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CONTRIBUTION TO THE SOLUTION OF NON~-LINEAR EQUATICNS
Josef KOLOM? , Preha

Let us denote by X a Banach space, by H & Hilbert
(separable and complete) space.

Let an equation ¢
1) F(x) = ¢

be given, where F(x) is en arbitrary operator which maps
X into X.

The generalization of Wiardé' 8 method of solution of
non-linear functional eqiations is based on the following
theorems:

Theorem 1.[1] Let F(x) be an srbitrary operator which
maps X dinto X and let P be a linear bounded operstor
in X such that P ' exists. Let the following conditions
be fulfilled:

1) There exists the set £ c B and a real number

&« (0 = % <1 ) such that for every u, ve E
IRM) - R(v)I =xllu=-vl , where R=1I - FPF.

2) The closed sphere .Q.(xl, r), where

I X =% il

=x, - PF(x,)) +Pf, r= o

p <
1 1e

and X, 1s en arbitrary element from E , lies in E . Then.
the equation (1) has a unique solution %* in the sphere
L (x,, r) . The sequence {x.,} defined by
X+l = X, = PF(x,)) + Pf
=165~



is convergent in the norm of X to the one of (1) =d the

error of the approximation Xy satisfies the inequality

ol i
1l -0
Theorem 2.[1] . Let P be a linear bounded operator in

H such that P % exists. Let F(x) be an operator vhich

len.ox ”xl-xoﬂ .

maps H into H and has continuous Gateaux derivative
F’(x) on the set Ec H . For every x € H let PF'(x) be
a symmetric operator in H such that the inequalities

B sug"F'(x)H < 1, (PF(x)h,n) 2 wlnil?2, o>o0
Xe.

hold for every X €E, heH.,
Let us put

(2) xn"'l = xn - PF(xn) + Pf P} n = 0,1,2,...

= 4 = %
oA -;EEHI-PF(X)" ’ r-I—:;—- I xl-xollv,

where X, 18 an arbitrary element from E .

Let £l (x;, r) be a closed sphere contained in E . Then
the equation (1) has a-\'mique.solution a2* in the sphere
n (xl, r) . The sequence {xn} defined by (2) converges
in the norm of H to the solution x* of (1) and the er-

ror satisfies:

“x*"%"-‘- "igc:""—u Xl-xou .

Remark 1. From the theorem it zlso follows that of may
ba replsaced by ' s where A<ot'z=1l-m< 1.

If F(x) =x=-AP(x), where A 1is a real psrameter,
¢(x3 is & non-linesar operator which maps X in'l;.o X, we
gzt the following theorem:

Theorem 3.[1].Let ¢{(x) be an opsrator which maps H

v
halt N iy



into H eand hes continuous Gateeux derivative ¢ (x) on the

set Ec H for every xe€ H ; assume it is o symmetrical
operstor in H and such that the inequality (A ¢ (x) h, hlz0
holds for every x€ E ad he H . Let &% satisfy the ine-

qality 1
0 ¥ < .

1+sup Al
%€E

Let ué put

(3) Xpy = =) x, . B A (x )+ B

& =sup IT-2H(T=-A4¢ NI,

X€eE
r=—%__| x; =x, Il « Let L (x;, r) be a sphere
l-c
which lies in E . Then the equ.tion x - A ¢ (x) =f hes

*  in the sphere L2 (xy, T) . The se-

- a unique solution X
quence {xn} defined by (3) is convergent in the norm of H
to the solution x* ma the error Il x* - X, I of the appro~

ximation X sctisfies
n
. -9 ’
hx* =x 2 ———— % =%, Il .
1l =-oc

Remark 2. The number o may be replaced by ' s whera
L <ot'=1-9" < 1.Ifweput P=[F(x)I? in 2)
we obtaln the Newton-Kantorowitch iterative process. The zg=~
sumption of symmetricity of the operator F’(x) in the theo-
rems 2,3 ‘may be replaced by an assumption of potentiality of
the operator F(x) (cf. [2]1 § 5, theorem 5.1).

We shell generalize the theorem 1 in two directions., At the
tirst we replsce in the inequality [l R(u) - R(v) lgetflu - v i
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the number o by o =1 , Further we set R(x) = PF(x) - 4 »
where A 1is a linear bounded operator in Banach space X ,

(4) consider the functional equation F(x) =0 .
If G(x) =f£ , then we set F(x) =G(x) - F ,

Theorem 4., Let E be a convex cldsed bounded set in
Hilbert space H . lLet F(x) be a potential operator on E
which maps E in E . Let the inequality (PF'(x)h, h)= 0

hold for every x€ E and hé&€ H, where P 1is a linear ope~

1

rator in H such that P~ exists and 0 <P < 1/

sup [l P (x) | . Then the equation (4) has at least one solution
x€E

x¥* in E . The sequence {x,} defined by

Tpey = %y - W(x), Q= 3P

is convéfgent weakly to the solution x* .

This theorem genersalizes. the following result of M.M.
vajnberg [2, § 10] : If a potentisl operator G(x) maps Hilbert
apsce H in H m:d for every x € H, h € H the inequality
(6°(x)h, h) = mIhl? ; m>0 holds, then the equality
G(x) = £ has at least one solufion x¥* in H.

Theorem 5. Let F(x) be a non-linear operator which
maps X into X and let A be & linear bounded operator
which maps X onto X . Let the following conditions be fulfill-
ed:

1) There exist the linear bounded operator P such that
P~} 1s bounded and closed set E< X such that for every u,

veEl

i PPQ) = PR(Y) - Alw = W)l Sacfu~- v/ .

2) The closed sphere 4L (x),r) ¢ E , where x; is
- 158 = :



defined by equality y, = Alx, = x,) , x  is an arbitrary

(4]

"xl"'xolg

element from E , ¥, = - PF(x,), = N A
B = «d'< 1, where d” is the number from the inequality
lxH = Jllaxi.

Then the equation (4) has a unigue solution x* in the

sphere J) (xy, *) . The sequence { xn} defined by equalitiea
Ipe1 = Alxy =Xy y)
¥, =~ PRxy)

converges in the norm of X to Vthe solution x¥ of (4) and

the error satisfies

n
(5) len-x*ﬂﬁ-lf—-T oy - x 0.

If P(x) maps X into- X , A hsas a bounded inverse
A"l | the condition 1) from theorem 5 is fulfilled and the
sphere L (x4, ») © E , where Xy = X, - st PF{z,), %, € E,

r=1ﬂ-ﬂ “21“!-'0“ y R=a«ll A-l"<ls then the

equetion (4) hes a unique solution x*

ﬂ(xl, Tr) .
The sequence { xn} defined by the inequality Xorl = % ™

in the sphere

-t PF(x,) converges in the norm of—X ~end ‘the error of
the approximation x, satisfies the inequality (5).
Theorem 6. Iet F(x) be an &@rbitrery operator which maps

X into X eand let A, P be linear operators such that
471, 71 are bounded. Let there exist x, € X such that
i PF(u) - PF(v) = A(u-v) I £ cflu~v [ holds for svery

u, v from the closed sphere = 1) (%yy T), where T =
1

iyl 5= PF(x)), k=02, k<1,

l=ck - 169 =



*

Then the egeation (4) has a unique solution x in the sphe-
re A4l (x,, r) . The sequence {xn} defined by

- -1
(6) X4 = X = AT PF(xy)
converges in the norm of X to the solution x* of (4) ma

(o k)P
. *
(7) Il x, -x"l= %, -x_{ .
o 1- Kk 1 %o

From this theorem we get immediately the following theorems:
Theorem 7. Let F(x) be a non-linear operstor which
maps X into X , has the continuous Gateaux’s derivative
F’(x) , on the closed sphere JL (x,, v) and [F'(xo)]-l
is bounded. Then there exists & constant k > O such that
I\F(xo) I = ¥ +the equation (4) has a unique solution x*
in the sphere L (x,sT) « The sequence {x,} defined by

(6), where A = F'(xo) converges in the norm of X to the

solution x¥* .

Theorem 8. Let +(x) map X into X &and have continu-
ous Gatesux’s derivative F’(x) in the closed sphere
0 (x5s T) » Let the following conditions be fulfilled:

1) There exists [F'(xo),] =l ana il [F'(xo)] =4 s k.

2) 1 Fi(x) - Ff(xo) I =« for x € L) (x5, 7) ,
Kk < 1 and | F(xo)“ = —% r(l - & k) .

Then the equation (4) has a unique solution x* 1in
N (x,, r) . The sequence {xn} defined by (6), where A =
= F(x,) converges" in the norm of X to X* and the in-
equality (7) holds.

Let F{x) be differentiable in the sense of Catesux “s
in the closed spner: AL (x,, r) . We introduce monotons
non negative increasing functions 4 (@ ) defined on the

get 0 = < r by
£ -~ 170 -




y (p) =sup | F'(x) - F'(x,) Ih.

X cn.(xo,r

We have that @ (0 =0 . Le'_-l‘:. there exist bounded operstor
-, \ —1
83 (xo)] . We set “ =

HeE" eI

Po be the supremum.of all numbers 50 such that
¥ (@ )<@# . This condition is fulfilled when F’(x) is

continuous at the point x = Xg o

Theorem 9. Let F(x) be Gateaux differentiable in the

Let

sphere 0 (xo, po) . Let there exist a bounded operator
[ F'(xo)J =1 | Then the equation (4) hes a unique solution x*
in 0 (xg PO) . The sequence {xn} defined by (6), where
A= F'(xo) converges in the norm of X to the solution ,tz*
and the error satisfies (7).
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