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4, 4 (1963)
'CONCERNING REPRESENTATIONS OF SWALL CATEGORIES
Karel DRBOHLAV, Praha

The existence of non-concrete categories was proved by
J.R. Isbell in [2]. On the other hand the well-known theorem
of S. Eilenberg and S. Mac Lane (see e.g. [1] or [3] )
states that every small category (the category the objects
of which form a set) is concrete. The proof of this fact
assigns to every object a .the set A consisting exactly
of all morphisms o which end in & and it may be used
without any change for proving our theorems 1 and 2 .

In what follows we use the following notation. ¢ is
any smsll category, ‘¢’ is the set of all objects of ¢ ,
H(a, b) is the set of all morphisms of ¥ From the object
a 1into the object b . For « ¢ H(a, b) and B¢ H(b, ¢}
the product of « and S , which lies in H(a, c¢), is
written as 0(«/3 « In relation to this, for eny mapping F
from some ae@ A into some set B and for any ae A the
image of & will be denoted by aF , whereas AF means
the set of all &F for all a€ A . mM is any infinite
cardinality and ‘WU, is the category of all sets X with
card X < # and of all mappings.

Theorem 1. Let card ¥ < #m+ and let card (s, b)=
€ M, for all objects a, b e £®  and for some fixed
cardinality M, < M . Then ¢ is isomorphic to some sub-
category of U, .

Theorem 2. Let card <¢° < #+ and let card H{a, b)<#t
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for all objects a, b € €° . If M 1is regular then f is
isomorphic to some subcategory of U, . '
‘ For the first irregulsr cardinality #, the following
ig true. ‘ . }
' Theorem 3. There exists e small category ¢ with the

following properties: 1) card €° = &, 2) card H(a, b) <

~< &, for all objects &, b € €° 3) € is isomorphic to no
subeategory of uﬂw . ' '

Before proving it we formulate our lagt theorem.

Theorem 4. For eny infinite eardinality ## there exists
‘alweys a small category T with the folibwing pr'operties' 1)
card €° = Mt 3) card H(a, b) <h“¢ zor. au .objects a,
be€® .3) € is iaomorphic to no aubcategory of um .

Proof of the theorem 3. Let #p be any infinite cardina-
lity and let W be a well-ordered set with :card I = My
cdnsider a category ‘f,,‘y consisting of three objects a, b, ‘
c s of identity—morphiama, of some morphisms o7 , /*',;_ s V1
(iew ) and of their products so that the following is true:
1) ‘H(a, b) dis the system {a.};: ow 2) H(b, ¢) is the
union of disjoint systems {ﬂj];‘:w and Ay f, ew 3)

H(a, ¢} is formed by all products o /.f; and o P7 under
the assumption that, by definition,
(1) o B = X
holds if and only if 1< J .

' Let us suppose that F - is any embedding-functor from f;,,p
into the category U of 211 sets and of all mappings. Let

= F(a), B =TF(b) . For every i€ W define By by the for-
mila By = Ji A F(e,) so thet Bjc B . It is clear that

By B, holds for i<d (i,£eW ). We shall prove thet
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i <4 impliss By+ By . Reslly, we have o, 3 + % 3;
(see(1)) and consequently F(eg, B )+ Flw, ¥, ) . Hence there
exists an element X, € & such thet x, Fle,) F@,) +

+ % F(“'l ) F(I‘T) . Putting Y =% F(ofz) er have yg‘ B,
and

() v, PRy + 3, F(ap)

£ssume now thet y, € By hkolds for some i< £ . Ther
it is possible.to find k £ i and x; € A such that Y =
= x, F(€, ). But k <4 =nd thus, by (1), it is &, B, =, 75"
Hence 3, F(/.!‘) =7, F(&l‘ in contradiction to (2) . Hence
Yo € Bj . The mepping L Yp is an injection from W
into B, hence card B 2> #4 .

This result gives us the posgyibility of constructing a-
small category ¥ which satisfies conditions of our theorem
3 . Consider categories f@ for all infinite cardiﬁali—
ties #p < K, . et the objects of .,  be denoted by

am s b‘b s Cup o Now, we identify all objects Db,

wp Y
putting b,, =b amd by considering sets }I(aﬁ% s Cag, )
for #p, % M9, as being formed by all formal products ;7
with f € Hls, ,.b) ard 7€ Hb, cyy, ). In this way
we get a hew‘ category ‘f which satisfies all conditions of
-theorem' 3 . Espeeislly, for eny embedding-functor F from .
¢ into U we have card F(b) >4y for any 4 < $,, hen-
ce card F(b) 2 K., . .

Remark. A slight modification of this proof gives us an
example of 2 ’cate'goi':; € which, like that of Isbell [2], is
not concrete. We have Lml,y to force card F{b) = #p for any
cardinality s whot may be done by taking categories f,,‘/,,

for sll cabdinalities M and by identifying their "middla«<
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objects b,,,p in 8 way similar to that described above.

Proof of theorem 4. Let ## be any infinite cardinality
and let W be a well-ordered set with card W =42 . Let the
objects of € be any symbols a; (ie W), b, ey (e W) so
that cerd €° = #4 , Assume that esch H(a;, b) consists of
exactly two morphisms of. and J; vwhereas each H(b, cJ) con-
tains exactly ome morphism 77 . The sets H(a,, cj) consist
of products &« Py and /3; 97 and we put, by definition,
(3) G =AY
if and only if i< j . ’

No other morphisms sare in € besides identity-morphisms, of
course.

Iet F be any embedding-functor from ¢ into the cate-
gory U of all sets. We define to every i€ W a binary re-
lation S; on F(b) by putting y Sy z "if and only if there
exist some k<€ i end some X, € F(ay) such that y =
=x, Fl,) and 2z =x F(B ) . It is clear that S;< Sy
holds for i < £ (i, € W ). We shell prove that i < £
implies S;# S, . By (3) we have o, 22 %+ /‘2 77 and conse-

quently F(v.ar2 7"1 S P(/Sg ?¢) - Hence there exists an element
x, € F(al )} such that

(4)  x, Flog,) Plgp) 4 x, FiBy) Fgp)

Putting y = x, Flec,) and z = x, F(/3%) we have y S % -
Assume that y Sy z is true for some i< £ ~« Then it is
y=xkF(ock) and z=xkF(,Gk) for some k< i eand for
some x, € F(ak ) e But k <. implies “ ¥; =/t’k Yz end

x, F(oti() P(Yp) = x F(B,) F(Yz) « Hence y P(37 ) =z F(¥y)
in contradiction to (4). It follows M = card ¥ < card (F(b}x<

» P(t)) = card F(b) . The category € satisfies all gonditions
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of theorem 4 .
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