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A REMARK ON LINEAR OPERATORS LEAVING A CONE
INVARIANT IN A BANACH SPACE

Ivo MAREK, Praha
i
In [1] theorems are given about the existence of ei-
genvalues and eigenvectors of compact linear operators
reproducing a cone in a Banach space. In this remark we
will call to attention a class of non compact operators
for which some of the mentioned theorems are also correct.
cLet X beareal Banach space, )(' the adjo'int spa-
ce Of linear forms and X,= (X = X ) the space of
linear continuous i:,ransformations of space X into it~
self. The "space X will be the complex extension of
space X , i.e.  the space of pairs ¥ = (x ,Yl= X+1 ’Ll
with the norm defined as
> = FAdf I cos 2 + Y Aon ’)9’//>, .
A 0’ P om " ) i
We extend the linear operator N X1 _ 'from X to X
by the prescription:
To 2 Txvi Ty, xeX, yeX.
The symbol & (7T ) _means the spectrum of the operator
|7 extended to X  and the symbol ¢ (T) the resol-
vent set of this operator. J
Let Jf be a cone in space X «..The operator
Te X1 is called }( —p031t1ve ie T, e Rl e
Lor ix. & J{z -also =Y E JC e The ‘cone’ KL i
- called "volume type" if' it has interior points. The ope-
iratorn Te X,, is called strongly rx-—positive, 1P for
SeVeRy veotor. X € '}’(- X ¥ 0 a natural 1. = 71/(’(‘) exists,
such that T % lies in the interior of the cone o
With the help of the cong 6.0 the space X can
be partlally ordered We define
St : =T -



Mt X o y-x e K,
Y B rX <=2 = XE wmt ][7
where mt X is the interior of the cone X -

A cone X is called "productive” if for every vec-,
tor x& X a sequence [X }, X € i, 4 and a nume-
rical sequence {CW)S ex1st such that X = mbr;D Cn X *
Further we assume that K is a productive cone.

r K is a cone in X we define the adjoint cone
BE KT e, thet ke N iy € X' mair
for X € X we have x'(x) = 0 . .. 'The form x € X!
is called strongly positive, if for X e ¥ o,ox# 0
we have x' (x) > (. l ;

The definitions given above have been adopted from
1l

If & ; then the number R A is
Tre X, T x?&ﬂ

called the spectral radius of the operator M o
well known [4] that RT = Um YHT™ .
YU -y o2

The point A ¢ 6 (T) is called a Fredholm point
of the spectrum of the operator 1" if it has following
prope rties: i
(a) Point A . is an isolated point of the spectrum 6 (T).
(b) The set MWL (A) of vectors x ¢ X for which & na-
tural g\ such that / (TL %I)x = ¢ exists, forms,
a8 finite dlmensmnql lineal.

(¢) The space X is a direct sum X = N @ 71 (A’
where 71 (A) is invarisant with respect to | and the
omratol [ T=X.1) ‘his 5 continidus inverse operator
(Tw\.l)" = R or AL €AY,
(d) The equatlon (T-A1 )X"lg has a solution in X if
ad only if X (43 )= 0 nolas for every functional
X & X! ‘sush that x'(Tx)=Ax'(x) Par o1l X X,

~ Operator T € X4, is called Nicolski operator if it
can be expressed in the form

T.= C + D,
e 1Y W ;



. where E’Q,X@w C 1is a compact operator and the ineQJa- 
lity

() RT > RD
is valid.

Lenmn s {3] Let T be a Nicolski operator., If
~NEB 6T ad Al > R , then A is a Fredholm

point of the spectrum of the operator T,

Pur o.0.P . Let R{X:;T)= (A1~ AY? be the re-
solvent of the operator A € X4 ' For 2o (T)’M‘>RD
we have clearly the equality :

RO,T~ R(A,D)=R (A,,T)CR (XA, D)

i.e.

Rife TY=aR (X, DVl ~CRU, = Loy

It can be seen from this expression that the resolvent
RA,TY for 1AID Rj\ is a product of bounded linear
operator R (X,D) ‘ma & the resolvént of ‘the compact
operator C R (4 D) » The assertion of the lemma
follows from the properties of the resolvent of s compact
operator, : 3

Theorem 1. Let operator T bea X -posi-
tive Nicolski operator. A positive eigenvalue (U
which

il iley y
PANE s o e @i

then lies in the spectrum of operator T . To this ei-
genvalue aorresponds at lesst one elgenvector X € X

Ix il =4 of the operata*?ﬁ 7ix =, X and
at least one eigenfunctional ); e l}xo'ﬂ = 1
of the adjoint operator 7"':fT”x' = ﬂ&o.x'

‘e
T:heorem:- 2, Assumptions:

1, ¥ -positive operator T can be expressed in the
form e

where. D & X 0 ana” C % 0 4s compeet operator ( @

denote zero-operator). e

. 2+ There exists such = natural number Tm' and vector
POREIEES i o e l 2 gy ;



U € 24 that 7 ‘
“uﬂx:ﬂ d:&ﬁ“x+uﬁx=4

xEX,
and such a positive constant G - .ithat
N_; 'T‘Tb—v.{, s Cit,
where 7‘;/& P RD'

Assertion: A positive eigenvalue (Lo exists in the

spectrum of operator 2 and the inequalities
Ahg 2 1:76:;9 Ay 2 ‘/\l, e BT
hold., :

Thus the operator T .is K -positive Nicolski ope-
rator so that the assertions of theorem 1 are valid.

T-heoremn. 3 Assumptions:

1. % ds s volume type cone.
2. T is a strongly ¥ -positive Nicolski operator.

Assertions: : ' '

(a) Operator T has one and only one eigenvector Xg.
in W  and for this eigenvector we have

Axge oo Hxo ek, vt 0
(b) The adjoint operator 1' Thas one and only one ei-
genfunctional X, in K ' ead this will be a strongly
positive functional: T 'x!' = , X, o d v
xLGeY a0k e K, x 0
(¢) The eigenvalue g corresponding to the eigenvec-
tors. X, Xo‘ 'is a positive simple dominant eigenva-
lue of the operators 1V, T '

ab St b e te 60T )

Theorems 1 - 3 can be proved analogically es the
corresponding theorems for compact operators in (:l] 5 Sin-
ce the assertions of these theorems follow from the pro-
perties of points of the spectrum of the operator T
lying outside the circle (Al £ R‘YD . These pro-
perties, according to the lemma, are the same for compact
operators and for Nicolski operators. ‘

The assumption (%) in theorems 1 and 3 cannot be
omitted. This can be demonstrated on the following

; = 1]



exwmblo. ‘

Let X = C (€0,1>) ve a spece of continuous functions
on <0, > with the usual norm Il x ], = {‘49‘/} " xR xeX.
Let J*C c C(¢ 0,172) ©be a cone of norfnegat?.\;g’ functions
in C{(<0,1>). It is known that K is a volume type
cone [2] Further let (= C (s .,75) be continuous on
(O;/I> X ((,‘, 1>

A
Cx:fy: /g(?))sfl C(S,t}X(‘t)CUt,
e, t)>0 For =,t €<0,1>,D=1,T=C+D.

Evidently we have 1= Ry=Ra 1. Ir such a function
x, e £, x, (t7> (O existed that

C(e, Bdx, (L) dt + o () = A X, (87,
then the operutor 'C would have an ecigenvalue and we
know that this. is not so.

Using theorems 1 = 3 it is eosy to prove the follo-
wing theorems about the dependence .of eigenvalues of Ni- .
colski operators on a parameter.

Let G =</, /3,” be an interval of recal num- :
bers. The opérator-function T = 1 (/3 (for shart :
just "operator") is called continuous in the point
‘fé, € O if for every € > O e d > exists, such
that for |73 “‘/3 | < o we have

N T(RY - T, Hl < &

If TrT(!?D) is continuous in every point A e @ we

say that it ie continuous with respect to A in &G .
Theorcn 4. Assumptions:

1. For every /3 € G is T(3)=CH3) +D(B)  a micolski

ope rator, | '

2., The operatér = TW) is continuous with respect to

/A in &

3. The value s, = U (/ ), 1) > RD(“ y is en eigen-

value of multiplicity 4 of the overator T (/5,).
Assertion: For every £ > 0 there exists a d> 0

smch thatflf |73 - ﬂ) l< d° 'then {-L (n 2 1) values

- 14 -




(A4 (/3), s % (af" (:G) exisf, which -are eigenvalues of the
multiplicites g4 (), .-, 9n (B) of the operata
T () =md we have

. e
g (B~ (Bl g g, G=A,prs Pz 2 g, (B

Corelary IPfar(/) is a simple eigen-
value of the operator T (/3_) then under the conditions
of theorem 4 the eigenvalue (u, =, (/f3) is a con~-
tinuous function of the variable /3 € G. ‘

Remar k. According to the theorem 3 a simple po-
sitive edigenvalue (4, corresponds to a strbngly
¥ -positive Nicolski operator 1 . Thus if the operator
T (A) is strongly ¥ -positive for every /[3 e (o
end continuous with respect to A dn i & ARen
Ay = Uy (B) is & positive continjous function in G.

We shall show that under certain assumptions M,
is g so a purely monotonous functiog.

T heorem 5. Assumptions:
le K. is a volume type cone.
2, For every vector w ¢ & 0 we have

mnf Ix+uw ”X 2 hu ”)( .

B Ay &8 a strongly ¥ -positive Nicolski operator
for every /3 € @. :
4, The operator-function 1 = T(/A)  is continuous
with I‘esbect to /3 im0
5. For the spectral radii 4
have

pesy BA Ry tve

NP | for R e G
B hyw M0 Rpey 2008

with R independent on /2 : :
!
6. For every vector X ¢ ¥ and for [3'< f3 we have

[T(R) =T (A x v & (5,8 X,
where ot (3', .ﬁ)"') 50

Assertion: The inequality

ra, (3>, (87, 5 < 3"
- 15 =



holds for the dominant eigenvalues (¢, (AS'), U, (/3") of
the operators 1V (737, T(A").

The given theorems 1 -~ 5 are opplied in fi] and [6]
to prove the existence of so called critical parameters
of certain systems in which certain tyoes of nuclear re-

actions take place. These papers wil) be published in
"Aplikace matematiky".

!
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