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Commentationes Mathematicae Universitatis Carolinae
4, 3 (1963)
AN E}CIEI\TKSI(N THEOREM FOR SEPARATELY CONTINUOUS FUNCTIONS
AND ITS APPLICATION TO FUNCTIONAL ANALYSIS x)
Vliastimil PTLK, Praha

l,. Let S Dbe a family of continuous functions on a to-
pological space T . Consider the value of an s € S at the
point te€ T as a function £(s, t) of two variables on the
Cartesien product S>» T, If S is taken in the topology of
pointwise convergence, the function f will be separately
continuous.

2. Every completely regular topological space P posses-
ses & natural extension, & locally convex topological linear
space, constructed in the following memner. Denote by C,,(P)
the Banach space of all bounded continuous functions on P
end teke the duel space C4(P)” in the wesk-star topology
6 (C4(P)°, C4(P)) . Then P may be considered ss a subset
of Cu(P)°, ‘

3. The main problem. Consider a bounded separately con-
tinuous function f£(s, t) on the product S> T of two com-
pletely regular topological spaces. Now, SxT is imbedded
in the linear space Cj (s)’= cﬁ(r)' « Under what condition.s
may f£ be extended to a separately continuous bilinear form
on Cg(S) > Cu(T)” 7 ’

4. We say that a function f on S»> T satisfies the
x) Preliminsry report on a paper presented to the Editors of
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double limit condition on S T 4if it is impossible to find
two (countable!) sequences s;e S and td € T such that both

lim lim £(s;, t;) and 1lim lim f(s;, t;) exist and are Qdiffe-
i i’ g 3 i dJ

1 J
rent from each other.
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This theorem permits us to obtain statements about the (non me-
trizable) weak topology of a Banaéﬁ‘space from assumptions of
a countable character. It contains e.g. the theorems of Krein
and Eberlein. A vweaker version of this theorem is already con-
tained in [9]. The proof of the main theorem is based on the
combinatorial lemma on convex means [8] . The reader is refer-
ed to [9] for all information end notation connected with this
lemma and its application to problems concerning weak compact=
ness. )
6l. The following lemma will be used in the proof of the
mein theorem.

(2,1) Let _X_ and _Y_ be_two_completely_regular_topological

SR e DTS eTa aVetateavroraotatad ot 2o st e R T ROl T -
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to C4(X) by the relation

- e an e e e e e e e e = e em

{hix), y» = <x, X(y)> =B(x, y) .
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I<EZ A(r)r - Ty s KY)>IsE
Proof: Let W Dbe the subset of R > Y where
I<r - =g, k(y)?li-&-
and let M be the subset of R> ¥ where
[<r -z xp>i<$

Let W bve the system of all sets W(y)
B be such that | B(x, y)I=/S3

vith y € Y . Let
on X > ¥ . Suppose that
M(R, W, gﬁ/j ) 1is empty; it follows from Theorem (3.1) of
[9] that there exist two sequences T € R and y € ¥
such that

r, € M(yl)n cee N My, 1) Wy ) W(ypep) A oo
8o that the double limitt condition is violated on R Y .
There exists, accordingly, a A e M(R, W , 35/3 }s Wie ha=
ve, for y€ Y,

KZA@ r-r, xp>is =, A @) [ <o-x,y kD=

. = =z = £ - £
= reWly) ¥ reR-W(y)” 84 2R +% T2

- m e TR T E Y- @St Rl tA =S S S
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forn o 9% B

iroof: I. We define Tirst 2 mepping h of S into C/.K(T)
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end a mepping kX of T into Cg (S) by the relation
(1) {n(s)y, t» = (s, kK(t) ) = B(s, t)

If peE Cy (S); define & function k“(p) on T by the re-
lation

() (x’(p), t> = <p, (t))

Let us show that k“(p) i1s continuous oh T . Indeed, suppo-
se that Me T and toe T belongs to the closure of M ‘
and that (<k’(p), m = t,>/2 € for all me M and so-
me € > 0. Divide the set M into two perts M*) ana
M(-) according to the sign of < k“(p), m = t,? . Since

t has to belong to the closure of one of them, we may clear-

[
ly sssume that t, is in the closure of M(+)

« According to
(2,1) there exists a convex mean ’f:Mﬁ-(m) m such that

I<{n(s), TA(m) m~-t )Iﬁzm‘
IKs , T A(m) ¥k (m) -k (t°)> = 'z-%'u . It follows that

Kpy, £ @ kn) - k(t)>% £ . This 1s & contra-
(+)

whence

diction since € k“(p), m - ty> & € foreach me M
whence < p, Z A(m) k(m) = k(t )2 =
= (x'(p), TA(m) (m-t J>= 2 A <k(p) m-t)5E
It follows that k’ is a mapping of Cq (s)’ into Cu (1) .
By (2) and (1), we have

Ck’(s), t 2= (8, k(t)» = (h(s), t >
80 that K’ is en extension of h .

II. In the seme manner we obtain a mapping h’ of
Cp (T)” into Cg4 (S) defined by

(3} <e,b°(q@) Y= (nls), q )
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III. Now let pe€ C4(S)° , qe& Cuglr)” . Since h'(qe
€ C4(S) , the expression <p, h'(q) ? hes & meaning; si-
milarly, <k“(p), ¢ ? also may be defined. If we show that
(4) <x’(p), a7 = Cp, h'(a) ?

it will be sufficient to put B¥* (p, @) = (k’(p), @ > to

have the desired extension. Indeed, B* (g, t) = {(k’(s), tD=
= (s, k(t)> = B(s, t) by (2) and (1) . If p is fixed, we
have k’(p) € Cp(T) so that x“(p) is continuous on c,,(T)'.
If q is fixed, we have h'(q) € g’(s) so that h“(q) is
continuous on Cg(s)’. ) :
. IV. To prove (4), suppose that [pl& 1, [Iql= 1 and
let € > 0 be given. Let V be the set of all linear com=—
binations 2 @; s; with Zlal= 1 sothat V is den-
se in the unit ball of C,(S)”. Let R be the set of those
v e V for which
(5) I<v~-p, (> & €

80 that p belongs to the closure of R . Let us show now
that it is sufficient to find a v € R such that
(6) I{v-p, kKMD>I= &

Indeed, we have by (2) and (6)
<), t > = <x'(), t2 =i<p-v, k())& €

for all t € T vhence
(1) I<x (), a> =<k, q> = €

Since v e V md k’ is on extension of h , we have further
Ck(v), g¥=<n),aq9d>=<v, h’(q) D

which, together with (7), yields

(8) [Kx’'(p)yqa Y -, 2 (@>] = €
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On the other hand, v € R so that, by (5)
I<v, (@) ? - (p; G
and’this, combined with (8) gives
I<k’(p), a2 =-<p, b () DI F 2 E

V. The proof will be complete if we show that there ex~
ists a v € R such that
|[{v-p, KD)> [% £

Since p opelongs to the closure of R , it follows from
(2,1) that there exists a convex mean I‘ER A(r)r with

IKS Al) r-p, K(DIDI=FE or there exist two sequen-
ces 1y, tj with

(9) rpe Mty)A wee ME ) A Wt ) A Wt )A ...

n+l
there M and W are the subsets of R> T wherel{4=p;k(t)>|
is respectively < -g- € and = E.

If we show thet (9) is impossible it will be sufficient to
take v = 2 Alr) r . '

Now let t’j‘ .be & subsequence of tJ. and t, € CA(T)' en
accumulation point of the sequence t’:‘j such that

(10) lin € h(ry), t’; ? = (h(ri), t, 2 for each i
and
A (k) -t MI=FE for each

By (2,1) there exists o convex mean = A‘,j tg such that

o * = 1
(12) 1 { n), ZJLJ. t3 -t >l = g €

Let i be given. It folluws from (9) that, for large j ,
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I<r; -p, k(tj)>lf 3

or, which is the same

[ {n(zry), t5 2 - <{x’(p), ty 212 E ;

this, together with (10) and (11), yields

(13) I<n(r;), t,2 - <k"(p), t, 21 = %‘- &

Now let i be greater than any of the indices of the

ty which occur in the expression Aj t; .o« It follows

from (9) that, for ‘1 - s,

[<ry =p, x(t)> |= -'2’- &
or i
[Chlzy), t, 9 = CX(0), 4, D12 4 & ;
_together mth (A1), wehave |

l(h(ri),f-i‘ié‘: ')::- .(k'(p), t, 21 = 55 I3
so that it follows from (12) 4

[<ntzy), 8,7 - k'), 8,0 |5 § €

which is a2 contradiction with (13). The proof is complete.
To coﬁclude, let us point out some questions arising
in connection with the present remark. A systematic study
of the convex extension of a given topological spsce seems
to be indicated. Also, it would be interesting to obtain
more informstion ai;out the inductive ®opology of the carte~
sian product S><T , i.e. the topology which yields as con-
tinuoué-)%:%‘ét:t%%he system of all separately continuous

functions.
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