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ON ITERATIONS OF BOUNDED LINEAR OPERATORS AND KELLOG’S
ITERATIONS IN NOT SELF - ADJOINT EIGENVALUE PROBLEMS
' Ivo MAREK, Praha

1. Kellog's method is one of the method of determining
the eigenvectors of linear operators in Hilbert space. Since,
Kellog’s method is very simple, it is useful for practical
calculations. When solving homogenous probleﬁs, in contrary
to the solving of the absolute majority of unhomogenous fun=-
ctionsl equations, one usually cannot go over to the respec-
tive self ~ adjoint equations, which is equivalent to the o-
riginal equation. Thep problem of finding an eigenvector of
a.genefally not self - adjoint operator cannot be reduced to
the problem of finding the eigenvector of a self - adjoint
operator. Thus any extension.of the class of operators, for
which Kellog®s iteration is applicable, is important. One
can divide the conditions, which satisfy operators, for
which Kellog's'iterations converge, into twe categories. The
conditions whieh refer to the operator itself, belong to the
first category; those which refer to the space in which the
operator is investigated, belong to the second dne. One can
expect that operators in special spaces will satisfy more
genersl conditions and vice versa. In finite - dimensional
spaces, for instgnce, Kellog's iteration series converges to -
the generalized eigenvector, corresponding to the dominant
eigervalue, for arbitrary linear bounded operators

([1]‘ [51) The convergenced of Kellog s iteration series
’hasfbeen investigeted mainly in.Hilbert spaces([ﬂ],[45]|]6D
The' class of operators, for which Kellog’s method.is correct,
was extended fppm compact lineer symmetric operators, to
compact symmetrizable operators and from there either to.
cgmpact operators (114] ) , or to bounded symmetrlzable

operators  ([15],[16], [12], [13]) .

- The . convergence of Kellog 8 iteration series ensures
bnly the. existence of & dominant eigenvelue of a linear
boundﬁd operator. Thus the class of operators, for wh1ch
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Kellog's‘method is applicable, is extended in both mentioned
directions: Kellog’'s iterations converge for bounded opera =
tors in any Banach space.

One can even use Kellog’s method for some unbounded o =
perators, by passing overf to inverse operators. Something
similar is valid for the construction of the solution of the

equation Lx =.7\Bx ) (,))

where L is generally an unbounded operator. It is not ne-
cessary to construet the inverse operator L' | since it
is sufficient to know the solutioms of the equation L.w=f
for special right sides £ € X , This is the case of modi-
fied Kellog'a iterations, Of course, convergent iteration
series for finite type spectral operators exist, the conver-
gence of which follows from the convergence of the respecfive
Kellog‘s iteration series. The methods, which I,A.Birger
states without proof of convergence in [11 , and the con =
- vergence of which ie proved by J.Kolomy in [6] s belong
to these. The Birger and Kolomy methods can be adapted for

solving equations of the typ (7) , whereby one obtains mo=
dified Birger / Kolomy iterations.

2, Let ¥ ©be a Banach space. We use the symbol X,
for the Banach space of linear bounded operators, mapping
space X  dinto itself. We will use emall latin letters
fa» elements of the space end will use the symbol ¢ for
itp null - vechtors. We distinguish norms in the spaces
%, X, by and index of the space in the symbol of the
norm: Xée¥, ixux s Te Xq "'Tf&,, . If no misun~
demtand:lng can occur, we will drop the indexes. We design
the spectrum of the operator 1 by the symbol 6 (T) , the
resolvent set of the operator T by 9( T) B

- 'Purther, let 'T" be a definite linear bounded opera -
tor. The symbol ({ }) denotes the projector correspon =

ding to the value au, e6 (T) of the operator | , which
\ia defined as follows: ‘

ET({Mp )‘zm/ﬁ R(A T)d?x
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where 5; ) is a cifcle for which ?o n§ (T):{(a,o},[s: cP(T).

Let R(A,T)= (Ay'T)‘d be the resolvent of the o=

perator T end M, the dominant value of spectrum, i.e.
the value for which

1Al< | @)

for eny point A €0 (T), Af o .

The convergence of Kel_log's iteration series is a di -

rect result of the validity of the following fundamental
lemma. .

LEMMA. Let T  be a linear bounded operator and let
dlo be the dominant eigenvalue of operator T y which is
a simple pole of the resolvent RC&,T) « Then the fol =~
lowing inequality is correct: ‘

o, ™T™ - E‘l({m«,})lljf1 £K,9tm)  (3)

where K1 is independent on Mm

gemd = ()"

end 4 is the radius of a circle, which contains the whole

?

spectrum o (T) except the value (U, , S0 that
(taking into account 2) )
| Lm g(m) =0, ( 4—)
m >0

- Taking into account the equation (‘r) y We can write
the inequality (3) in another form: '

m w,™T™ = E({Mo})

m-> -

3. Kellog s iterations can be constructed according to

the rule: ) me o, _ x™ , (5)
X =T "x* 7'x(m)~. Nx ™ |
“X (mv+1) " ‘ .
Aemy = . (6
™ lix ™ AR )

An erbitrery vector X“e¢¥  cen bve teken as the initial
element, for whlch :
E_r({ru.,})x o (¥
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The convergence of the series (5), (6) is treated in
the following statements:

THEOREM 1. Let T be a bounded linear operator,

ET ({ﬂ-o}) " the projector corresponding to the dominant
-eigenvalue ,u, of the operator T , which is a simple
pote of the resolvent RA,T) . Let x¢ % be such
. a vector that (#) nolds and let

X = Eq{ae.}) x ©? (%)
° It E.'({Ju,})x“’ Il

If these conditions are fulfilled, then (5) anda (6)
converge and the following relations are valid:

| aco = m{u_r;:éo U ) »

- To estimate the remainder wegobtain the following ine -

qualities:
T N Xy ~Xo 1% Ky gm) [x @],

ltmy bl £ NTly Mxema = %o Uy

One can apply this fundamental theorem to various spe =~
cial types of operators and thus obtain the well-known asser-
tions about the convergence of Kellog’s iterations. For in =
stance in the case of a symmetric bounded operator in Hilbert
space we obtain the convergence of Kellog's iteration series
~directly from theorenm 1.

4, The modified Kellog s method, as was stated in the
introduction, is used for calculating the eigenvalues and
eigensolutions of equations of the type (4) . Terms of the
iteration series are constructed according to the following .

ule: ) £)  (Rta) fe) |
rute Iy(k) = BK( R L‘X(+4 = y( ? (9)
, x"" N Plad | '40

- 15 =



Another scheme of the modified Kel 1og s method is:

Lu‘“_ y k-1 , Y k) - Bu ®) ) ) (11)
«® oy
u’(k) = ” ,yT) ” d '1&, = ”,y [t3) ” ‘ (12,)

In the first case, the iterations correspond to the o=

perator P ' : in the second one to the operator
e =BL" :

We will assume that the operators L. and B in equa-
tion (1) have the following properties:

The property (B) . Operator B is a bounded linear
operator, mapping the space X  into itself.

The property (L) . The generally unbounded linear o=
perator L maps its range D(L) into X ', Besides
that there exists a bounded inverse operator LM iy

We will call attention to the fact, that the properties
(B) and (L) are used in the proofs of some of the assér -

tions, by writing corresponding brackets in the headings of
such assertions.

THEOREM 2. (B), (L) . Let P=L""B  be a bounded li-
near operator in space X EP ({(‘u'o}) the projeduo’r cor =
responding to the dominant eigenvalue @, of the operator

P , which is a simple pole of the resclvent R(& P)
Let x®e X  ve such a vector, that

E_P ({ruo})x(° *0 .
The equations

i fAE - y { i P M A
K, = f;‘ﬁ"m Kewy o = o ook
then hbld for the series (9), (10) , where X, is thé‘- ei-
genvector of the equation (1) y to which the jedgen value
‘A, r‘-r“o corresponds. :

* Owing to the property (B) , Y= BEX  is'a closed
set and hence a subspace of the space X " IRt
THEOREM 3. (B), (L) . Let & =BL™" be a vounded 1ine-
: operator in spxe Y = B.'f EQ ({ﬂo}) the isro.jec\tor
_correapondlng to the dominant eigenvelue AL, .  of the: \opera-
Iftor - Q s which is a simple pole of the resoilveﬁt R(A. @.)

11
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Tet 'y“’)e Y e such a vector that
" E& ({Mo}))((o)# 0
In thls case the equations L A
) A= A
Xo= ﬁ”_’;"m Wesy ,!(%o |= £3% "
hold for the series (1), (12) , where X, is the eigen=-
vector of equation (1) , to which the eigenvalue
Ao = to~?  corresponds.

5. One often uses the theorems l., 2., 3. for the case
of positive operators ( 4, -bounded operators).

Let X be.a cone in the space £ (for instance [8]
“or [10] ). The following lemma cnsures the fulfilment of the
respective conditions for theorems 1. = 3. \

DEFINITION, Operator | , mapping ¥ into itself, is
called a positive operator, if there exists & cone K such,
that THE XA ' . Positive operator | dig celled an -

U, ~bounded operator, if' there exists an element 4, €
~ such, that for arbitrary vector x e X , x+0 positive con=
stants <,/ and a natural . can be found, for which
A, £ TMx £ Bua
and ¥ is partielly ordered by cone X so, that x £ y
just if yYy-x e .

The 44, -bounded operator T 1is called strongly o=
bounded, 1f it has en eigenvector X, € X, correspon =
ding to the eigenvalue , , which is the principal ei -
genvalue, i.e. for any other pos.nt A of the spectrum ’
€ (T) the relation

lae | < |, |
is valid. .

LEMMA. Let K be & normal cone in % ([8] [10] . Let
T ©be a strongly 4, ~bounded linear operator, E ({/u.,} )
the projector corresponding to the dominant eigenvalue «, .
Let X €X be an arbitrary (but not ‘oulld) vector.

Then E({ruo})X*O’.

Thus all th.e bondltions of the theorenm 1, are . fulfill-
ed for strongly *bounded operators.
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THEOREM 4. Assumptions: 1) N  is normal cone in
SR ¥, wo e X
] § is strongly 4,~boun=-
ded linear operator
3 xC%XK, x%o

Statement: The forniulae

/&}rrl/ x(m) = Xg &;Yn-’ {tL(m) = s

m=> oo T m—o>>
hold for the series (5) and (€) , where X, is the eigen -
vector of the operator T  , to which the positive eigen=-

value m, corresponds. The vector Xo ~is the only eigenvec-
tor of thefoperator T , belonging to X ; except for
positive mujtiples. :

The following thecrem is an analogy of the theorem 4.:

THEOREM 5. (B), (L.) Assumptions: a) The assumptions 1)
end 3) of the theorem 4. sre fulfilled.
| b) One of the following
conditions is fulfilled: : o
(I) The operator P = L'B is = strongly 4, -bounded
linear operator in - AN
- (II) The operator @ =BL? is s strongly ¥ -bounded
linear operator in [ , i.e. e X' = BX and the
normélity of the cone X implies the normality of the cone
X' .
Statement: There exists one and only one solution x,
of the equation (1) in X . This solution corresponds to
the positive eigenvalue Ao of the equation (1) and we

have: ‘ y . A
CAem i Ay s Ao = i, A
Xo = QM 1 X, = fU Xk

6. To construct eigenvectdrs in Hilbert spaces one uses
Birger-Kolomy series instead of Kellog’'s iteration series,
because they converge more rapidly. One constructs thém ace
cording to the following rules:’ ’ )

(BZ) Zp ., = A&MT’E&/ y
, (Tap, £4)
A, 1 ( )
- (Tag , Teg
= 18 = LY




(KZ) g,y = LTy, ,

(“.h 4
— (Ty& y&,)
i = £ °
T (Y, Ya)

Here 3({3 is a given Hilbert space, Yg , %, its elements,
(X,'y7 i> the scalar product of the vectors x €, y €,

Let X be such a cone in , that (x, y) if
xeX ,ye X ., Then ¥ is a normal cone in 913 . In th.e fol-
lowing text we will presume, that Y is such a cone.

When constructing the eigensolution of equations of ty-
pe (4) for operators, fulfilling the conditions (B),(L)
we obtain modlfled Birger-Kolomy iterations in this form:

‘k ~
<B1) ﬁz,) 7 LW&@+1 = w¢ )’ Wepr4) H'A‘k-rf! W t1 9

("4”4 » Wy ) A

(vt e «“ |

| , ‘

(BZ) L-Z y: Xp (.kM) = Bz(&,) 1 Rt ™ Apss Xk 9

¢y, (""’*") 4 ) _ ()
A’AM = (mm . ae.m) Zo = B x ?
)

'a'r}’a.ﬂ =

. - 1
(K1) 'U‘(k) = B’U?&) 7 ij;;.,, ) = Yz

’U’
f("zlg-'_,_‘,:" (%1-4 2 W&)) ? ’U(':o) = (a) ’
(Y%ay + Yir) )
4 (f+1)
: ?

(K2) L'g(&) Y fy(&”)-— BYny 1 Yora™ Y
(y(&wﬁ (y&) , /yo - B)((O)
(vk y Y& ) )

_(u'& +4.

The follow1ng theorems are valid for the Birger-Kolomy
seriese. :

THEOREM 6. Let T be a bounded linear operator in Hil-
bert space JH  and ET ({ fuo}) the projector correspond-
ing to the dominant eigenvalue (o, - of the operator T s
which is a simple pole of the resolvent R(A T) . Let x ().
be such an element in d€ y for which E?!{(U-o})x (°)=# o,

Then the sepies (BZ) and -« Kz)converge and

.&V&Zka);(o; k%'/ -ak r‘b., yk—xa,mﬂl& fa-o ,..l'

where X. 1is the-eigenvector'of the operator | y correspmibyg
‘ =19 - | |




corresponding to the value (i, and X = g Xo where

740 -
A similar theorem holds for modified iterations. We
bring only a special case of this theorem, which is often

met in applications.

THEOREM 7. (B),
ons be fulfilled: ( I) The operator P =L~ B

ly -bounded operator in the space 26 ’
. (I) The operator @, = gL is a strong-

V; =bounded operator.with respect to K '= BX

exists,.that the equation (1)
in X ,(Ix, I=1).

(L) Let one of the following conditi «
is a.strong-

ly
Then such a A, >
- has one and only one solution X,

In case (I) tim, ) = s y
b )~ £ 300
s e -).“' " k>oo

if we choose an arbitrary vector x®©e¢X ; X F0  as the

initial eleme-i:t of the iterations.

In the-case-(II) ' \
=Xo , Aoy Ay =
e e i T R

ﬁm% X, lum,ft%.z

if we choose an arbitrary vector ,y(o) eX), /y(°)=#0' as the

initial element of the iterations.
Further, there exists such not null constants 7’ 9) 7 9’ ’

. —Z’XO,X =jx°’xo..j)(°,x xoo
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