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Commentationes Mathematicae Univers i ta t i8 Carolinae 

5 , 2 (1964) 

CN EQbIVALENT AND SIMILAR GRAMMAJRS OF ALGOL-LIKE UNGUAGES 

(Prelíminary coraraunication) 

K. CULÍK, Praha 

Let G * < T, N, 71, S > be a context - free grammar, i . e * 

T and N are terminál and nonterminal vocabularies resp*, 

S e n and in VI are the rulea (aQ , a^t a ^ , . . . , an) , where 

a Q e N, a i e T u H for each 1 £ i £ n f n ž l (a^, s^*** a n 

i s aaid t o be atrong over T u N >• E.g, in ALGOL 60 T and N 

are se ta of basic symbols and meta l inguis t i c variablea r e s p # , 

S » <" programm> and Vt contains eleroentary syntac t i c def i n i -

t i o n s x Í : » y z n (the metasymbol l meaning MorH i s omitt -

ed)» Let L be the language generated by G and l e t fi be 

the s e t of a l l phraae markers of elements in L . The phrase 

markers were introduced by N» Chomsky and in- [ 1 ] are defined 

as double graphs the v e r t i c e s of whieh are l a b e l l e d by symbols 

of T U N • 

I f we ident i fy two nonterminal aymbols x and y , i # e . 

i f m subs t i tu te x instead of y in a l l p laces in a l l ru les 

of % and i f we omit y from N , we get a new grammar G* • 

I t i s easy to see that L* o L and the mapping $ of f2 i n -

t o ty* i s determined by t h e mantioned s u b s t i t u t i o n . I f $ i s 

a mapping onto -|2 then x and y are sa id t o be interchan-

geable i n G.E.g* i f t o each (aQ , a ^ . . . a ^ c ^ *foere aQ * 

* x (or aQ * y ) e x i s t s another rule ( b 0 , b j b ^ , , . bm) € $1 

such that m ^ n , bQ * y (or bQ * x) and for each i , 1 6 

š i ú u e i t h e r â ^ » b^ OP a i f b 4 e { x , y } , then x and 

y are interchangeable. Q t 



The homomorphism of a grammar Ĝ  onto a grammar G*> i s a 
mapping <$ of T^u ^ onto T~u N2 such that 

1) g i s an one~to-one mapping of T^ onto T« f 

2) (aQt a ^ . . . an) € H^ implies (<y(a0) , cf (a1) g? {ag}. . 

. . # 9 <%)' € ^ 2 a n d 

3) ^ induces the mapping $ of jZ ̂  onto P- % • *&*o i.>ram~ 

mars are sald to be equivalent i f l t i s possible to map them 

homomorphically onto the samé grammar* 

Another viay how to change the grammars are extensions and re-

ductions. A grammar G i s an extension of the grammar G0 i f 

there are grammars G f̂ G ,̂ . . . , Go~l s u c n * n a t * n e following 

condition holds for each i f 1 £ i ^ p : there exiata a rule 

^ao* ®i a2 ••• an* * ^ i - i * a s y m b o 1 b £ Q9Ď í^t u Tt^ * a n 

index j t 1 S j £ n and an integer k ^ 0 , 1 * j ^ k á n 
such that T4 * T i - l f N i * N ^ u { b j , 32. * ( # i w l -
• { <a0, ax a2 . . . an> } ) u { (a 0 , ax . . . ajw>1 b a ^ ^ . . . «n> 
(bf a, a .+ 1 . . . * . + k ) | and S±

 a S i „ 1 . E.g. i t may be H0 • 
{(S f b v t ) , (S, b w)J and 71 2 • -((S, b y),- (y, w), (St b x ) , 
(x, v t ) } . In this čase x and y are interchangeable, but 
they do not satisfy the above mentioned sufficáent condition. 

The composition * of two sets of rules 9 ^ and ^ * s 

defined as followsf V^ * ¥^ » { ( a 0 , x 0 y^ x^ . . . yn xn) ; x̂ , 

aad y* are sooe strings such that there are (a0 , xQ b^ x^ . . . 

• •* bn x^) € W^ and (b*f f0€é?2 ř o r 30m s y m b o l s 4̂ a n^ 
for each j 9 1 £ j ář n f • 

A nonterminal symbol x of the grammar G ia said to be 
reductible i f there i s no rule in ^ oř the form (xf p) , *here 
p i s a string containing x • The symbol x i s reductible i f 
and only i f in V0^ * ®*2 i s n o ru^*e containing x f where 

* l and V^ BTe "fcne s e ^ 8 °* a l l rulea in &L con-
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taining x in their right and le f t aide resp» 
Let x be a nonterminal reductible 8ymbol in G • It Í8 

natural to conatruct a new grammar G* a8 follows: H* » N « 
- { x } and %** (nu(Tx * r 2 ) ) - (<TX u T2) 9 G* ia 
aaid to be direct reduction of G • A grammar G i s called 
reduction of the grammar GQ i f there are G ,̂ Gg, • •• GL i 
such that GA i s direct reduction of GA «, ř o r eQck i , 
1 ú i £ p # Some simple examples of the reduction in ALGOL 60 
are shora in [2}. 

Now two grammars are said to be atrong or weak similar i f 
they háve equivalent extensions or reductions reap* 

If x and y are interchangeable in G and G* i s d i ­
rect reduction of G with the reduced symbol z, x ^ z * y , 
then x and y are interchangeable in G* again# If two 
grammars are atrong similar then they are weak similar too, but 
not conversely. E.g» ^ a *f(S , b z ) , (b, x y ) | and 71^ * 
=* {(S, x c ) , (c y z)} are weak similar because % a 

a ^(S, x y z) } i s their common reduction, but there are evi-
dently no equivalent extenaions of them. There are some l a t t i -
ce properties of the greatest extensions and emaile st reductior 
in regard to the equivalence relation among the grammars. 
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