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Commentationes Mathematicae Universitatis Carolinse
3, 1 (1962)
ON THE LOGARITHMIC POTENTIAL
Josef KRAL , Preha

Introductory remar k. Suppose we are
given a simple oriented curve C of fin:pte length and a
continuous function [ on it. It is well known that the
corresponding potential of the double distribution can be
defined by the formula

Ff) )
W, (z; F)= Jméf—f—_d%—d.f, zeE -C.

Investigation of the behaviour of WC (z; F) (as well as

9f the corresponding Cauchy’s integral) as Zz approaches c
is of importance for a number of applications. Accordingly,
solution of the following problems I - III seems to be of
interest.
Problem I. Fix a point §eC and suppose
that
Cn fz;z=ftpeupit, 0<p<Ri=/
for every
Ye(d-o, +)= {#; 19;-d'<1}<1z+4'} (F>0).
Pat U={2;2 =f+p¢qvi&. ’ 0<P< R}'
Find a necessary and sufficient condition to secure the e=-
xistence of
m W, (z; F)
Z>§ c

zelU .
for every continuous function F on C .

Problem II, Suppose that C is a simple clo-

sed curve and write ( for its bounded complementary
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domain, What (necessary and sufficient) restrictions are to

be imposed on C that W (z; F) be uniformly conti-

o

nuous on ] for every continuous distribution F on C ?

Or, which is the same: Under what conditions \VC (Z.; F)

(so far considered for z ¢ (n only) can be extended to
a continuous function on G = G uC whenever F is

continuous on £ 7

3

The problem II having been settled, one can consider
the ope}ator

TF(§) = rF(f)-m\«/C (z; F)

zZe G
on the Benach space B of all continuous functions [ on
C equipped with the norm | Fll = g‘m.aaac IF(§N ; here
€

=T (-T) provided { 1is positively (negative-

1ly) oriented respectively. In connection with the classical
Fredholm’s method for solution of the Dirichlet problem it
is useful to have an expression (or, at least, some estime-

tes) for the quantity

(1) w=mf IT-LI,
L

L ranging over the system of all completely continuous 1li-
near operators acting on B . (@~ 1is so-called Fred-
holm’s radius o T .) Thus we arrive at the following
Problem III. Find an expression for @ ma-
king clear its 'dependence of the shape of c .
It is the purpose of the present paper to show that
methods of Real Variables make it possible to solve the
problems quoted above., The problem I will be treated in a
slightly more general fashion for path-curves with any num-
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ber of self-intersections. We shall introduce certain geo-
metric indicatrices and variations (which can also be des-
cribed purely anelyticélly) and announce some theorems sol-
ving I - III in terms of them.

Definition 1. Let ¢ be a confinuoﬁs complex~
valued function on <a, &> ={‘t; teE,, ast% 5“}
and let f be a real-valued function on <@, &> . Given
apoint z € Ez’ ¢ (Ka, £>) e f£ix a continuous
resl-valued functionm 19‘2 on <a, &> " with

@) lg(t)-zlep it (t)=gt)-z,ast< ¥,
and define o/

» w (2, 4)= [ FR) 4 (2)

a
provided the Stieltjes integral on the right-hand side e -

xists.
~ Remar k. The definition (3) is independent of the
choice of 1& fulfilling (2).

‘Definition 2. Let &  have the same mean-
ing es in the definition 1. Fix § € E,  and define on
< 0, 2> the function (u.‘,(a(.; f) of the veriab-

le & as follows: For &« € <0, 27> put
(uy(oo; f) =n (where . = 0  is en integer)
if and only if the path-curve & = meets the half-line

. =
{Z;Z=f+}°¢¥f"1’°‘:ﬁ>o}=’} exactly 7 -times,
Further put @ ?(x; §) = + oo if @ meets }}“
infinitely many times. Thus
ﬂv(‘; §)(0% 6“9(“.:'.?) £+ o0) is equal to the num-

-1 o
ber of points in L4 (Pf ) Similarly, define for
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any 2 > 0 the function (u: (o(,;f) of the varia-

ple & on < 0, 21D as follows: For every
o €<0,2TD, @l (o, §) (08 ] (x;§)S + o)
is equal to the number of points in
gp"(};“n{z, lz-§l<2}).
Remark.Itcen be proved that (for fixed ¢ and
§ ) the functions (u.y(o(.;f ), (“Z (a, £) (x>0)
are measurable. Therefore we may introduce the following
Notation.

2T
»(§) = f wf(x;§)da,
[/

2T
v/(§)= [ af@;§da,
the integrals on the g'ight—hand side being taken in the sen-
se of Lebesgue. .
Definition 3. The meaning of ¢, §  is the
seme as in the definition 2. For any P > 0O denote by

270, 5) (02 97 §) 5 + o) U
of points 1n{t;te<a,fr>; le(t)-§1 = P} . The
function 1)9(’0-, §) (@, §  ere fixed) is measu-

rable on (0, + ) and, consequently, the Lebesgue in~
tegrals

>’ v
[ 2pifrdp = « (5],
0 n .
[ 3p;5)dp = «2(§) (n>0)
are ava:glable.

Now we are able to announce the following
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Theoremn l. Let @ be a continuous complex=-va-

lued function on {a, &>, §e ¢ (a, &>) . put
u={ziz=§+f’aﬂ"‘:"9§’ 0<P< R} . Suppose
that the set @ (§) 1s finite and that there exists a
f> O such that q((a,fr))n{z ;z=ftpenid, 0<p<R}
ﬁﬁé'ixever |%- 19"<<f . If

ug (z; F)

z->f

exists for every contin&oﬁs (real-valued) function ¥ on
{a, &> | then

(4) 'v‘?(f) < t o0,

(5) sup IL-44L,“: (f)< + o .

>0

The converse of this theorem is also true. More precise-
ly, we have the following

Theorem 2, Let (4 be a continuous complex=-valu=~
ed function on (a., fr), f €EQ (( a, 5‘)) and suppo-
se that the set cf‘(f)s {t,, £... & t”} is finite.

If (4) holds, then there exist the limits
. g(t)-g(ty) _ %00, L .
t>t+ lo(t)-9 (£ ~ T (t* ) enevert, < &,

: 9E)-9 (t,) = ‘r"(t -)  whenever £ > a.
t>1s lo(t)-o (£, k k
For the sake of simplicity, let us sgree to write

T'?(tf‘)= T‘P(a- +)  in the case t=a, ?9(tﬂ+)= tq(g‘—)

in the case tﬂ_s & . If, moreover, the condition (5)

takes place, then, for every continuous function f on

{a, &>, w, (f"'"t'{ 'F) | tends to a limit as
- ] - *



#—> O+ uniformly with respect to f on sny compact

set

Ke{§s feE, . I1§1=1-0 (T @), 7@}

Remark,If g)"(f)c(a,,lr) , in the above
theorem, &mv ur (f+/t§ f) is constant on every
£ O+

component of {§ ; | § |= 4} -kl;j1 {T?(fk"),?y(i“"*‘)}, The same

is true provided ¢ (a)= g (&)
Remark,If @ 1is a rectifiable path-curve on
<°’76'> , then the set of all f €@ (<a, '&’>) with

nun n “ (§)= +° 14 of (Hausdorfe) lineer mes-
>0

sure zero. On the other hand, example can be given of a sim—-
ple rectifiable path=curve @ on < a, 6‘) such that
the set {f, feygKa, &), Vv(f)= 4'09} is of positive
linear measure. This, of course, does not mean, that there
exists a continuous function F on C = 4 (La, &>)
such that non-tangential limits of \r\é (z; F) donot

exist on a set of positive linesr measure. (In fact, the con-
trary is known to be true.)
By theorems 1, 2 the problem I is solved. Let us now
proceed to the problem II.
Notation. From now on we shall assume that &
is a complex-valued function on £ a, 1’) such that
y(w) = ¢ (&) ena 9(1‘1)*9(1&) whenever
0<lt,-t I<&-a, t,,t e<a, &>
The sjmbol C will be used to denote the set L4 (< Q, &>)
as well as the oriented curve determined by P For any con-

tinuous real-valued function F on C and any Z € Ez_ C
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we put W (Z; F)= ws‘P(Z;f) » where

f(t)= Flg(t)),adt s e.
This is, clearly, in accordance with the notation used in
the above remerks. Further we shall write (v for the boun-
ded complementary domain of C and B for the Banach
space of all continuous real=-valued functions F oo C

with the usual norn Il Fll = max | F(f)l
feC

Theorenm 3, Suppose that W, (z; F) is u=

c
niformly continuous on G vhenever F is continuous on
C « Then
Ay V?(f) & + oo
§e C ’
t4
end (since %v(f).ﬁ_ ’U’V(f)) }/‘Mgz v, (§)<+ o0 for

(6)

every A > O .
Conversely, the following theorem holds.
Theorem 4.S$pposethat ’
m V,"“ (§)< + o0
for a certain 2 > 0 . Then (6) holds and, for every con=

tinuous function F on C , \Aé (z; F)(z e &)

cen be extended to a continuous function on (" U C . The
v
operator T on B defined by

TF(§)=--0"F'(§)-—Z_,f W (z; F), feC

(=T according to whether € is positively or
negatively oriented) is bounded and its norm is equal to
4
s v (§) .
feC

As to the problem III, the following theorem can be pro=

ved,
-0 =



Theorem 5 ., Suppose that (6) holds and let w
have the seme mesning &s in (1). Then
. 1 4
w = m sup v, (§).
10+ §eC * §
Proofs of the above theorems together with further re-
sults in this direction will sppear lster.
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