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Commentationes Mathematicae Universitatis Carolinae

4, 1 (1963)

ON THE PRODUCT AND SUM OF A SYSTEM OF TRANSFORMATION SEMI-
GROUPS
P.C. BAAYEN and Z. HEDRLIN, Amsterdam

l. Introduction

I} X is a set, then (F;X) will denote a semigroup F
of traonsformations of X into itself. Now if a system of
transformation semigroups is given, {(§ ;X): «€ A}, the~
re are several ways to construct from these a transformation
semigroup F operating on the set X =¢liJA X o We will con=
sider two methods; as they give us essentially the direct ‘
product and the di.rect sum in the casev that the X, are pair-
wise disjunct, we call the transformation semigroups (_F;X) N
constructed from the (F‘,;X‘) by the methods considered, the
product and the sum of the trensformation semigroups
(B ;%) i -

We are mainly interested in the situation when the new
transformation group (¥;X) turns out to be commutative. In
the case of the product, it is sufficient to assume that a2ll-
factors (E ;X,) ere coxpmutetive;‘in the case of the sum,

another condition is needed.

In the last section, the theory is applied to obt-ain an
embedding of a given commutative tfanafomation semigroup
(F;X) into a commutative transformetion semigroup (G;X)
that leaves the same subsets of X invarient as F does,
and that d& maximal in this respect. The semigroup (G;X)
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8
turns out to be uriquely deterrined. Then the previous re -
sults are =pplied to generslise a theorem on the axistence
of a common fixed point of a conmutative system of mappings.
And finally we use them to prove that every commutastive seni-
group is contained in a product of algebraically generated

transformation semigroups.

2. Notation
4
If X 1is a non-void set, the class of =211 mappings

£ : X=X will be denoted by X*

. This is a semigroup under
functional composition o :
(f o g) (%) = flglx))

for 211 f, ge X and 81l x€ X .

If F 1is a subsemigroup of XX, we will oftén write
(F;X), to indicate the set treansformed by the elements of F .

A system Fc:}(X is called commutative if fog=gof
for all £, geF. "

A subset Y of X 1is said to be invariant under
FcX® if F(¥)eY . Here F(Y) = {f(y) : feF and yeY}.
I fext
of £ to A ., If chx and A c X , then
Fla={flA :feF}.

If Fec XX and xe€ X , then F(x) is called the orbit

and A'c¢X , then f| A denotes the restriction

of x'under F ; every orbit is en invariant set.
Let Y be a family of subsets of a éet X o A system

Fc XX is said to be y ~invariant if every member of J is

an invariant set under F . The system F 1is called a maxi-
mal commutative ] —invariant system if it is commutative and
] -invariant, and if there is no commutative ; -invariant -
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system G ¢ XX such that F ¢ G, F#% G . The system F ig
called a2 paximal commutative system if it is & maxinmal commg-
tative {#} - invariant system. Here £ denotes the empty
set,

A maximal commutative ; -invariant system is always a
commutative semigroup containing the identity mapping
i:X=9Xx.

The cartesian product of sets Fo, , o €4 , is denoteq
by “UA F, . If ¢ ‘JIA F , then £, denotes the compo-
nent of f in F, , end we will also write (f) _, in -

- stead of T .

3¢ The product of a system of transformation semigroups

In this section and in the next one we consider a fami-
ly {(F.;X.) :xe A} of trensformation semigroups: A is a
non-void set of indices, and E ¢ Xf‘ for each x € A .
The identity map of X, onto itself will be denoted by i_;
it is assumed that i e Fg for each »“- € A . The union of

all sets X, will be denoted by X :

(3.1) x= Y, X

and the identity map of X onto itself will be denoted by
i. ‘

Proposition 1. Let S be the following subset of T, E  :

(3.2) 8= {(£) n € M) Bt (Vouy Be &) (£ UK A= LIX AXD
Furthemﬁore, let chx be defined in the following manner:
(3.3) F={feX : (3sesS) (Vaeh) (21X, =s,)} .
Then F 1is a semigroup _of transformations of X into itself,
containing the identity mep i . If E; is commutative for
every «e A , then F is also commuftitive_.
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Proof.

First we show the following: if s = (s.)_ _,, € S and
t=(t) €S, then also (s, o ty) _, S.
As the ¥, are semigroups, it is clear that

(s"ot‘)wGAG‘E’AI" . Now take o, B € A ; we must

o«
show that
(3.4) , s, o0t 1 XnX, =85 ot [X X .
But we know that
(3.5) 8%, N X, =g | XN Xy
(3.6) LIZ,n X =t 1 X NnXg

as s, te S ; this implies that X n X; is inveriant un-
der s,, 8;, tx and t; . The assertion (3.4) now follows
from (3.5) and (3.6).

We now can prove that F 1is a semigroup. It is evidex_‘xt
thet F is non-void, as (i ) _,€ S, and hence ie F .

Teke f, g € F . There exist s, t € S such that for every

ek

(3.7) £1Xe = 8, gl¥, =ty .
It follows that f£(X J)ecX, and g(X.) c X, ; hence
(3.8) foglX, =8 ,0t, .

a8 (s, 0t,) _, €S, this shows that fogeF.

Finally, we assume that every F, is commutative. Take
again £, geF and let s, t € S such that (3.7) holds.
Then it follows from (3.8) that

foglx ,=s 0t, =t o8 =gofIX

for every o€ A ; hence fog=gof . Thus F is commu~
tative.
Definition 1. The transformation semigroup P ¢ xx s defined

in proposition 1 (by (3.2) and (3.3)), is called the product
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of the transformation semigroups (F a‘;x&),oc € A , and 1s de-

noted by

b Fe or P{E, :ox € A}.

It follows from the construction of F = z e & that
every set X, 1s an invariant subset of X under F . Hence:
Proposition 2. The trensformetion semigroup ‘l: s Fa 18
{X, : o€ A} - inveriant. :
Proposition 3. If the sets X , e A , are pairwise dis-
Joint, then the abstract semigroup (E el F, o) is isomorph-
ic with the (unrestricted) direct product of the abstract se-
migroups (F, o) .
Proof. If S and F are as in (3.2) and (3.3), then, under
the assumption that the X ¢« are pairwise disjoint, the set
S 1is equal to the set ¢T£A F, . If we define a multipli-
cation . in S by

8.t =(s 0% ), .a

then (S, .) is even isomorphic with the direct product of
the semigroups (F ., o) . The proposition now follows from
the fact that

(3.9) £ ~> (flx“‘,’)“‘:‘A

is an isomorphism of (P, o) onto (S, .) ,

Proposition 4. If X, =X , for every o ¢ 4 , then

For B = R

Proof. If again S and F wure as defined in (3.2) and

(3.3), then (:Q)“‘Acs implies

L, =2 X=X n X, =22 |X N Xg = LIX = 2,

for 211 «, MBe A . Conversely, if (f“)sek g"l{eA F, , and

f, = 4 for sll «, A€ A, then (%< ) ¢ 4¢S + This proves
-33-



the assertion, as £ =g for all «, Be A implies

/]

4. The sum of a system of transformation semigroups
Definition 2, Let {(F ;X ) : oce A} be a aystem of trans-

formation semigroups, and let X = d‘;’ A X, + The transfor-
mation semigroup F ¢ Xx s generated by the set
(4.1) T={feX’ : (dxea) (3 LeE) (21X, = £, end
FIXNE, = 1IXNX )}
is called the sum of the transformation semigroup (E ;X ) ,
end is denoted by
SR or & {F.: <€ A} .

It follows from the definition that for every « € A
there is an isomorphism of F, into i’f AFs -

We are mainly interested in the case that ‘f A E 1is
a commutative semigroup. By the above remark, every Fu
then has to be commutative. But this is not sufficient; e.g.
if X =X, = {0, 1} , and if F; consists only of 1 and
the mep f; such that f£;(0) =£;(1) =0, while F, con-
sists of 1 eand the mep £, such that f2CO) = f2(l) =1,
then (Fy;X;) and (Fz;xz) are commutative, but 6 {F;, 1-"2}
is not commutative.. _

The following condition on the family {(E ;X ) *«e A}
will turn out to be sufficient, together with the commutati-

vity of all F , in order to ensure that &, E 1s comm-
tative: )

{(C} for all «= ,fteh A , the sets X N X, @md X \X; are
invarient subsets of X, under F, , and if £ e F and
36 B , then L IX . n X, and KIX A X; commute.
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Proposition 5. Let {(E ;%) : «¢ A} be a family of commu-
tative transformation semigroups, each contatining the iden~
tity mapping i, : X —» X, , and let condition (C) be satis-
fied. Then .?&A F, 1is 2 commtative trmsformation semi-
group containing the identity map, ‘
Proof. Let T be as in (4.1), and let F be the subsemi-
group of XX generated by T . As it is evident that ie F
we have only to show thet T is commutative. Let f, g€ T . -
Then there are o« , S€A and £ « F;_ s T3 ¢ Fg such
that

TIX, = £ ; glx, = 4 ;

TIXNX, = 11X\X4 ; '

gIX\X, = 1lXNx, .

As condition (C) is assumed to be satisfied, fiX . n X3
and glX N X, commte. Furthermore, FIXN\ (X A X,) =
= glXN (X v X)) = 41X\ (X, v X,) . Hence we need only check
what heppens with points in X \ Xl‘ or in x,,\ X, + Be-
cause of the symmetry of the situation, we may restrict our:
attentlon to points in X, N\ X, .
Let xe XX, . ‘Then
(£ o g) (x) = £g(x)) = £(x) = £, (x) ;

as X N\X is supposed to be invariant under

[ Fao ’
£ (x) € X\ X, ; hence

£ (x) = gte, (x)) = g(£(x)) =(g o f£) (x) .
This finishes the proof. .
Proposition 6. If the sets X, , ®« ¢ A ,"are pairwise dis-
Jjoint, then the abstract semigroup ( ‘2A ¥., o) is isomorph-
ic to the direct sum (restricted direct product) of the ab-
stract semigroups (F , o), «e A o k
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Proof. Let T be defined by (4.1). Let ¢ be the mepping
(349). Then meps T l.1 onto the subset of T4 Ee » con-
sisting of all (fo‘_).’“A such that £, # i, for et most one
«eh ; and ¢ maps F:l.1 onto the subset of JA E. such
that f, ¥ i, for only finitely meny - o € 4 . It ig imme~
diately seen that yIF is a homomorphismkof (7, o) into
the direct product of the (Fy, o) ; hence |F is an iso-
morphism, and 9(F) is exactly the direct sum of the

(Fe, 0) , ' , .

Proposition 7. Assume X =X , for every o & A . Then con-
dition (C) is satisfied if and only if U, E  is commtati-
ve, and ..,C?A Fy 1is the subsemigroup of xx generated by

&chA E .

Proof: evident.

5. Commutative semigroups that ere maximal with respect

to their system of invarimmt sets
In this section, (F;X)  is a commutative transformation se-

migroup, containing the identity transformation, and 7 will
. always -denote a family of subseta of X that are inveriant
under F . .
If J is such a family, then U J will denote the set
U{fa : 4 €jJ} , end P () will denote the semigroup
P(J) =P{FIa :nre]}.

The following lemma is almost obvious:
Lemma 1. feP (J)=> flie FIA for asll AeJ .

* Prom this lemma, the following propositions follow with-
out difficulty:
Proposition 8. If UJ =X, then FecP(J)c x* .
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(If UJ ¥ X, then certainly not FPcP(J) , as P (J) con~
sists of meppings of. U] into itself.)

Propofition 9. Let both J; and J, consist of subsets of
X thet ere inverient under F . If UJj, = UJ, , then ”
di<c 2, implies P(JIoPCI) .

If g, end )2 are both families of subsets of a set

X , we will say that J, is a refinement of d» » end write
Iy 2 7, ,
if for every K, e J; there is an A, e J, such that
A Az .
Propogition 10. Let both J; and 22 consist of subsets
of X that are invarisnt under F . If ‘U]l = UJa and
JiS 7, . then P(J U0 = P(J,).
Proof. By proposition 9, P (J1¥Jdy)eP (F,) on the other-
hand, . .
feP ( gz)c-o(VAcgz) (flae F(a)) = (vAeylugz) (flAeFIA)
2eP(J 0 7,) .

Exemple. If Xej , then P (J) =F,
Remerk. If A 1is not en invariant subset of X , then FA
is not a semigroup. However, if we define FHA ={flA : fe F
and f£{&) ¢ A} then FIllA is a semigroup under composition.
It is seen at ‘once that

. « P {(FX) , (FIAA} ={fe F:2hcA};
hence if A is not invariant, F¢ P (F, P 4) , &l though of
course XuA =X,
Lemms 2. Let J; be the class of all subsets of X that are
invariant under P , and let J, be the class of all orbits

under P , and let Fc G cXX.
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Then G 1s a commutative Jl-invariant system if and on-
ly if G is a commutative J,~inverient system.
Proof. As .]2 ¢Jy » every = Jy-invariant system is J, inva-
riant. On the other hand, if A €J; , then

A=F@A) = U {F(x) : xeAa} =U{BeJ, : Bc A}.

Hence every Jz-invariant system is‘ Jl—invarian’t.
Lemma 3. Let €@ ¢ xx be commutative. If there existas an
e e X such that G(e) = X , then G is a maximal commutative
semigroup.

Proof. Let fexx such that f commutes with every g e G .

We will show that £ € G.. As G(e) = X , there exists a
g,€ G such that f(e) = go(e) . Let x be an arbitrary ele-
ment of X ; then there is a g € & such thet g(e) =x , end
it follows that

£(x) =f o gle) =g o fle) = gogyle) =g, o gle) =

8o(x) .
Hence f = gy€ G . )

In particular, we /have the following:
Lemms 4. If FeXX is a commtative semigroup, containing the
identity mep, then fop every orbit F(x) under F , PIF(x)
is a maximal commutative semigroup of mappings F(x)—> F(x) .
Theorem 1. Let chx be a commutative semigroup, containing
the identity map. Let § be the class of, all subsets of X
that are invéerisnt under F . Then there exists one and only
one maximal commutative J~invariant semigroup GeX* con-
taining F ; and

G=P{PIF(x) : x X},

Proof. Let g be any mepping X—>X that commutes with every
feF and that maps every A €4 into:itself. We will show
- 33 -



that g e G .

Teke eny x € X . Then g/F(x) maps F(x) into itself,
as P(x) e , end gIF(x) commutes with every mepping in
FIF(x) . But by lemma 4 , F/F(x) is a maximal commutative
semigroup; hence gIF(x) e FIF(x) . It now follows from lemma
1l that ge G ..

An immediaste consequence is that Fec G (this also fol-
lows from proposition 8 ). So it remains only to be proved
that G is J-invariant. But by proposition 2 , G is
Jz-mvariant, where J, = {f(x) : x € X} ; now apply lemma
2. ‘
Corollary: If Pc ¥* is a maximal commtative trensformation
semigroup, then - ’

F =P {FIF(x) : xcxx} .

A femily of orbits {F(x) : x « Y} , where Y is a sub~-
set of X , is caelled an F=orbit cover, or shortly an F-co=-
yer of X , if F(Y) =X .

From proposition 10 &d theorem 1" we deduce at once:
Theorem 2. If {F(x) : x « Y} is an F-cover of X , then
P{FIF(x) : x e Y} is the meximel commutative J-invariant
semigroup containing F (where . J is the family of ell sub-
sets of X thet ere inveriant under F ). |

In [1] the following theorem was proved ([1], Theorem 1):

"Let F be a maximal commutative semigroup of mappings
of a set X into itself, and let ©(F) # 6. If each e F
has a fixed point, then all mappings in P have pretcieely one
common fixed point." .

Here r(F) ={fe F : (V£ eF) (Af,eF) (£ =1y o1y}
is the set of a1l mappings f e F that are common multiples
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of 2ll meppings in F ,

Using the concepts developed in this paper, we may gene-
ralise this theorem as follows:
Theorem 3. Let FcXX be 2 maximal commutative J—invariant
transformation semigroup (where J again is the family of
all subsets of X that are invariant under F ). If x(F) # g
end if each f &€ F has a fixed point, then all mappings in P
have a common fixed point.

The proof is exactly the same as the first part of the

proof of [1] s Theorem 1 ., It is easily seen that the mapping
g , constructed in [1], leaves all sets of J dinvariant; hen-
ce the weaker assumption that F is meximally J -inverient
suffices in order to conclude thet g e F .

Finally we will give one more application of the above
product construction. In order to do so, howqyer, we need the
concept of an algebraicelly generated_‘transformation semigroup.

Take an abstract semigroup (X; .) and consider ell left
moltiplications in X , i.e. all mappings £ aec X , defin-
ed by
(5.1) £,(x) = ax . _

a?

These mappings constitute a semigroup chx « If X has an
identity element, it is even true that the abstract semigroup
(F; o) is isomorphic with (X; .) . (In fact, in thet case the
correspondence a->f, is an isomorphism of (X; .) onto
(F; o) .) Now transformation semigroups of this kind will be
called elgebreically generated. More explicitly:
Definition 3. A transformation semigroup F < ¥X is called
algebraically generated if there exists a binary operation .
om X such that ’
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(1) (X; ) is a semigroup with unit;
(11) F ={f, : a € X} , vhere £, is ds defined in
(5.1).

Using lemma 3 , ifis easy to give a complete characte~
risation of all commutative transformation semigroups that
are slgebraically generated.

Lemma 5. A commutative trensformation semigroup F c XX is
algebraically generated if and only if there exists an
e € X such that F(e) =X .

Proof.

Firgt assume F to be algebraically generated, say by the
semigroup structure (X; .) . Then if e is the unit ele-
ment of (X; .) , it is immediste that F(e) = X .

Conversely, assume F(e) =X , for some e € X . From
the proof of lemma 3 it follows at once that the mapping
g : F>X , defined by

@ (£) = f£(e)
is a l-l-mepping of F onto X ., Define a binary operation
« in X by
.52 ¢@F (o F ).

Then (X; .) is a commutative semigroup, with e as unit
element and F ={f, : a e X}, as
£,(x) =ax = ¢(F (8) o G (x)) = (G (&) o g (X)) (e) =
=gt (a) (x) .

We now prove the following theorem, which states in ef-
fect that every commutative transformation semigroup can be

built up, using the product construction:of section.3 , from
gl.gebraically generated semigroups:

Theorem 4. Let Fc X be a commutative “transformstion
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semigrqup, and let m be the cardinsl number of an F-cover

(©
of X . Then F 1is a subsenigroup of a produc?);l m algebrai-
cally generated commutative semigroups.
Proof. '

Theorem 2 assers that F is a subsemigroup of a product
of m semigroups FIF(x) , end lemma 5 shows that all the—

se semigroups are slgebraically generated (as (FIF(x)) ‘(x) =
=’ F(x)) . '
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