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5, 3 (1964)
THE EXISTENCE OF A PCA - SET OF CARDINAL X 1

Petr VOPENKA and Leo BUKOVSKY , Prsha

The aim of this note is to prove that the axioms of set
theory and the following theorem are consistent: There exists
a projective (moreover PCA) subset of the Baire space the car-

Ly
dinal of whichis xX°; and 2 ° > &, holds.
We assume familiarity with (2} [3] e d [5]. Throughout

this note we use the notation introduced in the paperé [2] and
[5). All our considerations are in system 3* of [2](with
the axioms of groups A - E ). We denote by P, the set of
all subsets of the Baire space B' (N = @gq = {0} ) of the
projective class L, (see [3], p. 361). Thus, the elements of
Po are Borel sets, the elements of Pl are analytical sets,
the elements of P3 are PCA-seta, We denote by P <the sum o
all Pn .
Definition 1. Let A be & set, o), .ce &, are uncountable
cardinals. We define

Xy Rypeee y) = (W) (xeA . T ga, v =

= %V ... v§=ock ).

Proofs of the following atatements are given in the pa-
per [3]: ’

L7 .y < X,
Xi(Rg; 220, X (g3 20, Ap(Ry; 5y, 2 ), Xp(Py5 5, 2 OO
Kuratowski ([3], p.392) mentioned as en unsolved problem a Ques—

«
tion, whether ’Cl(P ; 2 °) holds. We shall prove that the asser-
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tion 1 X, (Py; 2°°) 1g vyalid in the model V  with a sui-
table choise Qs » (see [5]).

Let L be the class of all constructible sets, It follows
immediately from [1]:
Lemma 1. Ln Nng Py

It remains to prove that the power of L A NN is ?Cl
(in the model ©V ). If A 1is a concept in the tieory X ,
then we denote by J’!,‘ the corresponding concept in A
(see [2], Ch.V.).
Lemme 2. o= Qyhe
Proof: The following concepts are absolute: On,
(2], 11.42, 11.45, 11.70). Therefore K; is absolute (2, T.42).
The rest follows from 8.4. qe.e.d.

+1,u (see

Lemma 3. @), € @y, £ @&y
Proof: By lemma 2 G € @, . If &« € @, , then
there exists f  such that
Uny, (£) & Rel, (#) & D (f) = & W, (£) = &y,
By 10.21, 11l.15, 11,12, 11,17 we have
Um, (£) & Rel (f) & D(f) = c & W(f) = @%

therefore, @, € @, cannot hold. q.e.d.
Lemma 4, L n Pl )SF e,

Proof: In the model 4 , P, (F' a,, ) & Fg'a), holds.
It is easily to prove that LA P(a )& P, (F,"a), ). Be-
cause F 1is absolute, the lemma follows. Qe@eds
Lemma 5. (V) (Af)[x €@y, > xefea,, & B g o, &
(YY) (Fex +1 — FY $ Fp3 )]

Proof is more or less a modification of the proaf a < 28 by
Cantor. Let o € w,, be such that

(1) (VAllxeB 6 W & PFAGE @, . —> (@A) (Fex +

+1 & Fr =F'R)
¢ T ﬂ]-126-



From (1) and lemme 4, we have

(2) x€L&x & ap.—> (37) (ex +1 & x=F17)

From x € Gy, and the definition of F , we derive ;’:‘6
£, x* = @), , Therefore, there is f & L such that

(3) £, @, & W, (£) =F'x +1

We define aset d: (VX) (xe d = , xeaw, & x ¢ £'x) .,

We can deduce d = &), - D(fAn Cnv (E)). Thus de L and

d& @y » By (2), there is ¥ 6 &« + 1 such that 4 =

=p'y . For every x 6 & the following implicati-
ons hold:

xed — £'x¢d (as x ¢ £'x)
x¢ a—> £'xpd (as xé&f£'x)
A contradiction with (3) can be deduced from these implications
and the fact that 4 =F% .
Scm—

Lemma 6. Ln NN = W,
4 T
Proof: In the model A ,we can prove Ln W= P, (a%,) . The

q.e.d,

result follows from lemma 5 and the following fact: 8¢ = S"—-)
e ;‘= !-)e ° q-e.d.
Prom ({51, p.42) it follows

Lemma 7. Let » be a regular cardinal 3 @, Gl = @, both

in V + Then @y, = & . We can deduce from lemmas 1, 6, 7
the following theorems:
Theorem 1. Let wy =& 'and' ¥ =@ (or @Waqy eee “’qp-l’
eeede Then there is a PCA-subset A of the Baire space, such
£

thet A = €, and 2° 3 x, (or > &3, ... x"o’l’"' )
hold, everything in model © .
Theorem 2. If the set theory 2 (with the axioms of groups
A = D) ias consistent, then the sentences xl(P3; 2% ),

X (P;z“" ) are undecidable in = ,

- 127 -



Lusin mentioned in ([4] p.323): " ... le domaine des en=-
sembles projectifs est un domeaine ou le tiers exclu ne s appli-
que plus.,." . The theorem 2 fully confirms the assumptions by
Lusin.

The authors do not know,whether the following equivalences

7 £y om X,(py; 27, 2= xym o p 2"
hold in the set theory,
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