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REMARK ON THE TENSOR ALGEBRAS
Milo3 DOSTAL, Prsha

In this notg we define a local convex topology on the ten-
sor algebra constructed on the sequence of DF -spaces (see

1) a lo-

[3]‘), which mskes from this topologicsl linesr space
cally m -convex algebra., All spaces sre sutomatically suppo-
sed - to be convex end Hsusdorff. |

- Let A be an algebra over the complex numbers € . The
peir (A ,%) , where A is algebra and ¥ topology on A ,
is called the topologicsl algebra (further t. slgebra), if the
foliowing conditions sre satisfied:

1° (A ,%®) is 2 t. 1. space,

2° The multiplication in A 1is continuous in every com-
ponent separafely. '

Under the proper t. algebra we understand every t. algebra
in which the multiplication is continuous mapping from Ax A
inte A . Locally m -convex algebra (briefly l. m-c. algeb-
ra) is the t. slgebra in which a fundsmentsl syétem of idempo-
tent neighborhoods of zero (see [4]) exists.

We_shall use the following assertion: Every proper t. al-
gebra can be completed and its completion becomes sgain the pro-
per t. algebra, (The proof of this theorem, which must be cer-
teinly known, is of the technical character and will be omitted.)
It is an easy consequence of the last proposition that-the com-

pletion of the 1. m.-c, slgebras is sgain l. m.-c. slgebra,

- -

1) further only t. 1. space
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{In this connection remember the following fact, due to ¥ael -
brock (see[5]): If the completion of a t. algebra is again t.

2 N
algebra, then the product M- N ={x=z-y eA:xeM,Y € }

of any bounded subsets M ’ N or A is also bounded.)

Let us give a sequence E“ E;, .o of t. l. spaces,
®
put M= z En » where 2 neons the topolorical direct
”~
sum and furtner X >, E-_-t’@ M , where @M=M®...aM

(f-times) 'n-; the projective tensor products (see [3]). It is
rlesr that .\éE"‘ is alsc t. 1. space. Call this space the
praJetive tensor product of the sequence (E.), 34 « From
an algebraic point of view it is an algebra with the obviously
‘ef‘ined‘multiplication (see [2]).

Theorem. Let E. (m > 1) be the sequence of DF -spaces.
Denote by [n) the set of all ordered sequences of - natural
numbers. Then the projective tensor product of (E, )m 34 is
2 DF -space and at the same time a 1. m.-c. algebra, the com-

pletion of which is

XE Z@”M F 3 & E;

——t pvo leln] icl

Proof: It follows from [3], p. 46, proposition 6.2 » that
' | - E . . 3 o0
we have @M =X ® E; ; therefore ”)'(1 E.,Luﬁ_zﬂ i;C"J @, E;

lelp] il
Néw we shall show that n)z En is 1, me~-c, algebra. Let
(Vo )IL cln be a fundamental system of barrelled neighborhoods
of zero in E, . From the usual propositions about the t. l.
spaces and their projective tensor products (see [1], (3]) foll-
ows the family‘of all the sets of the fcmﬁ

%Eﬁ]r “®,V “) (where L €l forall nw=041,...
end le [n])
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[ 4
forms the fundemental system of neighborhoods of zero in X En
net

roke U as one of these neighborhoods (we omit the indexes (, ).
1tz e U - s then % -}g Z,;,. and for every

where  Wj, € r ggj‘:ﬁ') end 17,5 €lh;]  for an1
Aed2y.00y,m » 80 that
4
Wy, s 'l“?ﬁ# L e .t‘ (Mj» being finite sets, we
£z (Y9
ohall omit them for shortness), t, € V, =V, %~ and

for all possible g‘, A holds
i
) ;'-"2 =1 .

We have altogether

- J\
(2) X ; ey, ; £ ul,'

If 4 1is enother arbitrary element of U we can put down

R M,
= AV Ty ;
) Y Jz-:'! 52-4 % L ?,7,5‘l ’

here all capitals have the same significance end properties as

the corresponding small letters in (2), especially

‘\Q V"‘ and for all J, S we hawe
@ S A 1
i "}5
Now zy= J,Zo.u FA Ay A (%‘t )®(®TL ) . Suppose

for instence 4, 4,J, S  to be fixed end let ljs={is 1%}
‘J,s b {’k—', ""”"KJ } . Put lj,a 1, = ‘{":1:-"; i&./"&n"'r&/{,f

and 't’:"‘n tf‘ if A 1s equal to some ig € |75 and
L b
T, ke , whenr A equals to some Ky € 'J,s « Then
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(BtVO@ T, @, Ta' e U, 0 BViy, @l OBl -

Further is ¥ ?»:." /\tSQ T;f"'ﬁ (NG ®'"®V‘KJ) becsuse from

6oL ?
3‘,3 J‘$,‘ 4
(1), (4) it follows that eZL 2 A= end so zyeU ,
.' Lo d
i,es U 1is idempotent end -.Zs E,. so as its completion is

l. m.-c, algebra (see the text before the theorem) and both are
DF -spaces (see [3] ).

Remark, The claess of DF -spaces contains alI normed
spaces and so we obtain the projective tensor product of the se-
quence of normed spaces. But there is another way, how to con -
struct a "natural" tensor product of the family of normed spa=-
ces, Let (E ) | be such a family. We can embed isomorfic-
ally every E_ in the B -space C(X ) of continuous func-
‘tions on the unit sphere X, of E_:_ , which is compact in the
topology 6(E',E ) oPut X=TX, enddenctety 6, (7
respectively) the mentioned embedding of E, in C(X,) (respec-
tively of C(X_,) in C(X) ), In the Banach algebra ( (X)
we shall consider the slgebra A - generated by the set

U 0 (6 (E )) . Itisnatursl to call A the tensor pro-
duct of the family (E_ ) ¢f o Notice in this connectien one
fact which is not without interest. Let I be the set of all
natural numbers and J the set of all finite sequences of
them, Let  X; (iel) be compact spaces. If Jc |  denote

Gy = CCTTX:) . For arbitrary J, K  for which is

JCKCI » We have canonical isomorphical embedding
C, =¥ Cx » 0o that C,  is closed in C¢ . Then

¢ '49-1, C, is (algebrsic) subspace in (;

L4

Proposition: Denote by ", the topology on C of induc-

tive Iimit of the family C, (..6! e ) (with respect to



the mappings CJ - C ) and ¥, the topology on C ason
the subspsce of (; . Then B, < $o .
Proof: For J € & let %, be the topology of the spa-

ce C, (it means the topology of uniform convergence on_ZCX,:
o
T2y o .
Evidently "6, ICJ =%, ’, but by the definition of W, ,

this is the finest local convex topology "% for which every
% lc is coarser than the original topology %, and so we

J . .
have %, 2 %, (from this inclusion follows that we ha-

ve even G, ICJ -5 : in fact B, = 6, ICJ ¢ %G, ch cg).
Put C,=¢C (‘,ﬁ" X)) and define the topology B, on

oo )
t=Uc, of inductive limit of spaces (, . It is not

asd

herd to show that ", = B .But (C,%8,) 1
complete LF -gpace (see [1], chap. II,) - se (C,Bu ) is

complete. Suppose that "G, = %, ; them (C, %,) mst
be closed in c, , but the cl'osure of (C,%,) in ( 1s
the whole space C, (see [1] ) and so we obtain (= (; what
is not possible. ‘

We shall return to these questions later,.
I wish to express my gratitude to Professor M. Katdtov for in-
troducing in these.topies.

References .

2) Ir (Y,¥) 1s a topological space, Z subset in Y ,
then % lz means the relative topology of zZ .
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