,
1A) First sssume that Fe Cl(y) . Because o has a compact

support,
F
-j F(y) -9—!- (y) dy = / ~3—-—- (Y)y (y) ay, i=1, eeo, m.
y 9y 9y4

ar.ce it is clecr that PP = F for F e Y* (in perticuler,

f Pl » 1 ). Let us estimcte the norm of P F . Assuming that
n

A> 0 and "51"‘;' &G0 =1

S i £ )= [w () (2 9F () ay =
(51“ ,- "')T,,'V y Eiaacig-;i-y y

1 n
=-3-)[ ¥ D[P+ S Acg) -Fp + a8 (A, Nlay,

vhere (A, y) — 0 uniformly with A — O in the support
of y .
n
Since | F(y + Eﬁ. Ao, 4 ) -F() IS ANF I ed

PF (g_icti 4; ) does not depend on A , we obtain the ine-
Qality

IPF(f‘:ac. <4; )&l F /zy(y) ay= 0 F 1,
and hence [PFI Sl FI.
1B) Now let F be a general element of YV . Let {qnf:::l
be & sequence of non-negative C1 functions on Y sotisfying
the condition

f P.y) ay =

1
md such that the support of @, is in the cell |l yll £
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Let x denote the convolution of functions, Sat
Fn =F x Iy -

Then Fn(y)—) F(y) uniformlyon { 23 n— oo ,

Fp€ Y%A ¢! anda WF &0 F U . From (1) it follows
that

NPF,-PFIl— O
and the inequality T F & N Fy I implies that P FlH &
£1F 1 and hence I PH =1,

If now X is a linear subsp~ce of the finite dimensional
spnce Y , we may assume thot the basia of Y has the pro-
perty that 41, ceey "k is the bagsis of X for some
k € m.Let ¥,, 3, be functions of k and m =k va=

riables respectively, having compact supports and such that

Sy .xax= Sy (m)az=1
RS w ¥ ,

where x = (y1, oo yk), Z2 = (Yyppreees ym) .

For every positive integer . n 1let Pn be the lineor pro-
jection from YV onto Y¥* of norm 1 , defined far F e YV
by the analogue of (1),

= k-m
P, F(£;) = =n fF(y)-é-a—- C‘Vl(yl...,yk) .
y Y
* 'F,_ (nYQ,g)" ) BY )de ’
since I Pl & 1 eand Y* is of finite dimension,the unit
cell of (Y™* is wX*-compsct and lence the subsequence

{Pkn}zq of linear operators from XV to Y* has a limit

PY in the strong operator topology. The mapping PY is a li=-
near projrction of norm 1 from Y onto Y¥ , and uniform

continuity of F implies thaot
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P, F( £.) = lim P, F(.L;) = = F(Yyseeey Fry Oy eoe O) &
Y i o i 3(/ 1re000 Ji0 Y

31,;1
9y,

(Fyseees yk) dax .

Define a mapping Py from XV onto x* for Ge x¥
b
' (£)=- [ 6@ on
P, G = - G(x
X i
X 3x1

(x) dx, 4 =1, eeu, k »

If Hl and R2 are the restriction operators from Y™ onto

X~ ead from Y* onto X¥ respectively, we thus have

B, Py =P Ry

and the proof for the case that Y 1is of finite dimension is
concluded.

2) Let now Y be an infinite dimensionsl Banach space and
X a clesed linear subspace of Y . Let B be a finite dimensi-
onal subspace of Y and C =B NX . Let Rl,B and RZ,B be
the restriction mappings from B~ onto C™ and B* onto C¥
respectively. In view of the first part of the proof there ex-
ist linear projections of norm 1, P, from B™ onto B¥ and
Pg from €V onto C* respectively, such that

Bpf =R Rp -

Next, let HE and Rg be the restriction mappings from

YV onto B™ and X* onto C% rexpectively. For F e Y™ let
0 if y¢ B

v
N

this maps Y=< Y into E; ; and for Ge X7 let
O if x € B

fB (F, y) =
PBREfF(y) if y € B ;

9‘3 (G, x) = \

P Rf G(x) if xeB ;
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this maps from X > X into ‘51 o

for avery Fe YV , ye€et, GeX™~ , e i oand cach
B  there is
lfB(F, g L rl fyll and IQ—B(G, x)Is 0 cll hxH.

Consider the directed system ¢ of all finite dimensio=-
nal subspaces of Y ordered by inclusion, and the correspon-
ding nets of functions

{fB} Bed and '[98} Bed
By the Tichonov theorem there exist subnets
{954 5epr o0 1G4 aig
which are pointwise convergent, say to mappings f from
Y¥x Y into Z;, and g from X~ > X into ©,, respec-
tively.

The mapping fB {(I'y y) is line~r ir F for esch B ,
and

Fy Fyay, +Byy) = & Fy(F,y) + g Fy (F, y,)
for every B which contains both vy and Jo e Ilence

£(F(y)) = Py ry) ,
wvhere P, is a lineaor operator from Y™~ into Y , with norm
ﬂP‘f €1 .

Decause ?B (F, y) = F(y) for Fe Y¥ and ye B we

have, for all ye Y and F e Y* , {hat
£(F, y) = F(y) .
Therefore Py 1is a projection from Y~ onto Y¥ .

Applying this result to X in plece of Y one obtains
that there exists a projection Py from X~ onto X* such
that

g(G, x) = Py G(x) .

For every Fe€ Y™ and x € Xn B =C we have
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Fy (7, x) = Ry y By B F(x) = B Ry 5 R F(x) =

= PB Ry,c By F(x) = gp (R} Fy %)

gxd because Rl,B R? = Rlc Rl , these mappings are both res-
triction mappings from Y~ onto C%

Hence
R, Py F(x) = £(F, x) = g(Ry F, x) = Py Ry F(x)

for Fe YY ond x € X . This concludes the proof of the theo-
rem.

Thearem 4. Let X be a closed linesr subspce of a Banach
space Y . If there exists a Lipschitzian projection with norm
A from Y into X , then there exists a linear operator T
vwithnorm § Tl €A from X* into Y* such that, if
R, 1s the restriction mapping from ¥* onto X* , then R,T
is the identity of X* ,

Proof: Use the notation of the proof of theorem 3 . Let Py
and Px satisfy

R2 PY = Px Rl .

let P be a Lipschitzian projection from Y onto X with
norm [Pl = A , and let PY be the linear mapping from
X~ into YV defined by

P~ G(y) =G(Py) for Ge X~ ,y€ Y.
Clearly I PVl €A, amd Ry PV 1is the identity of X7 .
Set ‘

T = Py PV ;

T 4is a linear mapping from X” into Y* withnorm f Tl§A .
For x* ¢ X* we have

R, T x* = R, PyP"x* = P, R, PV x* =Pxx" = x*
and hence the restriction of T to X* 1s the required
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mapping.
The dual lifting result is
Theorem 5. ILet X be & quotient space of a Banach space
Y , and R the corresponding quotient mapping. If there is
a Lipschitzien mapping T of norm § TH&A from X
into Y such that R T 1is the identity of X , then there
exists a linear projection of norm st most A from Y¥
onto X* ,
Proof: Let T = T - T(0), therefore T'(0) =0,
Define T“;' from Y®~ onto XV by
™™ F(x) = F(T'x) for x€ X, FeY" ;
T is a linear projection of norm f T™I & A . Let
us identify an element G & XV Wwith the element Tex~
defined by
e (y) =6 (Ry) ,
and the element x* €& X* with the element X*eé Y¥ de-
fined by
Lx(y) =x*(Ry) .
Let Py be o linear projection of norm 1 from X~ onto X*.
Then the restriction of Py T' to Y* is & linesr project-
ion with norm at most A from Y* onto X* .
Now we shall develop some easy corollarys aof foregoing
theorems,
Corollary 1l: Let Y be a Banach space and X a subspace
of .Y . If there exists & Lipschitzian projection of norm A
from Y onto X , then there is & linear projection of the
norm at most A from Y** onto X** .
Proaof: Let T be e mapping from X* into Y¥* whose
existence is shown in Theorem 4, T* is the required linear
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I am unable to assert whether the assumption of corolla-

ry 1 is sufficient for the existence of & bounded linear pro-
Jjection from Y onto X . It may be proved with the follow=-
ikng supplementary assumptions:
‘ Corollary 2: Let Y be a Banach space and X a closed
linear subspace of Y . If there exists a bounded linear pro-
jection from X** onto X , and a uniformly continuous pro-
Jection from Y onto X , then there exists a bounded linesr
projection from Y onto X .

Proof: By Theorem 1 and the Corolléry 1, there exists a
bounded linear projection from Y** onto Xx**

If Q is a bounded linear projection from X** onto X it
is easy to show that the rna:triction of QP to X has the
required properties.
Corollary 3: Let Y be a reflexive Banach space, X a
quotient Banach space of ¥ and R the quotient mapping.
If there exists a uniformly continuous mepping from X into
Y such that R T is the identity of X , then there also
exists a bounded linear mapping To from X into Y such
that R T, is the identity of X .
This proposition is an easy consequence of theorems 1 and
5 .
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