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ON COMMON FIXED POINTS OF COMMUTATIVE MAPPINGS

Zdenik HEDRLIN, Praha

We use the (following notation: if 9 1is @ system of
\
meppings from the set Y into Y , then, for any “

7 %Y, $(2) is the set of all f(z), £f. € ¢ , = € Z;
instead of ¢ {(z)), ¢ (2) is written, If Z C Y ,
¢ (z) < Z, then. ¢1Z denotes the set of all f € @

regtricted to 2 .

The operation in all semi-groups throughout this re-
mark is the composition of moeppings.

Theorem. Let F be a coumutative semi-group of con-
tinuous mappings frou e compact interval X into itselr;
let F contain a unity eclement. If F(e) is connected
for some e € X , then all meppings from F have a com=-
mon fixed point.

First we shall prove a few lemmas.

Lemma 1. Let G be a commutative semi-group of map-~
pings from a given set ¥ into itself. Let G(e) =Y
for some e & Y ,

Then G is a group if and only if G(x) = Y for
every x €Y ., If G is & group, then every f £ G 1is

one-to-one onto, and 3 £ G , f5, € G, f1(x) = £5(x)

.
for some x £ Y , implies fl = f2 o

Proof. Let G be a group. We can find for every.
x € Y amapping f € G such that f(e) = x . The map-
ping gl belongs to. G end e = f'l(x). Therefore
Y o G(x) oGle) =Y. |

Let G(x) =Y for every x € Y . We can find
feG end g e G such.that fle) =x and glx) =e .
Therefore :ftg(e)} = ¢, If 2z =nh(e), h € G, then



f[g—::(z)} = f{g Lh(e)_ljl’ = h*{f E-;(e)]} = h(e) = z
Therefore f\g(z)J =2z Tfor every 2 €Y end gz ffi B
vidently G contains the identity mapping.

Let G be a group and f € G, X, € Th £(xq)
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Then xy = g,(e), X, = gy(e), g £ G, g € G and
£(xy) = f!gl(cZ} =’gllf(oi) = gzlf(e)J :

As GEf(eﬂ =Y we con write for ggcry yE€EY iy = h[f(cﬂ y
h &€ G; therefore, ¢ ) =g e = { 1 =
; y 81(y) = gyihifle)ly = higy l_f(e)]}

"

il

If £,(x) = f,(x), f; € 6, £, €G, x € ¥, (then o

h{gZ‘f(eﬂ} = gz{ht?(eﬂ§ = gz(y)f Hence g; = gy, X =

every y € Y we can find a mapping g € G such that
y = g(x). Then
2100 = 1) [s) = gl (x)] = gty (x)] = £, [g(x)] =

= £5(y) "and £, = fy.

Lemma.g_° Let F be a commutative semi-group of mapp-
ings from a set X dinto X ; suppose that F contains a
unity element, If =x«¢ X, F(x) = X, x'e X ,. then either

(a) FlF(x") is a group or aye T

(b) for some y € X, x” non € F(y) .

Proof,. If (b) does not hold, then x"e F(x) for cve-
ry x & X. Clearly, F{E&XI} C F(x) for every x € X .
Put “X'= F(x"). ; F'= F1X ., Bvidently, X'=Pie )} 'aa,
for any YX.Q.X', x'="F(x7) ¢ " [F'(x)]'c B (%), hetce
eI 1 i S ‘ ' ;

By Lemma‘'l, F  is a group.

Lemma 3. Let G be a commutative group of continu-
" ous moppings from a given bounded connected subset 'Y of
thel el ldnme dwbo ' 75 Jet Y ontain more than one
point. Let G(e) = i for some. ¢ € Y, Then ¥ 4is an o=

pen interval, If we put Y = (a; b), then lim f(x) = a
: . _ A i ) > Gk
and Iim £(x) = b (P¥r cvery £ € G.
X D Ced
’ - 26 =



: Proof. According to Lemma 1, cvery £ € G is a one-
.to-one mapping from Y onto Y ond the valuss of two
different mappings from G are distinct at every point.
As identity mapping belongs to G, every £ &€ G is an
‘increasing function. As every mapping f & G is onto,

lim £(x) = a and lim f(x) = b . If a € ¥, then
X - atk X —» b~

f(a) = a, as f 4is continuous, and therefore Gla) = a .
As Y contains morc théan one point we have G(a) #Y

and a ﬁ Y . The same is veolid for b . '

I£ Z .is a metric space, wc shall denok by d(Z) its di-
ameter.,

Lemma 4. Lot Xo. be 2 compact intervel of the real

line, ¢ 1its centre. Let T be o commutative scmi-group

of continuous mappings of XO into XO ; supposc that F

rsacs a unity element. Supposc that, for some

e s -

x, & X, , F(x,) is connected, F(x ) =X, . Then either

0
(1) F(e) = (c), or (2) the crndpoints of the interval
F(c) arc fixed points for F , or (3) there exists
x; € F(x_) suchithat F(x;) is connccted,
r .- ‘ ) 4' ,_..']; ' |
AF()) 2 = dX,) .

Proof. For any x € F(x,) , the sct F(x) is con-
nccted since, for some fe F, F(x) =IFEE(XO)] =
= f{?(xoﬂ . Consider the semi—group F,=F|TF(x)) .
By Lemma 2, cither FolF(x) is a group or there cxists
%; € F(x ) such that c¢ non e.F(Xl) . In the first casc,
apply Lemma 3 (the case F(a) = (g) is trivial). In the
second case,

- , 1, . oy

d(F(Xl)) £ -é—-'d(F(XO))—* 5~ &(X) since c noneF(x).
Now we can prove the main theoremn.
We put X = F(c) md consider the semi-group
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F\XO.

By Lemma 4, cither the endpoints of TF(e) (or ¢
itself) arc fixed for F , or therc exists x, € Fle)

't : < L = satis-
such that d(F(x)) ) £ 5 a(x ), and X, = F(x)) satis
fies the conditions required for Xo in the Lcmma 4.
Proceeding by induction, either we obtain, at some step,
a fixed point for F , or a sequence of intervals {Xn}

is obtained with X, 2 X

1 s o
d(Xn+l) s 5 a(x ), F(X ) € X, ; in this lest case,
clearly, 0 X, 1s onc point-set (z) , and 2z is fixed

for F .
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