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A METHOD FQR TIMPROVING THE CONVERGENCE OF
ITERATION SEQUENCES

Ivo MAREK, Praha

If a sequence of approximations, for a dominant ei-
genvalue of a suitable operator is known, then it is pos-
sible to inprove the convergence of the iterction process
for the solution of a linear equation in a Banach space

(1) .A,)( = f\fq.

The considered "speeding up" method is a generali-
zation of the method suggested by L.A. Lusternik [1] for
- speeding up the cdnvergence of the iteration process, by
means of which systems of linear algebraic equations can
bg solved.

Let X be a complex Banach space, X' the adjoint
space of lineasr forms, X,= (X -» X)) the space of
linear continunus trensformations of the space ,X into
itself. Tt is well known that if A € X, , then
/Vq “ 4X1 , if and only if such a Pz )<4 exists,
that P"“E;qu ~and ( 1 is the identity operator)

(2) S JI-PAl= g <A,
It is also known, that the iterations

() : Komwsa = T P F’f‘7

where /

(@ T= I~ PA,

converge to the solution X of the eqation (1) and that

the estimation ‘ CO(R™)
- HXW+,—quv O RT'
holds for the error. Here R

is the spectral radius of
the operator T . |

T
-6 -




Let operator | have dominant gigenvalue (w, ,i.e.
let ) ) ‘
(5) A <l o0 d e 5(’7’), A F A,

where @ (T) is the spectrum of operator | .
Let the inequality

[ "
(6 ) s (14'f‘f!.- - (U",_) ) =

|
[(‘(’c 3

hold for the terms of the sequence {(ﬂmv} y where (/.. 1is
the radius of the smallest circle, in which the whole
spectrum  &'(7T ) except the point (£, 1lies. We con-
struct the iteration process

( 7 ) X YR Y] = ”’;; - -;Z}::;« ( >(‘/n« +4 - ‘(ﬁt(’n'v X AL
where X._, X, . 4 are ‘terms of the process (3).

A - .
Iheorem 1. The sequence { xmI defined in (7) con-
verges in the norm of space X  to the solution X of
equation (1) and the following estimation of the error
Holds

A 4 . m.

8 M., -xIE ¢, - 1;4*3;" Lt ﬁ——-ﬁjw "= 0w )'
Remark. The position of the point .. with respect

to a unity ecircle with its centre in the origin influen-

ces the'speed of the convergesnce of the sequence (7).

If (4, would lie near to the value 4  the speed of

the convergence could be spoiled by the large factors

-4 -
| A=, 17, 11— f“wu‘ . So as to get rid of such incon-
venient 1nf1uences on the convergence we can use the se-
quence . ' _
' ' L e A 7 I o
(9) Ko = Fred P {Kaap ™ My X))

instead of the sequence (7), where the X, , ., X, , si-

milarly as in (7) are terms of the sequence (3). It is
clear, that for ™ large enough the mentioned difficulty

disappears.
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Theorem 2. Under the assumptions of theorem 1 the
sequence (9) converges in the norm of the space X to
the solution X of the equation (1) and we have the
following estimation ‘

~ /’ 4 ey

] N s Ca TT;:;;,\W” f’a:»bfb T 7 RO
where 1V is a fixed natural number.

One can also use o iteration process to construct
the sequence { (‘Mm}. Let x.",n’, "":J,,.,,. . Z,:v, x'.l 'y' be
elements of space X' and let the equations

Xt/-x> = Lirvy 'X:w (x) 2

M = o

(10) (\é‘ (x‘)= _[7,:?.1)-1, lg:‘m (X) = 'JZ"”'" %:n. (X\

L =3 o N SO0

hold for every x € X-
Let ; iy
e o k i ik
R{a,T)= = ERCANED (= By
be a Laurent series for the resolvent R(.‘X,T’): (.}*\,:‘{-—T)‘4

of the operator | in the neighborhood of the point (..

It is well known that

5 4“. : \, ? el E
B, = 2174 J{(;o REATId, By = (T- 13 B,

one point %, of the spectrum  G¢T) 1lies.

We asssume that x ' e X fulfills the condition
B, x® & o
and that such an index 4 2 7 exists that
(22} B x/* ¢ g, B x ¢ =0 .
. . Further let
(12) i (s X000 ey (Bx )+ 0.
Let : ()
(14) o @ Z"M (x::ﬂ) :
My Ox )

" Bl

ke 4,9 .

where Co is the boundary of the circle in which only the

7



Theorem 3. If the operator T  has the dominant
eigenvelue (%, and X, is the corresponding eigenvec-
tor, then the sequence (13) converges in the norm of spa-
ce X to the vector X, eand the numerical sequence
(14) converges to ¢, -

If @4y is o simple pole of the resolvent R G g s
the estimation (6) is correct.

If the eigenvalue (1t, is positive then the sequen-
ce of linegr forms in process (13), (14) can be replaced
by sequences of semimorms.
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