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ON ITERATION METHODS AND THE FORMULATION OF THE
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Zden&k HEDRLIN, Praha

Lemma« TFf a mepping £  from a set X dnto . X' has
only one fixed point x,€X , then x_ 1is fixed for eve=-
ry mapping .g from X into ’X commuting with £ under
composition. .

Reeally,

£ [g(xo ﬂ = g tf(xa )= glx, ) ,
and g(x, ) is o fixed point of £ . As. I ‘hasvonly ohe

fdzed point; - glx, 1. = =, .,

This simple fact enables us to formulate some well
known theorems concerning the existence of only one fixed
point, with a stronger assertion. We shall show the appli-
cation of this idea to iteration methods.

Let f be a continuous mapping from a topological
space X into X . We shall denote, as usual, the compo- |
gition of mappings f and g es £ e g ond put

n;l = f o f . We shall say that X, Y X , is an itera-

tion seti of  f . with the fixed point 3 o 3f ¥ €N
implies
Idm Flx) =%,
m-> e . <
Theorem 1. Let X be a topologicel space, f and g
two commuting continuons meppings of X -into X . Let ¥
be an iteration set of £ with the fixed point x4 ; let

glx e 'y, Then x_ 'is & fixed point of ' g,
' n n
Proof, Since gofi(x) = Ffoglx), glx,)e Y, we

obt ain
: =20 =



n n

n .

Xg = lim £ 0'g(x) = 1im go f(x) = g [ilm £l i] =

‘ : 0
o N n->eo n »ov

Sopiiglae )0
Theorem.2, Let (X,®) be a complete metric space.
Let £ be a Lipschitz mapping from X into X y with a
constant oL € 1 (that‘lu, @ (£xy), £(x,) )5%065O(xi,x2§
for any %y &%, % € X ). Then every mapping g from X

Rt |
into X (continuity is not assumed) commuting with £

possesses a fixed point.

Proof. The assertion follows from the above Lemma sin-
ce T has exactly one fixed point.

The above lemms and the theorem 2 can be used for
another formulation of the Isbell’s problem, which asks:
Is it true that every two continuous mapplngs fron the
closed unit interval into itself which are commutative un-
der compOSLt;on have & common fixed point?

Lvery fheorem which deals with a fixed point can be ;
formulated by means of the notion of commutativity owing
to the following simple fact: X o/ A8 a fixed point :of i&
mapping f if and only if the constant mapping h,

h(x) = x, for each x & X , is commutative with £,

Therefore the Isbell’s problem is equivalent to the
following question: Is it true that to every two commu-
ting continuous mappings from the closgsed unit interval
into itself.a constant mapping exists which commutes
with both of them?" J |

According to our remarks the constant mapping in the
last formulation can be replaced by every mapping with
exactly one fixed point, especially by a Llpoch1t7 map-
ping with constant &£ , <1 .
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