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Commentationes Mathematicae Universitatis Carolinee
3, 4 (1962)

(ﬁ\l THE SCLUTION OF HOMOGENEOUS FUNCTIONAL EQUATIONS IN

' H]I.BERT SPACE

Josef KXOLOM? , Prsha

This paper contoins the proofs of theorems (theorem 1l
and 4) which were published pfeviously without proofs in
Commentationes Mathenoticae Universitatis Carolinse 1,3(1960)

@l.

Let the equation
(1) Ay -uy=108

be given, where A throughout this paper will denote a li-
near operator bounded in complex Hilbert space H , (% is a
resl parameter. Suppose that A is a positive operator
(Ay:4)>0 for every yeH, y*D end (Ay,yh 0&=>y=86)
This assumption will be later omitted. We solve the equation

(1) by iterstive process

(2) Mnea = ('44 Ay@ ?

where the paremeters {4}, Mm=4,2..)sare to be determined
from the condition thet the functional Ay -TyYl® ror

the given element Y =4, € H shall catch the minimal ve-
lue on the set R of sll real numbers. Let us denote that

value of ¥ (dependent onM ) by L, . We get

e (Ao Ya)
() i forte)
Then |
t 3 .
(4 Mss ™ &‘;:3“__, Ayer Yy #0s YoeH, m=0,1,2...).

Le_}. Let A be a positive operstor in H . Then

the sequence {(t,.} defined by (2), is monotone, increasing
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and convergent.

Proof: The sequence {(u,,} is bounded because
NAYn Il IYal < LAl . )

Momer S AR =
From (2) nnd (3)
I HAY
Hence Y, S NYmeq I 7or every m . Since

m-13Ym-1) .
(AYpeg? Yoo | S %ﬁr HYn 'S (AYpoy s Yo )

we have from Schwarz’s ine quality
(Ayn-—t 1 Ymo-q ) s (A Yn ‘“y"b (A Yn-11 Ymoa ) (A Ym s Yn )
Thus ’

(5) (A‘én.u"dn-j)é(Ayn”yn) for every M. .
From the equality ; A " )

(A, yo)= IR (yoas ¥
follows that NYnll®= (Ypers Ym ) . In view of (2) and of
the precedent equnlity we get

lyn = _(g_ (Atar Y 4o 172 2 (A ).

We have now

W, (A"é'n 2 Ym )= Mo +4 (A Ym-a1 Ym )

qnd from (5)

<Aymyn> = (tmyy (AYor Yn)* & i, (A%-v’yn-f)(A%'%’

S rt/-.M (AYan s Yn )
HANCE U, s oneq for every =n « It follows from

the lact thet @, >0 for every m and A is a positive
operator, Since {(u,\_} is increasing and b:)unded,' there e~
xists Um .= and u, & «w £NAIN .

Lemma 2 , Let A be a positive operator in H .
Then the sequence {ﬂyﬂjﬁ defined by (2) is monotone, increa-—
sing and bounded.
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Eroof: Let us denote | %,“"’:—"- « According to

(21 Qimet™ Zmes AYm » vhere A, = 1%, 1/1Yar | (AYnr Yn )

Hence

“"‘ 1l ﬂ - " yn " = 4 .
6) “’1}.\, I - (’9.,94-»4) (Qm 1 Fmer)
= 1
It is sufficient to show thet T converges.,

. meq (9‘4\-1’9’»)
Because (G ) @mi) £ 1 » the product converges, when the

[
series 21 (1-(9n.,s 9] is convergent,
m= -
From (6) and (2) we obtain
(7) Ay“ = A!ﬂ, - (u’“"‘ u’yn‘..‘ " 9w\.+1 - - -

fyal Yl

I .
From (7) we get B (““M(% 1Pinea) 9"”.1
» Pmeaq)
(8) (9-4; ’ 9-0»1)‘ ‘(—9,2"'%:'— (Fm-q? Ag'ﬂ' )
1 Gneq ) " (9'.__‘“' ’.____...9""'*1) .
(9‘4\’ Gn-q )= ‘(2‘%—"— (A Pmee? Ymd2 ‘(g‘: (v e Gm)

”m ¢4

Further . 1
0% G Gnee 1A G =901 )) = (G~ Juoss hmes gy Guse) =

1 )
~ (G Gut) o =gy G )=

(“’M‘l - _..__(‘f_”—- ‘+
= ™ Gy B ) e

It follows from (8) that 4
(u‘n¢1+(u‘w "2(‘&,‘_(9“.”%) % 0

- va =l
Qlhm  _ _Mmei=(lhm g lneadlsn,
1- (9'.-4’2,)$ 1- m (u“‘:(ﬁlm" s 2

( 7 = 4'2’". )

Aom,

and hence
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Therefore o o0 +
) (wa‘l—(uﬂ- R '
M% [4“(9;,_179:.,)]&"% 2 @, A
The sequence { (u«,.,} converges, and hence the series

o0
% [4-(9».‘.,, 9~ )] is convergent. This concludes the proof.
Theorem .1 . Let A be a non-negative ((Ay,y)2 0

for every y € H) completely continuous operator in a com-
plex Hilbert space H . Let N ‘be a null set of A end
let y, ¢ He N ‘be not orthogonal to the eigenspace
H(a:q corresponding to the first eigenvalue (tz, of (1).

Then the sequence {(,} defined by (3), (2) is monotone,
increasing and it converges to (('/:1 + The sequence {14,;} de-
ﬁnéd by (2), (3), is convergent in H © N  to one of the
elgeni‘unctlons corresponding to (u, .
Proof: The inequality "Ayﬂz( Al (Ay, y)
holds for every Yye H . Hence. A is a positive operator
T uenc is contained in HON -

on HO@N VAccording to our sssumption Yo € He N .
Suppose that Ym € HO N . Then (&, > 0 ead from (2)

A Ym o The null set N of A coincides

Aynt‘i
with the null set of A? . Hence Ypes € HON .
Now we use lemma 1 and 2 . There exists a positive num-

ber C so thet ly.ll £ C . The sequence is bounded,

Y. Il e
because —-(—f:" =

. Hence it contains the subsequen-
Yem :
ce { f; } such that {—&—; Ayn&} converges. We

set 1um. Ay = . Be;:ause~;,—j;:A14.,"y.“ o)

for every m (m=0,1,2,...) , then (u:]“ AYn= Yuei—> 0

-39-



‘I"herefore 44,,&—9 /g and according to lemma 1
A =y (% 0) . e shsll prove (see 2 , Chapt.uV)
that («w = (1::1 .

let B (&=12,.) be projectors from H on eigen-
spnce H(tzh corresponding to different eigenvalues (‘7‘4., .

We set

a P_&_ Yo
%" TR gl i (Rgo® 0) , uhere go= PN
then §ueHela » 9= TRO%=Z 1R%I90 =3 % %

vhere S =1, Qp= IRo )l , @ >0

Lecording to {(2)

9«4.=ZQ,,,& 6'% s where Q. ﬂ———— Qg - and

oy, ety
@, = —ll—::ﬁ— . Gener=lly
(9) ™ % . (;h , me)f; I P
o T B4 957 T

3uzpose now that (A = (“1» (T" > 4) . Since Y4 > Y 5

then G, —> G , shere G = -“—'gj g =20, Ga

and %: ;&'_zr: a,”*,. (,k,: 4’2’.-‘) .

d
Because & € H(aﬁ, » 3o € Ha | then (3,3 )=0 for
A ¥ . Hence § = a, &, and la,l=1 . From Qn,2 0

follows that a,=1 and @ =g, . From (9) we get
X 2 a’m-hﬂ'_ < a""""‘—ﬁ- 4
a,.,1 . ta1 a’oi.-q,d Q1,4

Further MLm Q. .=a,=1, Ium«a, =a,1=9,

d>eo ﬂjﬂ ;-)ao

(10)

So that Qu.p



This is a contradiction with (10) which shows thrt 4 = (ﬂz,, .
Let us denote A = (tz, -(a; , then
Igm-Gil=2(1-0,,)8 2(1-a; )=25 a, <
s 45 (@-d)d, s F (-t )—> 0 -

Hence @, —> &, , vhere §, % 0 . By lemma 2 the se-

quence {ly, 1} converges and 'ﬁn: vy, llsbqgfb lynll=h > 8.

/e have y,= 9‘,"%,"—) 5:1 h + Hence the sequernce {y,.}

converges to eirenfunction '1; corresponding to (tz, . The
theorem 1 has been now estzblished.

Let the equation '
Ay-ABy= 86"
be riven, where A, B (not necessarily bounded) are line-
ar operctors in H .

Theorem 2 « Let B be a linear operster such that
B-I exists and let T= BM A be 2 non-negntive com-
pletely continuous orerator in H .ret N be a null set
of T endlet ye HON be not orthogonal to the
eigenspace Hﬂ, cbrresponding to the first eigenvalue ({Z,

of T . Then the sequence {4, } defined by the equalities

1 (T 1 Yn)

is wonotone, increasing and it converges to (éz1 « The se~
quence {Ym} converges in HON to one of the eigen-

functions corresponding to (1-71 o

Let H be a real Hilbert spnce. We say that an opera-
tor A is symmetrizable by a positive operator B , if the
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equality (B A x,y)=(X,BAYy) holds for every x,y e H .

Ye define on H a2 new inner product:

(11) [x,y]=(Bx,y) .
The product (11) defines on the set of sllx,y € H a new

Hilbert space Y4 hich is not generolly complete.

Adding to 2 the limit points, we get a complete Hil-
bert space. We denote it by X, .
The norm in 3, is defined by the equality
4
llyﬂx = (By,y)z .
Lemma 3 . ([3],[4] ) Let A be a bounded operator
in H . Then A is bounded in 2 and lAl, < 1Al -

The operator A  is bounded and symmetric in x .
It cam be extended to the self-adjoint operator A in 2, .

Lemma o ([3],[4] ) The spectrum of the operator A
in 969 is a subset of the spectrum of A in H

Lerma . (B),[4] ) Let A 1be a completely conti-
nuous operator in F} . Then A is completely continuous
in %, . The sets of eigenvalues of A in H end A in
3, are identical. The eigenspsces of A in H and A

in o corresponding to the eigenvalue (&, are equal.

Hence in view of lemma 5 we may investigate instead the

eigenvalues and eigenfunctions of the symmetrizable complete-
ly continuous operator A in H the eigenvalues and ei-
genfunctions of the self-edjoint completely continuous opere-
tor /& in 9C° .

Theorernr 3 « Let A be a completely continuous operator
which is symmetrizable by a positive operator B in a real

Hilbert space H . Let BA be a positive operator in
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H end let y,e H be not orthogonal to the eigenspa-
ce HAl, corresponding to the first eigenvalue ((2: of A .
Then the sequence {(%,} defined by

= ————L—L'(BA s Yo ) neq = 1 A b
(aaw" (B'yﬂ_, 'y,,) fy e (uﬂ.ﬂ y

is umonotone, increasing and convergent to (tZ, o The sequen-
ce {fy,.,} converges in 360 to one 91’.‘ the eigenfunctions corr-
esponding to (12', .

I.A. Birger [5] gave another method for caleulation of
the characteristic values and charac't':eristic functions, but
without any conditions nnd <wwithout proof of the convergence.
We give the sufficient conditions for convergence of his
method.

Let the equation

() Yy-AAy =0
be given, where A is a parameter, A  a linsar bounded

operator in H . To solve it, I.A. Birger used the iterative

formula

(Ay"‘-.,;ym.-q)
(13) Yo = A AYaerr An= —A T

where 5\.,,, are Schwarz’s parameters., Let N  be a null set
of A . e prove the following theorem.

Theorem 4 . Let A be a‘non-neéat“d.ve completely
cont inuous operator in complex Hilbert space H . If an e~
lement Y, € He N is not orthogonal to the space H51
generated by characteristic functions corresponding to the

~

first characteristic number A, of (12), then the sequen-—

~

ce {J\“} is monotone, increasing and convergent to A, .
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The sequence {'yﬂ} is convergent in HO N to one of

the characteristic functions corresponding to A,1 .

Proof: oecause Y !
gl fns m -1 ,yﬂ--q ‘
Ny, li= —%;—:74- A Yool
we hnve .
(14) Nyn NE Ny IS .... £ Iyl .

The senuence {lly, I} is decreasing and bounded. Therefore

it is convergent. Let us denote »ﬁ./m ”'lj,‘ h=x » According
m oo

to (13)

(15) A—W (A'yn-.,’y”): ”y,‘. ”1 w*q(Ay‘u’yoy‘w)’ ”yn#d "1

Hence
416) AM“ (A'g,&, Ynss ) S A, (Ay..-w"dw ) ’

and from (14) we get

A Ay I S XL A Y. I

30 that

(17) ﬁ,_, (Ay..: Ynm ) = A (A"J»-w’%-q)a e A’ (Ay"’y’)

in view of (13). The sequence {A. (Ay,_,, Yn-1)} is decrea~
sing =nd bounded. Hence it converges., Fron (13) follows that
(18) (AYn_ s Y)=(Ay,_,y..,) for every m=1,2,... .
According to (17) and (18)
Aea (AY, Y, )t £ A, (A Yn-1?Ym-a) (AYo , Yo ) S .
s ‘a'm. (A Yner s ynﬂ)z = a’m (A Yn-11Ym )1 *

Henee A, £ A,

neg

for every m (n=4,2,...). In view
of (18) and from the fact thot A, > O and that A 1is a

positive operator in HGN » the sequence { }i‘s decrea-

sing and bounded. There exists Lma =A enda A20.
Further according to (13)
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(lg) “ A';“,Ay’;-1"ym-1 "2= "’yn\--‘i ”1— A’m (Ayn-1 ! yn-‘l ) .
From Ny.d—>x  end in view of (17), (15) we have

(20) KA, AYni=Ya-s I*— 0 , when M —> © .

The sequence {An Yn } is bounded:
A yn & Al ll = Conal.

Tt contains the subsequence A, Yn such that
* A

~

{7&%/\9%} converges. Let us denotek% Ay, Ay = Y-
-~ ~

From (20)  Ym, —> Y . Because Ay“&—bAy and A,—> A,

we get that '1} -AAg» =0 . We shall prove that A > 0

and ’l; * 0.
From (18) follows that

(21)  0< (AYp,Y,)& .- & (AYn-17Yn-1)% (AY, 1Y V5 -

the sequence {(AYnm;Yn)} . is incrensing and bounded:
(AYn, Yo ) & 1AL Iy 17 S TAD Y .

There exists Am (AYm 1 Ynd= N  ana o > e -

According to (13) end (18)

22)  (AYners Y ) = [AYm-a e llygm d

. for every M (m=1,2,.). Fron (22), (18) end (21)
NAY s Iy 12 (At Y ) S IAY N - By Il

so that

0< 1Ay I£1AY IS ... % 1Ay IS
LAY £ DAL g I=IAT el -

Hence the sequence {IAYnll} is increasing and boun-
ded. There exists Lim IAYn h=gq and q > 0 . since
m >
9»”—9% end j';v-}=.?t,,then A>0-.
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Fron the fact thet A= onf A, cond from (21), (15) ena

(18) e get
“'yﬂ, “25 A‘w (Ay,u-1 1 yn--' ); A (A 140 1) yc ) > D °
Since Y, g —> 'g , we have that "y,.,:'._""> lh“j I and

IGI*2A(AY, ,5) > B . Hence “!; %= 0 . Further the
proof cen be performed similarly asqthe proof of theorem 1l .
H.F. Duckner [6] investigated the iterative process (13)
for linear and non-linesr probleis. I. Marek [7],[8) genera-
lized the methods (3), {(13) for bounded operators which hove

a dominant eizenvalue,

The author wishes to thank J. Jelinek for his help with
the proof of lerma 2 .
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