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Commentetiones Mathematicae Universitatis Carolinae

3, 1 (1962) ]
REMARK ON TOPOLOGICAL EMBEDDING OF COMMUTATIVE MAPPINGS
Zden&k HEDRLIN , Praha

Throughout this remerk X will 4denote a topological
-space and F the system of all continuous mappings from X

into X ; P will be considered as a subset of the product
xX* and will be endowed with the "pointwise topology", i.e.
the relativised product topology. Accordingly, the pointwi-
se convergence of nets will be considered ( £, —>f means
that £, (x) >f£(x) for every x ¢ X ).

If GecP , YcX , then G(Y) denotes the set of all
gly) , 8eG, yeY. If xe&X , we shell write G(x) in -
stead of G({x}) . The set G(x) will be called the orbit
of x under G .

An orbit cover of Y wunder G is defined to be &
class A of subsets of Y such that

1) Y=va ,

(2) every set from (@ 1is an orbit of some y e Y
under G .=The operation in all semigroups will be the com-
position of mappings.-The cerdinel of a system 4 is deno-
ted by card a.

We shall prove the following theorems:

Theorem 1., Let G, Gc P, be a commutative semigroup,
and X be an orbit of e, e € X, under G . Then G with
the pointwise topology is homeomorphic to X .

Theorem 2. Let G, Gc F, be a commutative semjgroup
and 0 be an orbit cover of X under G . Then G yith the
pointwise topology is homeomorphic to a subset of xeard a
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(with the product topology), provided, G contains identity.

Proof of theorem 1. For g€ G , put ¢ (g) = g(e);
clearly, ¢ meps G onto X, '

If ¢ (g) = ¢(g,) for some 8, 8 & G , then
gl(e) = gz(e) . Por every x€ X we can find g € G such
that g(e) = x . Hence ‘

&y(x) = gl[g(e)] = gfgl(e)] = gkz(e)] =g, [gte)] = gzl(x) ,
and 8 28 . Therefore g is one-to-one.

We are going to prove that 9 is a homeomorphism.

Let {f,,% €D} beanet, f,2, €6 G forc € D.

It £, (e) —> £(e) , then £, (x)>£(x) for every x & X.
Clearly, for every x € X we can find g € G such that
gle) = x . We have

e (x) = £ [g(e)] =g [f‘ (e)J
and f, (x)-»f£(x) , a3 g 1is assumed continuous. Therefore
@ is open. If f, (x) = f(x) for every xe X, £, f, G,

then g (£, ) G (£) , and the theorem is proved.

Proof of theorem 2. Let Y eQ , G(y) = Y . Evidently
G [6(y)] = Y . We shell denote by G|Y the class of all
meppings from G restricted to Y . G|Y is a commutative
semigroup of continuous meppings from Y into Y ,
GlY¥(y) = Y . According to the preceding theorem there exists
a homeomorphism @ Y from Gl! onto Y . Let us define the

mapping 4 from G into Xcard a coordinatewise:
g (&) = ‘J’Y(le) for every Y e Q .

- If g, B, € G, g ¥ g,, then there exists Y e @ such that

gll‘_!=§ g, ¥, nence 9 ¢(2g,) # $y(g,), a8 @y 1is one-to-one.
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Therefore & 1is a one-to-one mepping from G onto & (@) .
It is sufficient to prove that 4 is both continuous and .
open,

Let £,—> £, f, fo, e G . Then ¢ ((f, )-—)q!(f) for
every Yel . let (£ ) >y (£), £, £, 6 G . To every
X € X there exists Y&l , G(y) =Y, such that xe Y . We

have QY(Q)—)QY(f) , and £ (y)—» £(y) . We can write
x=gly),geG. Then £y (x) = £, [g(y)] =g [f“ (y)} , &nd

L, (x)=> £(x) , a8 g is continuous. The proof is concluded.
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