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NEUTRON TRANSPORT THEORY IN THE MULTIGROUP ENERGETICAL
APPROXIMATION
(Preliminary communication)”
Ivo MAREK , Preha

1. Introduction and formulation of the problem
Our purpose in this paper is to establish the system of

neutron transport equations in the multigroup energetical ap-
proximation., We shall study the case of fast reactors i.e.
the case, when all energetical groups of neutrons participate
in the fission passing through. We shall use definitions and
denotations of the monography [3]. As to the mathematical
formulation of the problem and to some assumptions we will
use the pspers of Vladimirov [6],[7], in which the mathemati-
cal theory of one-group approximation of neutron transport e~
quation is given.

The system of multigroup-~epproximation equations for ne-
utron transport can be symbolicsally written ss
(1.1) Le =Be + Alw +4
where & = (Xq,.--,%p ) is the. solution-vector and the opere-
tors L,B,( will be defined below. .

Let G be a bounded opén end connected set in the Eucli-
deen space R, (42 1) ; let G ve the boundary of G . By
the symbol {l will be denoted the set of normed vectors
4= (ﬂﬁ"vﬂ-m),lﬁ"'l. Let us put UL =G x £ . We defi-
ne the operastors Lj,j=4,..-y ™  on the set U as follows:

Ljw; =3 V.xa-+23-x,-, Za' 2¢>0
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with the boundary conditions
. > >
(1.2) % (?,ﬁ)-o for TeG, (A,m)< 0,

where the symbol ;f? denotes the direction of the exterior
. = >
normal to the boundary G anda (L ,n) denotes the cosinus
= =>
of the angle between the vectors Q mo.,

Remark. The condition (1.2) can be written in the given
form only if some further conditions with regard to:the boun-
dary G are satisfied. In the following paregraphs we shall
formally use (1.2) in the general case, but we mean by this
the exact formulation of the boundary conditions given in [6].

We define the operators

ﬁ -—»j
(1.3) B % A_Z wyg ( 7, M, d
= —> \
(1.4) Cin %n = ){z“ A *-: (2,0, 43
end we put . )
s S s + $ .
(1.5) ’);;' =2, Wiy "’l;j = Z.,-"g., Why .

We shall suppose that the kernels (1.5) have the pro-
perties (a) - (d) of the paper [7] p. 683,

The operators L ,B,( will be defined as operator—

matrices
(1.6) Ls(L1‘-.— ), B= (B C=C(Cjn)-
Lm

Besides the assertions on the existence of the soluti~
ons of the homogeneous (4=8) and the inhomogeneous (4% &)
systems (1.1, we shall give similar assertions for the adjoint

systen }
x % X X = .k K *
1.7) e 2B x" + A T +4 ,
X * -
vhere L ,B",C" are the adjoint operators to the L.,B, C
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in the ‘Hilbert space X=L, (0)x...xL, (L) with the
scalar product (.x«,'y)=é§ (.xa-,y,- )j , where (xa‘ ,yj)j is the
scalar product in the space L, (Ul) for the j -th coordinate
of vectors X = (X;,...,%n), Y=2(4y--es Ym) . We shall give
general iteration methods for the construction of the mentio-
ned solutions of the systems (1.1) and (1.7).

2. Auxiliary lemmas

The s'ymbol [X] denotes the space of linear bounded ope-
rators mapping X into itself. Let K< X be the cone [2]
of non negetive vector-functions on UL . The spectrum of the
linear operastor T will be denoted by & (T).

To ean arbitrary vector X = (X4;..-3Xm ) we shall define
a vector |x| with the coordinates((X,l,---y (X, 1) , where

l"‘;‘ is the absolute value of the function Xj S so that
ly; &, 2= £ >, 2). eep {-1 ang ¥; r, n.)}

Ir x €X,yeX, L= (%yyeeryXm),Y=Yur--Ym) the inequality
X<y

means that xj (?,ﬁ) < y,j C?,ﬁ,)

for almost all (7, X)e @ ena the sharp inequality

holds at least for one index j, in a set having positive

‘measure.

Linear bounded operator e [XJ is called K-positi-.
ve, if the vector Tx =% € K for any x € K . K -positi-
ve operator T 1ia called ébsolﬁtely K -positive, if T
has the following properties:

() For eny vector X € K,x + 8 and for any £ >0
there exists a natural N so that the measure of the set of
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the zero-points of the vector-function TNx is not greater
than € .

(B) For any X , for which axg k; ¥ consl &t least
for one index j, the inequality
(2.1) | Txl < Tlxl
holds.

Lemma 2.1 (fundementsl lemme). An absolutely K =-positi-
ve compact operator | with the positive spectral redius
#(T) has a positive simple eigenvalue i, end sn eigenvec~
tor X, positive almost everywhere in (I corresponds to
this velue. An almost everywhere positive in (f eigenvector
x.: of the adjoint operator T* corresponds to the same ve-
lue i, « The following relations

Tx, = w,%, ’ T*x.: = (%, -’5: 7

(2.2) Al <o , 1A% <,

ave correct for Ae 6 (T), A+, A e6(T)A w,. 1€ the
eigenvectors %, gr of the operators T,T* 1ie in K ,
then 4, = CoXy, y: = CyXs |, where €,, c: are positive
constants.

The application of the fundamental lemma to the systems

(1.1) end (1.7) consists in using of the mentioned lemma for
the operators )

(2.3) T=(L-B" ¢, T=c -B5"
(see chapter 3).

Let I’ be an interval of resl numbers. The operator-fun-
ction T= T(T),]e_f', T(y)e [X] is called continuous

in the point y;ef" y if for any £>0 such a 0 >0 exists
-6 =



so that
NT() - T <€

for "}"—Tc I<d , 1 Tf T(Y) 1s continuous in every point
Y € " , we shall call T  continuous in 7 .
Lemma 2.2. Let us assume that
1. For any yel', T(y) € [ X] is an absolutely K =
positive compact operator.
2. Operator-function T = T(Y) 4s continuous in " .
3. A vector u, € K exists such thst u -w, e K , where
w (Mwll=1) 1s the eigenvector of the operator T(y) co-
rresponding to the dominent eigenvelue («,(7') and the rele-
SR ITE - TN % - ¥ (s 7Y} eK
holds for T € M y'el,7<¥  where v(}.7750. »
Then & positive dominant eigenvalue=-function 6 = i, ()
of the operator-function T=T(y)is continuous and purely
monotonous in [ 4i.e. the 1ne§uc11ty
o (p) < (y")
holds for y < v .
u&ev'f,e " 1s celled critical parameter of the compact
’ﬁi%;;:‘itive operator-function T= T (y) if the identity

Mo (Y,)=41 holds for the corresponding dominant eigenve-
lue (4, (Y,) of the operator T (7).

) From the lemma 2,2 follows the existence or the non e-
xistence of the eritical parsmeters. If they do exist, their
unicity follows from the same lemma.

- 3. Existence of the solutions of homogeneous systems
In this chaptei' we shall give some assertions from which
the validity of the fundamental lemma 2.1 for the opersetors
-7 -



(2.3) follows. Thus we obtain the fundamental result - the
existence of a positive dominant simple eigenvalue of the
systems (1.1), (1.7).

Lemma 3.1. The operator L'C 1s sbsolutely K =positive,
compact and its spectreal radius 'f-(‘-"c) is positive.

From this lemma immediately follows

Theorem 3.1. Let be 4 (L' B)< 1 , Then a positive
dominent simple eigenvalue (U, = 7\;4 of the homogeneous sy-
stems (1.1) (1.7) (4=%, 4 =B0) exists. An eigenvector
¥, € K of the system (1.1) and an eigenvector x,:e K or
the system (1.7) correspond to th;.s eigenvalue. Besides
the mentioned eigenvectors the homogeneous systems (1.1),

(1.7) do not have other eigenvectors in K

o

Remark. It is easy to show that the assumption
-1 -
%4 (LU"B)<41 in theorem 3.1 is natural and that the rela-
tion #(L"B)21 is physically impossible.
4. Existence of the solutions of the inhomogeneous
systems

From the results of the third chapter it follows that
all A , for which

(4.1) Al < @l

are regular points of the systems (1.l) and (1.7). We can -
obtain the solutions of the mentioned systems in the follo-
wing form

(4.2) x =RM,AT) (L-B)" 5,

4.3 %™ = R, XTHC(L-B*) 4"

where R(A,T)= (AI-T), ROA, T*)=(A1-T ana 4, 4* are ar-
bitrary vectors in X. )



Theorem 4.1. For' )\ , for which (4.1) holds, the sys-
tem (1.1) or (1.7) has one and only one solution X or x*
" for arbitrary € X or 4ATeX .

For srbitrary ) the system (1.1) or (1.7) has a solu-
tion X or x* then and only then, if

(A,4")=0 or (s*,y)=10
for any solution y* or y of the homogeneous system
[*y*= By +A C*y o Ly=By+Aly:

5. Iteration methods

Among the numerical methods for solving the systems
(1.1) end (1.7) the iteration methods are very important.
In the case of homogeneous systems (1.1), (1.7) one of the
often used iteration méthods is the so called method of
source=-iteration. This method is a certain mathematical mo-
del of the physical processes described by systems (1.1) .
(1.7). Mathematically the source-iteration method is & modi-
fication of Kelloggs ﬁethod for the construction of eigenve~
lues eand eigenvectors of linear operators. The iteration
formulae presented here contain or generalize most of the
used it-ration processes. The convergence of the mentioned
processes can be derived from a single general principle
(see [4] ).

‘ Generally we cen define the source iteration method as

follows: —

) mn-1) (o) (o)
(5.1) L.x,‘m=g,x.m+cx,“ , x eK, x + 8,

) ) X Km-1) % () *.(0)
5.2) L™ B ™M T, X Te K, TR

) : * (m)
n x

(5.3) = X *
Xy = ’ X —E @) ?
" (x™,x @) 7T ¢, Cx)
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. ~1 (Cx(’ﬂ y; )
(5,4) Ay = Fony = (C.v."":’, ) !

where y.‘, 72“:\. form sequences of vectors in X ', which

converge weakly to the same vector y'e x :

(5,50  (x,yn)—> (x,y"), (6, %)>@Y)eer e X -
Let be '

(5,6) (£, B y) +0,
e gra L fc R (A, T*)dA ;

C, denotes e circle with its center in (%, @end with the
radius @, such that for H={AlIXM=Q} the relation

) =
hoids. Hn 6 (T7)={a}

Theorem 5.1 The source iteration method defined by for-

rmulae (5,1) = {(5.4) converges i.e. the following relations

hold in the norm of the space X
* X*
Xiny —> X, , Xy > x,
A,

m)

- A=

*

where Xo 5 Xy  are positive solutions of the homogeneous

systein (1.1 znd (1.7) corresponding to the positive domi-

nant eigenvalue (U,

If {4.1) holds, the following iteration processes [5],
[GJ can be used for the construction of the solutions of the
innor.ogeneous eystems (1l.1) end (1.7) besides the ususl ite-

rations

4 mad

m) < .k (R) A
R S v 2 AT (LB
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K _ 4 —mt1 W () =z "h‘x’*(—k) (L:'._ *)-4/5*
(5.8) xz._“—my\. % +‘.=Z4-A. + B ,

R xR
where X , X, (Yam) are defined by formulae (5.1),

(5.2), (5.4) and x©@= (L-B)"s, £*SLBYST

Theorem 5.,2. If the assumptién (4.1) holds, the sequen-
ce (5.7) or (5.8) converges to the single solution X or o
of the inhomogeneous system (1.1l) or (1.7) i.e. '
%, —>% or X, —>x*

in the norm of the space X .

6. Critical parsmeters

In the case of nuclear reactors the operators L ’ B N
¢, L* B*, C* 1in systems (1.1), (1.7) depend on some pa-
rameters. We shall illustrate this on an example.

Let us suppose that the operators mentioned above depend
cn a parameter 'r el s where [’ is =n interval of real num-
bers.

The nuclear reactor is celled eritical, overcritical or
subcritical, depending on whether the corresponding dominant
eigenvalue () of the operator [L (¥)-B()]™" C(¥) 1is
equal, greater or smaller than 1 . It is evident that only
a siﬁgle critical parsmeter can exist. Formally this follows
from the fact that @, = &, (y) is a purely monotonous
function of the argument 7y € [ .

We shall give en example of the dependence of the eriti-
cality of the nuclear reactor on the enriching of the fuel by
a more fissionable isotope. )

Let us consider the system (1.1) and the following sys-

ten
-1] =



(6.1) . L'x'=B'x'+A'C'x',
where » ' p ; '
S5, (), TpmZL 0, N = (),
(6.2)  Eex, @), f=Z (), - uf (),
¢ of + of f
PIND D D INR R M vy > Y -
Theorem §.1. If the assumptions(6.2) are fulfilled the

inequality A <A
o o

holds for the values A = A, (¥), A= Ay (B e
If an enriching 'r' € [ exists such that the corres-
ponding Al= 2, (¥') < 1 , then one and only one vsalue
of enriching ¥, € I" exiats, for which A, (¥,)? =1 .
In conclusion we call the readers’ attention to the
fact that many similar problems having the form (1., where
L,B,C are linear operators such that T= (L-py* is

absolutely K =positive compact operator, can be considered
by our méthod.
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