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Cormentntiones Hathemﬂticme.Univérsitntis Crrolinae
3, 4 (1962)
O THE APPROXIMATIVE SCLUTION CF II-?'I‘EGRAL‘E-IlUr"xTIOIZS
Ivo NAREK , Preha
1. Introduction,
Finite dimensionsl spproximations of linear bounded ope=

rators are needed for the numerical solution of linear equa-
" tions in nor~ed spaces. The general theory of npproximative
methods is given in [3] pp. 457-562, In this monography the
ease of integral equations of the second kind with kernels
continuous »nd periodical (period equel 1 ) in < 0,1>x<0,1>
<is studied #s exs ple., Ve shall use the Kantofovich's method
for the ~pproxinctive solution of an integrel equation with
the kefnel K+ A s *here K is » cg;tinuous but non peri-
odical xrrnel ond A(s,t);g.(s)d"@-t) , where J is the
well knovn Dirac J'—Wunction snd. @ is continuous in
<E,,EL?” . e shrll construct the finite dimensionsl &pp-
roximstions of the mentione? opsrator in another way than
Tsntorovich in [3] Pe 5172 & Ourvway is suitable for solving
some preblewns described by equntions conteinihg variables
which can be obtained by averaging rmeassured quantities. This
is the cese in nany physical problemé. A8 exanples we can men-
tion the system of multigroup—diffusioq equations ([1]), the
syster of integro-differential equations of multigroup sppro-
ximation of neutron transport theory ([4] pp. 282-290) end
the equation for describing the energy spectrum of neutrons
in the medium consisting of U238 end U23° ( 2] .

We shall consider the integral equstion
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(1.1) % (E)-M:f“ K(E,ENe (ENdE+g(E)x(E)=y(E),
_ ( [

where the kernel K is continuous in the square
CE,,Eo>x<E,, EL)> and the function ¢ is continuous
in <E,,Eu>, (E,<Eu <K+ o0 ) . The problems which
are rentioned above can be reduced to the equation (1l.1) or

to a system of equstions of the type (1.1) .

~

Let X be a Banach spece, Xn en n -dimensional sub-
- '

space of the space X and X, en m-dinensionecl spece i-

~

somorphic to X,‘_ . We shall denote this isomorphism by the

symbol 3,‘_ + Let us suppose thet a transformation 0,,, e~
A

xists such that it maps X into X_ snd thst

»n
. B,z-S5«x
-1
holds for x € X, . Thus the trensformstion F,=S. Q.

is -8 projection of X onto X, .

Let us consider the equation
(1.2) x-AAz=y, YyeX,

vhere A 1is a linesr bounded operator mapping X into it-
self, The "spproximative" equation ‘ o
(1.3) C X -J&A,,)2= 4, y - 8.y, yeX, ye X,
cgrresponds in )?n " %o the equation (1.2) . The operator
A” in (1.3) can be;r‘epresented by & square mftrix of fini-
te order. We shalls also denote this matrTix by A.‘ . ‘
- We shall give the conditions guaranting the convergence

of "spproximstive solutions® S’a. of equation (1.3)
to the solution X of the equation (1.2) . The sufficient
conditions are given in [3] pp. 488-489 and 500-501 by Kento-

rovich. We §hall show that the Kantorovich’s conditions are
- 49 -



fulfilled in our case. We shall construct spproximative solu=-
tions. of equation (1.1) in two different spaces, nsamely in
the spaces C({) and L, () | vhere C (L) 1is the
set of real functions continuous in = <E,,EL> with
the norm llxll=£Maﬁlx(E)| and L, (1)  is the set
of real functionsf the square of which are integrable ix} no.
In L, (D) the scelsr product can be defined by the foll-
owing formula ‘(a':,y)sf’:r. (Ely (EYAE and the norm
tel = (2, 0F . |

The example of the equation (l.1) shows that the constr-
uction of the aspproximstive solutions is sometimes more con-
venient in the space L, (4) although the exact solution
lies in C () | with other words, we shall show thst the
sequence of the approximative solutions converges in the norm
of L,(f1) to the solution of-the equatidn (1.1) lying in
c , while the convergence of the mentioned sequence
in the norm of ((41) cennot in general be guaranted.

We shall consider a problem which is usuel in the neutron
transpoi't theory. We shsall suppose that )

K(E,EN>0 for E,E'e(E,,EL),
g(E) >0 for Ee (E,,E,)

‘end thst the operstor A defined by A=C+D , where

Cx s ["K(EEDN 2 (EVAE'
€

D = ¢ (E)x (E) .
is a Radon-Nicolski operator ([5]) .
Let E,<E,<..<E.=E_ end let X el, (N1).
We put x = (fos§areeeafn) , where

1 i , P
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Let . )

(1.5) B4 (ELvEp), G Adimsms E=E

and let us put ' |
A A .

(1.6) Ae 04D,y Cum ), D= (dj i), 155, 5™

( d;;,, -Kroneker’s delta), where.

E' A R
Cone _f:_a__'_%;i__f’ K(E,EVdE, 144, RS™,
%" E;-Ejor Ej

(107) A . '
. o= 9(&3) N 2 = 0,4,...’7&-

R

Further let
a, = 0’ 3: 0,4’...,/’2«

a‘

(1.8) X )
C hg(E“' EA-1) K (Eo, E-*_), A4 = 4/“‘1.”2' .

The matrix with the elements 2,,‘-1-4 Ofa,’ 0£j, k<n w11
be denoted by the symbol A, .

2. Finite-dimensional spproximstions in C(11) .
The spproximative system of equations Qorresponding to

(1.1) hes the following norm
(2.1) § A): Cc RETAIALTE =017 n,

where 1;, §= 411,---111. are components of the vector
';J‘ = (Ne; N1+ m) defined analogously es (§,,-+; §n ) in
(1.4) . We assume that 3 e C(N).

We suppose that X = C (), Xl =Maa le(E), X is
" the set of ordered groups of m+1 real numbers
(§,) §1seeerfa)= X with the norm [ XU= {Z lg,‘l*}IL .
We define the mep Q,‘_ a8 follows

A

(2.2) Box=X, Z= (fi,0 ),

1
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vhere f; are defined by (1.4) for j=0,4,...,m . The spa-
- :

ce Xw consists of functions partially lineer in {1 with

~

the vertices E,y...,E, . Thus we have for & € X,

. 2 (E4)-% (Ez,) B
(2.3) zmwue,.,w—’-‘—%?—_—”ﬁn (E-Ej.), Ee<Ei B

g1

It is evident that S, =@, if x e X, . The

formul ee )
l\snuaw.{ullsnmﬂé’l, :
(2.4) (&= B .
. uamu-smﬂo.@xlhfl
clearly hold. A ‘
It can be shown that if X=S,x , %= (§,,...,f” ), then
~ A - P>
(2.5) £ = x(E,), §a.-xCE,),a=1,...,fr_L,
A

where Ea' are vdéfined by (1.5) . Thus we can construct the
vector X € X,, . to every vector £ € X.‘, such thet

i = S“i i.e. ’3 = S: £ « If we know the values

g,- = 5‘:(2,' ), w;a cen construct the velues @ (E;), = 1,437,
which together with §°- X €E_,) define the vector ce X
uniquely. .

The equalii: ies

(2.6) 1s =, 4 NS ' ll = 1
|2 =1

clearly hold, thus the relétions
(2.7) WPl = sun 15 Qo lls 1
bal=1

are velid for the operator B=SQm -
We prove the following statement.
Theorem 1. If the inequalities

(2.8)  IAlsq <5bp

)
dius of D ) @
-52 =
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‘

hold, the enustion (1.1) h?s one -nd onlv one solution xe X

>

snd the sequence {S] :’x‘:,,_} , where &, is the sclution
of the system (2.1) , convsrres to € in the now: of C(LL) .
Troof, The nssertion of the theorer will be proved if e
show that the ::r‘_ntorovich's conditions Ia, II ~nd TIII ([3])
pp. 407,501) are fulfilled. ‘

The equstion (1.1) and tho following equntion

. ] ' U —
2.9) x(E)-T-Wf K(E,E')x (ENd E'= —-"*——-4_19(5)

are equivalent for those A for which (Z.8) hold. ve zhall
prove thnt the ‘condition‘s Ia, II =nd IZI are s-tisfied for
the cese (2.9) . It can be shown thet the approximntive sys-—

ten corresponding to (2.¢) has the following form
. : A i A M5
- G fu= —TTogEp

(2.10) 5 1-Ag (E,) k=0 w fa = T AGE)
Thus the system (2.10) is equivalent to the svster. (Z.1) =nd
nll the nssertions, which are valid for(2.10) , ure ~lso va=-
1id for the system (2.1) . .

The operstor (I-AD)"C , where I is the idertical
operator, will be deroted by the sv bol H=H, i.e.

/yz Hx !7_-‘%,——(—5_3 f K(E E')x (E‘)dE’ o

The corresponding approximative operrtors will be dencted by
A

H, . H. i.e. . ' -

| C.
Ha= (A ’%“"/4-9\ i O Cin

for 4147, kR&m ona H = Ch,) for'Oéj,Jb.‘_.'n .
Condition Ia . A sequence {1‘1_‘“},11,,‘-6 0 exists such

that -

(2.11) I, HZ - HL S . 21 € 7., IZ
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holds for every £ € X, endfor m = 41, 2,... .
The sycbols @), @' will denote the moduli of continui-

ty of the kernel K i.e.
w ()= su.{u IK(E*-F E')-K(E,EN |, E,E'\E+Fe X, lFlSJ'

- @'@)=sup (K (E,E'+F')-K(E,E") l, E,E', E'+F'ef,IFIsd.
E, E

Further let
@, (S)= suﬂaleEfF)—z(EH, E,E+FefL, IFIs o

be the modul of continuity of the function 2z € C(J2).
We shall estimate the absolute value of the expression

[ 2 EVE@)AE S, Fo fu Ear Ea)
where ze C(ﬂ.), z t-':)(,,L ) X= (025450003 fn 2 Z- (£os §oor ,,fn
Similarly as in [3] p. 513 wu obtain

Ij z (E)E (E)dE - 24 fu fu I 5

(2.12)
Z f lx(E)—f,L | 1% E) |dE £ &, (BYCE ~E, )l.‘nﬂ
vhere A - E,,E,M,,k- wn; A= Maz Ay D=0 .
If we take- spec:Lf:Lcally : .
1 -1 KCE,,E’)
% (E)= (00" [1-2 g (E)] ,/’ﬂK(E. ENAE; 2 (E)= J o2
we obtain from (2,12) the inequalities

& £3 K(EE )
Lo fae e ea el 2/ _1g(é‘)d5fk

1-Xg(2,). 5,
£ (E,-E,) .Max [1-Ag(E)I™. @ Az i,
(2.13) S (E, )msg,;hn 9
KCEHE) o~ oy pr & K(E, E,,
U. 1-2g@&,) © 2E )da'g« % Tag(E,) fo !

- -1 |
< (E,, E.)QCA\J;M:E n.M AQCE)™. e |

If we put
P =54 -



(2.14) fow= Mo [1-A g )"+ @ (A (EurE)
IAl%q,EeQ
we obtein from (2.13) the estimate (2.11) . It follows from
the continuity of K end ¢ that 4m 9,, =0  so thet
m >0

according to (2.6)

(2.15) Now IS 10 ror n —>+00

Condition IT . For every vector « € X there exists
a vector g eX, such that
(2.16) ITHz -9 1% N lxll

The velidity of the inequality (2.16) follows from the esti-

"mate . .
lx - S, B 2ls e, (A)

which is valid for eny vector % € X  because the values

of the functions' z - 5: 8. z- end X  are identical -
in the points Eo, Eq,e9E, and the function % dis 1li-
near in (Ej,,E;), 18j57n 1.

| (E)-Z(E)l = |z (E)-[(CE;- E)z(E,-,) +

+ (E-E;.)x (E;)] (87)7 18 @, (A)

Let us estimate the modulus of continuity of the function-
y=He, x e (L) .let E,E+Fe L enalFisa .

‘<2.17)

Then we ha;ve

ly (E+F)- y(E)l=lf [-1——;:9—{5;3 1- 19

< (EENL o @+ LR og@]lzl,

a = inf I1- Ag (BN, A= sup |IKCEL,ED] »

wuere Inl$g, Eeq. E,E'eq
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e have proved thet the rodulus of continuity of the
function y= Hx is not lorger than 7, Hacll , so that
we hrve obtnined from (2.8) the estimste (2.16) for
y =-Hx, y=FRy shere Nam  ere defined by

re g
(2.18) A= (B, -E)[F @ (A)+ TF @y )]

It follows from (2.17) and (2.7) that

(2.19) Nim 1P l—>0  for n—=>+oco =

Condition IIT. For every vector i € C(LL) there e-

~

xists a2 vector 'g € /\'.,,, such that
lly—?}“é"lm"’y” .
‘Let Y= By , then the estimete ly-9 I% @, (A)

is valid according to (2.17) so thet condition III holds
with
A)
Nam = ay ( .
Iyl
From this »nd from (2.7) it follows that

(2.20) . MNan IRil— 0 for n-—+00 .

"It is clear that the assumption of the ex:‘:stence of a
solution of the system (2.1) for every ri/éht side impii‘es
the uricity of the solution. The assertion of theorem 1 is
" then a consequence of theorem 34" (2. XIV) [3] p.50¥ , essum—
ptions of which sre fulfilled if the inverse operator
(I-AA)" exists for A , for which (2.8) hold.

Resork. If ve sssume that K(E,,E')=0 for E‘e Sk
GE)=0, Yy (E,j=0 , then (,=0,d=0 in (17,
(1.8) . The system (2.1) and th¢ system

?

A

(2.21) §,-AZ (Curdy ) fu=Mis G=b s

4
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vhere /9= (12.,--', Nm ) is en arbitrary vector with 7,= 0
are equivalent. In other words, the solution of the systen
(2.1) lies in the subspsace X:,C )'(‘,, consisting of vec-
tors X = (0,_ ?41“‘7 fn ).

It follows from theorem 1 that the solution & of the
equation (1.1) is the limit of the sequence ‘{S:.'g.‘} vhere
9’(‘:“ is the solution of the syster (2.21) .

In the next chapter we shell show th~t the approximative
solutions {S: 3:,.} vhere a?:~ is the solution of (2.21),
converge to the exact solution a of equition (1.,1) in the
norm of the space L, (£1) without the additionsl assumpt-
ions K(E,,E)=0 for E'eft, g CE.)= O and y(CE,) -

3. Finite-dimensionsal approximations in Lz ).
In this chapter we shell consider the resl space L, (12)
‘a0
with the scelsr product (x,y):{e x (E)Y(E)dE | The sy bol

X, denotes the set of vectors & = (§,,--5 §n ) with the

n

. mn
scalar product (&‘L,‘g )=&Z1 }Ek Ma o Je define the map &,

as )
. A A Eg
(3.1) Q= == (Fyenrfn)y Fur 71-&{ z(EVAE,
-1
/hs”,---,n -

The space )‘(Vw is the subset of Lﬁ-(ﬂ) consisting of can-
stant functions in (EJ-_, ,E-a-) i.e.
(3.2) 2eXe>FE)=ZE;) for Ee(E,,E;) nimost
everywhere
where E e (Ej. Ej)y F=4,0,m .

If xe )‘En ', we then put S.x = GnX = z = (fn"'ffn)‘

We evidently have
16, 0= sup Q=1
Haelled -
(3.3) X
J|5“"='is't_q}, 1620 =1 .

- 57 -



It can be verified eesily thet the coordinntes of

~ ~ ~ A .
a?; =5,¢, xe X X = (§,,..., ?m ) have the following

(3.4) §,= RCE, £ E)), Gt
For every vector f\e )?,,L n vector x € Xw can be con=-
structed such that )? =S, x end hence & = S, < -
Hovever, if z= (§,,..,, gw ) then « (E)= ?a’ , for
Ee(Ei,E5) wna Ze X, .

C;eariy
(3.5) 1= s, s &1=1,
8o that - : .
(3.6) IR I= sup 18 Q=051

ftaell'=4
for B =50Q. - ‘
et 4eX,, 12=(124,...,71.,) ‘nd &= (f,,«-, §n) be

a solution of the system .
) n A o
(3.7) &—.7\‘%1 (é\,,.-o-d,.d;,.)fha Nis J=Dreees Mo
A .
where 3,,“ d“a" 124,k Sm are defined by (1.7), (1.8).
Then we put
~ - A
(3.8) : T = S,: L, -

Theorem 2 . Let us suppose that the inequalities (2.8)
) -
sre valid end thet the bounded inverse operstor (I-AA) e-

xists for the operator I-AA . Then the fornula
(3.9) ' dim S}z - x
nro -

holds in the norm-of the space L,¢(f1). In (3.9) x denotes

the solution of the equation (1.l) for the given element

yel, (). - 58 -



Proof. We shrll show thet the Kantorovich’s conditions
Ia, II, ITI of [3] pp.488, 501 hold in this case similerly as
in the previous chapter (i.e. for the operator H ).

Con'dition Ia . There exists a sequence of numbers {11....}

such thnat the relntions

A ~
(3.10 10, HE- Ao Sy & I€ nan HE 0
hold for every vector T e X and for fn,=- 1432,... -
Let us estimnte the termlf z(E)a:(E)dE-Z Ay e f_,‘
where z e C(S), f‘:(AA’) je' z.(E)dE. and xe)("_ .
We obtain

[

" n £ -
|2 (E)Z E)AE-F, A Su b= 2, [, (2E1-fIECENAEIS

4
< @, (AV[E,-ET* Iz,
where the symbol ”:1:” denotes the norm of * in L, ().
Similerly as in ch pter 2 A = 42’1“:2"'- Ay Al-” Ee- Eh- °

If we put £ '
, < F K(E,E') E .
2B = (7 G ReE dE

we obtain using (3. 1i) the inequality

sl C
Ide[(A) j'E %dﬁ]x(ﬂ)-éq‘?ﬁ—;fhlé

cre,-£ 18 (22« L2 oo I,

or
(3.12) 1Q, HE-A. 8.5 $ (E-E)[22) ‘*%Q carl 1)

If we put

fon = (E-EN 2B Z2 o))

we obtain (3.10) from (3.12) . It follows from (3.)) that the
S =59 - :



yelr~tion .
(3.14) Nom 1S 1 — 0 for n —> + oo
is vnlid,
Céndition II . The're exists a vector ge )?w to eve-
ry vector x e L, (L) such thet

(3.15) I He -G Il € M el -
It c~n be ersily proved that the rel at:'fons
lx (E)-x (E)l= l:’c,CF.)—(S;1 O.”z,)(E)l =
(2.153)
o lx (B - (87 x E)aEl= I (E)-x s, (&)
"-1

hold for =x e ¢ in the intervel (E;.,,E; ),é= 4,-»-,?!,
E; e<E;n EjD>

It can be shown thnt the function y=Tx (where T
is ~n integral operator with s continuous in N x L kernel
TCE,E") ), is a continuous for xe L, (L) . We shell

estimate the modulus of continuity of the function = H .
Let E,E+FedL, IFlg o

, then we have

e FerKESEE) K LE T g
I'y (E.:"F) y(E)’-lé [1_7\_9‘(5...;:) 4—19 (E) J’J.‘
(3.17) | -
m  Eg
ey > [ e CEYIAE

o= EA-«

(11N

. 4
=here @, (d) = C%@l'f" 3:{: c.),_(o'v)](Ew—F_o)I .
From (3.16) and (3.17) it follows easily

. &
(3.18) IHz -5 6 Hall £ [2&+ 220 ) (E-E)Ix) -

Let us put ’

@), 2%
(3.19) Non = (Eu-EN[2B)V ¢y 22 o) (a1]

- 60 -



ve obtain (3.15) with ‘g= S. G, Hx -

According to (3.6)
(3.20) Nam e t— 0 for mn—>+ 00 -
Condition III . A vedtor 'g.u € X,,,_ exists for sve-
ry vector y e X so that the inequelity
(3.21) Y=Y IS N MY
holds, In the considered case e c-an put gw=5: Gy ’

Nam = /[»y u:-“«y—gﬁ llL since, »s is well knowm, ([71 p. 15),
lly-‘l}“ #—>0 for m—>+00 2nd for every vector ye L, ().
According to (3.6)

(3.22) Nan 10— 0 for m —>+ 0O .

The assertion of theorem 2 is then a consequence of the theo-
rem 30" (2.XIV) in [3] p. 50%¥ , the assumptions of which rre
fulfilled.

4, Approximetions of eigenvalues sand eigenvectors
We shall consider the conditions from which follows the
convergence of eigenvalues and eigenvectors "of the operator

A

A“ to eigenvalues and eigenvectors of the oper~tor A .

Te shall consider the csse of an sgpproximetion in the space

L, (1) only, beceuse the caseof the space C({1) can be
studied analogously.

' Theorem 3 . Let , lul>2(D) be en eigenvalue
of the operstor A=C+D | where A (D) is the so-call-
ed spectrsl radius of the operator D . Let A,,, m~1,2,...
be the finite-dimensionsl espproximation of A defined by
(1.7), (1.8) . Then the formuls
(4.1) Lim (&, = &,

.oy - 61 -



holds, where (&W is sn eigenvalue of the operstor
-~
Ad‘b 4 m = 4, 2,..- .

If &4, is a simple eizenveslue snd %, (Na,d=1) the cor-

respondins eigenvector of the operestor A y then the sequen-
-t A A A
ce {So 2.l | vhere «_, "5::“»" 1 is an eigenvec-

A
tor corresponding to the value ((2,.., Qu-.‘, ~—> (4, ) converges
in the norm of the space - L, Q) to the vector 4, , whe-
re Y= X, lel=1 :
: -4 A
Lm S_ 2, = Y, -
Proof. We remark that for every € >  the st most

Tinite number of eigenvelues of the operstor A lies outsi-

de the circle lIAlS2 2 (D)+ & . Let us denote these ei-
genvalues by the synbols A,,..., -791., + Let [T ©be such
domsin outside the circle [Als a (D) , having no com—

mon points with the circle [Al= 2 (D) | Let ue denote the
region which is orizinated by removing suitsble d -neighbor-
hoods of eigenvalues )L,,,-.., ﬁ.,., by the symbol r:, « The
resolvent R(A,A)= (AI-AY"  oyigts in the region [[ and

IR, A is bounded in [» as a function of A .

The resolvents R(J\.,Aw}z fll..."z...)“ ( I, ~-identical ope-
rztor in X., ) exist for sufficiently lsrge m  =nd
IR (N, A1 ere bounded independently of n. by theorem
34 (2.%1V) [3] p. 507 . The eigenvalues of the operator A..,
zny lie in the d -neighborhoods of the points A, ,---, Ap -
Thus, if the spproximation eigenvslues have some limit, one of
the points gy Ap rust be this 1imit. We shall prove
that every eigenvalue Aj, [A;1> 4 (D) of the operstor A
is the limit of a sequence of eigenvalues of approximation o=-
perators )'\‘..,, n=4,2,... . However, if for exarple the

- 62 -



eigenvslue A; is not such a limit, ther no one eigenvslue
A

of the operntors A, ~1lies in some cirele [;  with the

centre A; for sufficiently large M . The function

R(A,A)] is bounded on the Qoundar% of Fﬁg_‘_‘nﬂm‘_ﬁ
[{RCAY, A _are uniformly boun on the ary_ of % for suftid-

ciently large m . From the maximum rodulus principle it fol=-

lows the uniform boundedness of \I\R(a,;\‘?i "V) inside [y fol-
lows. ‘ccording to [3] Pe 50% th;orem 86 ‘x::he resolvent
R(A,A) exists in [; ~nd this is = contrndiction to the
assumption about 13’ « Thus we have proved that every eizen-
velue Aj,IA;1> 4 (D) is the limit of some sequence of‘
eigenvslues of the operastors A\,,, n=1,2,... -nd thus
(4.1) holds for eny eigenvalue .7L1,...,\ Ap . i

We shell prove thet a sequence of indices Mm, <7, < .-
can be chosen so that for n = Mm, :i\'...\, s Where f‘...,
is the eigenvector corresponding to the eigenvnlue

o, (A, —>at,) , the relation

. -1 A
= dom x
(4-2) ’y. Papridlod 5.\, ~n
holds in the norr of the space L, 2) y where 4o is
an eigenvector corresponding to the eisenvalue &, of the -

operator A .
If the vector ®, 1is an eigenvector of the operator A
corresponding to the eigenvalue (&, ,l@ol> 4 (D) | the

equations N
(4.3) Ax, = wm, e, , R(uw,,D)Cx, = 22,

are valid simultsneously. This means that the vslidity of

the sssertion of theorer 3 cen be proved for the compact ope-
4 .

rator H = H,ﬁ(%)k(?\., D¢ . We shsll sssume that (i,

is o cheracteristic value of the operstor H = H‘u,, , i.e
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thet there exists o vector z, such.that Hz, = &2,

W#e cen suppose that 2z,= ey, which follovs from the sim-

plicity of a4, . It follows from the compactness of H

that a convergent subsequence {HS'1 Aw } of the se-

“quence {HS[ %} exists, where o, = (@n)" I'-‘lw Z,.

"s'—vl x, =1 . Let us call its limit 2z, . We shall

show that =z,=c¢2x, . For a moment we shall assume that

the whole sequence {H S &Lﬂ} converges, i.e.

(4.4) . Mim HS 2= 2, -

The sequence {P.HS  ®.} ° 1is slso convergent,since
Ix,- RLHS &, < llz,- By 2z, I+ IR 2,-P.HSI & I
Sz -P U+NP N lz,- HS .. n-> 0

and from here we deduce that
. -1 A
(4.5) Lm P HS, 2 =2, .

The sequence {S, 2.} is slso convergent,since
(4.6) F-Hs' & B> &, o
follows from the convergence (3.,‘—-) %o and evidently
. 4 v A _,1—-
(4.7) L HS, x, =>4 %, -
Further

1R (S - @' HE £ IS NS (@, - i) Q. HS 2 ) IS

A AN 1A

18" H, &, -] R HS R, NS | @’~(E. )18, HS) 'S, I+

+ g

So (t‘fl:at
0%, - 'z NEU P (TR~ T HS ", Y+ ety B HS 0~ by 20 IS

- -1 A Ton -1
a» + 162 (G HSTE NS Tt 1 (& IHE 0.
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B A
'we have proved thot Mm S xﬂ-(u,x‘-,&/m &' HS, X, >

m = o0

ive. @' Hz, = H{lom SNx. )= tim HS 2 = 2, -
m oo

m oo
The simplicity of w, iupliszs th"t'either z,i & , or
z=cx,,; ¢+ 0 . The first cnue is impossible becnuse
1tz ll=1 ,sothet 2=edo, ICI=1.
e return to the chogen s;bapﬂuﬂrce {s“ A“h} . C.-ur‘
purpose is to prove th-t the vrcle sequence {S" <.} con-

verres to 2, = C®X, . In the contrery cose tliere exists
- A
an infinite nirber of indices {m'} such th~t {SJ}, & .}

does not converge to X, .« Simil-rly =s wes sho'm nbove,
A

it can Dbe proved that there exists s cubsequence {S:.“ mmlh}
. -1 A '
for which Am 5“;‘ T = W , wheve W, = 'z, ,IC=1,
, p
From this it follows thot W, = c/c Zo ~nd thus the

convergence of the whole sequence {5:0:“} can be obtai-
ned by help of the suitnble choice o” norm-fnctors. Thus the
theorem is completely proved.

Corollary . Let (L, Dbe the dominsnt eizenvalue of the

operator A=C+D and @, (llz, !l =47 the correspond-
ing positive elfenvector. Let @.,%. (IS 2. =1) be
the approximntive eisenele:ents of the operators A_‘_= C,_.+ D,
Then m% X, = L, holds in thé norr of the sprce _
L, () ~nd 2o (uw = (Y, *

Proof. The validity of corollary is » consequence of the
simplicity of the eigenvalue (&, [6] ~nd the preceéing
theorem.

References
(1] R.EHRLICH, H. HURWITZ. Nucleoniecs, 12 (1954), 2 .
2] M. FEIX, P. NICOURD, S. VALZINTIN. Comptes Rendus :icnd.
: Sei. 244 (1957), 20, 2502=75C5.
- 65 -



[3]

(4]

[5]

[6]

(7

L.V. KANTOROVIE, G.P. AKILOV. Funkcionsl’nyj analiz v
normirovennych prostranstvach. Gos.
Izd.Fiz.Mat.Lit. Moskva 1959.

G.I. MARCUK. Cislennyje metody rasdota jedirnych ree-
ktorov. Atomizdat. Hoskva 1958.

I. MAREK. Some spectral properties of Radon=-Nicolski
operators and their generalizations.
Comment.iiath.Univ.Carol. 3,1 (1962),
20-29.

I. MAREK. A renmark on linear operators lesving a cone
inveriant in a Banach space. Comment.
Meth.Univ.Carol. 2,4 (1961), 10-16.

R. STKORSKI. Funkcje rzeczywiste IT. Pafistwowe wydaw-

nictwo naukowe, Warszawa 1959.



		webmaster@dml.cz
	2012-04-27T15:09:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




