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Comment ationes Mathematicse Universitstis Carolinse

4y 3 (1963)
ON A NUMBER OF COMMUTING TRANSFORVATIONS
Z. HEDRLIN, Preha '

The aim of this remark is to prove the following:
Theorem: Let £ be 2 transformetion of an n-point set X .;
Then there exist at least n different transformstions of -
X commting with £ , that is, there exist transformations
81s Bpy +ve3 Bg s S E D, gi-l-gj for i#;],suc'hthat

g;[£(x)] = £[g;(x)] forall x e X and ail
‘ i=1,2, eeey 8.
We use the following notation:
i denotes_x the identity transformatlon of X ad we write
i—f . 11’-1’1(1') , and F = iU{f} . We write F(x) =

n o

=, U {f (x)} .

yeX is said to be maximal according tb f , or simply
maximal, if f£(x) ¢ y for every x e X . If Y is a set,
IY! denotes the cardinel of Y . We assume that |X| =

Lemma 1 l. let g commte with £, g(xl) = x, . Then
IF(x N E lF(xz)l
" Proof. We have f(x,) = f[g(xl)l = g[f(xl)J . Hence, if

f(x2)+ f(xz) , then also 'f(xl) + f(xl) .

Lemma 2. Let F(x;) nFix,)# 0, F(x,) N F(x3)4= £ . Then
F(x,) n F(x3) + 0.
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Proof. We have f(x;) = g(xz) y £(x,) = £(x3) , for some

i, j, k, 1 . Hence, i+k J+l | )
f(x) = £ (x5) , end the lemma is

proved.

X3, X, € X are said to belong to the same componeni accord-
ing to f , of simply to the same component, if ‘E‘(:rl) N
AF(x2)+ g . By lemme 2 , two components ore either equal

or disjoint.

Lemma 3. Let there exists only one component and ory one ma-
ximal element according to f . Then F(y) = X , where y

is the maximsl element.

Proof, Let X, none F(y) . As x %y , x, is not maximal,
there exists x; such that f(x;) = x, . Evidently,

x; non € Fy) . Continuihg this process we get a sequence

X, - 48 |X| =n, there exists only finite number of diffe-~
rent x; . ’f{herefore there must exist xj and natural k

. non € F(y) . Hence, F(xj) n

J

NnFy) =g, ad x5 and y belong to different compo-

th =
such that f(xj) Xy X

nents,

Lemma 4., Let there exist only one component, and no maximal
element according to f . Then F(y) =X for all ye X .
The proof is evident.

Now, we are going to prove the theorem by induction. If
n =1, then the theorem is evid;ntly true. et n > 1 . Ve
assume that the theorem is proved for all mZn -1 ., We di-
vide the proof in three sections according tec the properties
of f.
" (a) There exist more than one component.
(b) There exists only one component containing at most one
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moximel element.
{c) The exists only one component conteining more than one
maxircal element.

(a) Ue denote the corponents Yy, Y,, ess, ¥) o We may
assume that lYili €540, 1=1, 2, «eey k - 1 . Evident-
ly, every Y; is fixed under £ , that is £(¥;) §qféf (y4)e
ci; . If we denote by flY; , &s usuel, the restriction of
f onto Y; , then fIY; is a transformetion of Y, . By
agsurption, there exist at least l'(il different transfor-
mations of ‘fi cormuting with :t’l‘fi . e denote this set by

F; « I=t G beasystem of transformations ¢f X such that

g € G if and only if gl[ieFi for each i = 1, 2,4.s

ceey ko

tle have
ot =10 15,1 2 T 12,1
Gl =, F. 1. .
1el 1 g ill ' 1
If no lYil =1, then the theorem is true, as every trans-
formation in G commutes with £ .
Let fv;l =1 for i=1,2, ..., v, thatis ¥; = {y;} .

For eacch i=1, 2, .oy r , e define a constant transforme-

tion hy(x) =y, for every x € X . Tvidently, all hy, i
=1, 2, ves, T , commute with f . Iet us denote G~ =

T
GU (iyl{hi} ) . We get

. k
| Gt ,.>,_Tl'!‘£i| + .,
i=rel

Evidently, . le‘{ii =n-r, andevery |[Y /=2, 1=

1=P+r

=r+1l, T+2, ..., k. Hencey |Gl Z n, and the case

(a) is proved.

(b) If there exists only one corponent with at most onc
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element y , then, by lemma 3 and 4 , the points y , £(y) ,

2 n-1

£(y), eeey T (y) are different. That proves the case (b).
(c) Let ¥, yps Yo1 eees ¥y De moximel elements,

’,

IF(YI £ IF(yy)l for i=1,2, «e., t . We denote X =
=X N{y}, £ =£|X" . Tvidently, f  is s tronsformation
of . X", IX’l =n -1, Hehce, there exist different trens-

>

formations gy, 85, +e+y €54 S 2 D -1, swh that every

g; commtes with f'. We may sssume that gf , 1 =1, 2, ...
ey 8 , ore oll transformations of X  commuting with £ .
e are going to prove that every gi can be commutatively
extended to X , that is, far each gi y 11,2, ceey 8,
there exists a transformatioﬁ 8y of X such that gilx' =
=g , and g; commutes with f . By assumption, y is a
maximal element and therefore
IP[E(NIL = (F(PI -1 = P[] ,
where F~ denotes the set of transformetions of X~ belong-
ingto £ . As |F(y) S IF(yy)l , by lemma 1 , g{[f(y)]
is not maximal element according to f .
Thus, there exists af least one element x; such that
20x; ) = g [£(y)] . |
If we define g;/X" =g , &(y) =x; , then g; is the

n

reguired conmutative extension of g:{ .
It remains only to prove the existence of g; which can
be extended in two different ways. To prove it we show thet

under essumptions of (e¢), there exists & aatural k such

that
k k=1
£f{y) =2(z) , z4 £ (y).

Let y;# y, y; Dbe meximal. ve have F(y)n Fly) # 0,
y; non € F(y) , ynone€ F(y;) . Hence, there exists natural
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k k-1
k such that f£(y)e F(y;) , £ (y) non e F(y;) . There

n
exists an integer m such that f(yl) = f(y) « Put z =
m-1 k-1 k-1
= £ (y;) . Evidently, z¢ £ (y) , as ¥f (y) none F(yy) »

k-1 !
Now, £ |X° ccmmutes with £’ and can be extended in two

dit'ferent ways. The proof is finished.
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