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Commentationes Mathematicae Universitatis Carolinae
4, 3 (1963)
A GENERALIZATION OF A THEOREM OF R . BAER
Ladislav PROCHAZKA, Prsha

The purpose of this note is to present a theorem thai: ge=-
neralizes R. Baer’s theorem on the complete decomposability

of pure subgroups of a completely decomposable torsion free

abelien groups (see [1], theorem 46.6 ).

Theorem, If a completely decompos able torsion free abe-
lian group G is a direct sum of groups of rank 1 whose
types are inversely .ell-ordered in the natural parti=l or-

der of types, then every pure subgroup H of G is again
completely decomposable.

Proof. The following proof runs on the same lines as

that of Baer’s theorem in [1] .

Let ¢= =2 & be a direct decomposition of G whe~
L'<T £

re J, (<7 ) are torsion free groups of rank 1 , and
< is an ordinal. According to the assumptions in our theo-

rem it can be supposed theat

(1) type J, = type J; vhenever &x = B < 7.
Put, for each ordinal B (0 <8 = 7T) ,
(2) Gy =x§4 J and H =EnG,

By (2) we have G, € G, @d also Hg< Hp for all ordi-

nals B, ¥y such that 8 =9 = 7 . Hence it follows
for A=y =T

(3) N (HnGA)=H?,nGﬂ

=HynHy =H,

Hy
sothat H =H ~n @ for every 4 preceding 7 . Con-
A Bra A
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sequently, the following relation holds for B =< ¥

() B, /B =H,, [, nG )L ,H,}/c <

€ Gy, /Gg o

By (2) it is G, =G, + J end therefore G, /G, T, .
From this we obtain by (4) .
(5) : By, / B, 55 = J,

where J; can also venish.

Let Hy , / H, be a nonzero group and let xeH, -
~Hg o If type(x) is the type'of x in G, then, by the
purity of Hg,, in G, its type tekenm in' ) heq 18 the
same as that teken in G . As an imed:late consequence of this
remark, of the relstion O x € G4,, md of (1), (2) we -
obtain ' o
(6) type (x) = type A .

If we put x'_" =x+H, ¢ §, /B, , then ‘type(x"‘) =

2 type(x) (type(x* ) 41s taken in Byoq /B, ), end we ha~
ve aceording to (5)

n type(x) F type(x*) = type 3’; % type Jp,

From the inequalities (6) eand (7) we conclude

(8) type(x) = type(x* ) = type I% = type Jp .

The relation (8) makes it possible to apply a Baer’s lemma

(see [1], lemma 46.3 ) and therefore we can write

. - s
(9 : He,, =Hy +J} (B =)
where, according to (5) and (8), J* '3’-.'7; ¥J; . We have

thus proved that for each ordinal /3 = = a direct decom—

position (9) is true where J; either vanishes or Jﬂ* £

-~
- Jﬂ .
= *
Now we shell prove that H = xgz_ 37 .
First of all we shall show the equality
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* = P
(10) {J‘ 3 % <t} h ‘F?’r Ja

holds, Let &, < @, <... <%, < T y let x; € ‘L::
(1=1,2, eee, n ), and let x; + X, + ...+ %, =0. Since
Xy < Ay (3 =1, eoe,n-1) wehave‘a:j*-lﬁaﬁm.

(3 =1, vee,n=1), and, by (9) end (3), x; € Jx’;s ijﬂs
€ H, . According to (9)
m

»

(2) + eee +x4) +x € B, +do
vhere (x; + ... +x  )€H, ~ , X € J:n , ond we con-

clude that x, = 0 = X} + ... + X7 o By the same method we

can show that 2180 X; = X, = ees = X =0, and (10) is es-

n-1
tablished. Next we shall show by transfinite induction that,

for each B with 0 < 8§ T , the following reletion
holds

- x
(11) L -“'5 i .

If B =1, then we have by (9) H =H

. *= * .
o + Jo Jo s since
Let /B ,> 1 and let us assume that (11) is true whenever

B <A, .If B, is of the forom A = B + 1, then,
by (9) and by the inductive assumption, we have

= = PR = * 3 Tk = * ‘
Hﬂ, Hﬂf" HA + J}I eccz/': 4 * 'J;l «50 o e

If A, is a2 limit ordinal, then it follows from the definition

of G (0t =<2 ) that Gﬂe U ¢ and also H =

=¢<ﬁ° o« Ao
= U H, .%Ve conclude (according to (10))
<<,
H (= %)= = g* _,

= U =
Bo x=<p, y<x T r<mo ¥
Thus (11) is proved for each /B3 = 2 . In the special case

R =7 we have by (11)
(12) , H=H,6A = =Z J¥



which completes the proof of our theorem.

Remark. It follows immedistely from the preceding proof
that every pure subgroup H of such & group G 1is isomorph-
jc to a direct summand of G (see (12), (9), (5) m&__(e) P
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