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Commentstiones Mathematicae Universitatis Carolinae
1, 2 (1960)

OoN POINTWIS'E CONVERGENCE OF SEQUENCES OF CONTINUOUS FUNCTIONS
V&ra SEDIVA, Prsha

Ir P s a topological space, we denote by C(P) the
set of a1l continmous real-valued functions on P . For ff )

%" e ((P) (w = 4,2,...) we define %y —> f if
and only if é(X) 7:) /(X) for every /\/67)

( if 72 R /m e C(P) snd ﬂ-,—,—va f does not hold,

74‘- :t') 7£ is written }, This convergence defines a topo-=
logy #t on ((P)  in the well-known manner ( for 4 <C(P)
A consists of a1l £ € ((P)  such that A4, —> £
for some . € A )o Let us point out that, following
E, fech [1] , a topology .« on a set O is defined as a
mapping - which to every M C @ assigns a set M C Q
end satisfies the following exioms : 4« =& , . (X)=(X),
M(H4 UMZ) > MM,, UMMZ »

The condition e (M) = M , called axiom F by E.
Gech, is net required in general § if it is satiasfied, then -t
is celled an F <topelogy end (@, w ) an F -space, For
any topology -+ on (1 two further topologies are defined 2
v ¢ the F -reduction of ¢ ,which possesses an open: bage
consisting of all @ -~ 44 | A <CQ 3 * | the £ -mo-
dificatfen of £v , which is the finest of all F -topolégies
coarser than ¢ , Clearly AC = ¢ or 4 = «* if snd
only if 4¢ 1ig an F <-tepelogy.

It is known that for some not at all exceptional spaces P ’
the space (C(P) , ) does not satisfy the axiom F ; the-
refore it will be interesting to consider the spaces (((P},6 A< ')
end (C(P), 4«*) _ In this note it is shown that for the
most impertant spaces P , (C(P), 4T ) 1s a discrete space
( part II ). In part I, the regularity of the space /C((P), 40"‘}
is studied. '
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The usual notation and terminology is used ( with the abceve
differences -). The same symbol will be used for a sequence or
double sequence and for the set of its members. The power cf a
set A will be denoted card A .

I would like to take this opportunity to thank Prof. I. Ka=

t&tov for his useful hints, namely concerning theorem 2 in pert
II.

I.
We denote by N the set of all positive integers. If X
is a set, X' denotes the collection of all sequences

N
Definition : let & ={am}eN" |, B={p, 1eN" .
We write €~ /3 if there exists an M, such that o, >/3,,
for all M = m, . If d*"ﬂ does not hold, we write

adp.
Proposition 1 : There exists a set A c NN such that :

(1) I «£ , ﬁéﬂ , 06*/5, then either & /4 or
Y Kl

y
(2) If ré N , then there exists an « € A such that

r#—w.

(3) 1 o(.“'é A (t' =- 1,2:,..:) , then there exists an & € 4/4
such that &+ «* (L=212...),

Proof : The existence of a set /£ with properties (1),(2)
follows from Zorn’s lemma; (3) follows from (1) and (2) by
means of the diagonal method.

Theorem 1 : If P is a normal space which contains a
discrete 1’ family of power = 2% consisting of open
sets, then there exists a closed set F ¢ (((P), «) ena
a double sequence A = [{MV,M'} ¢ C(P)  such that :

1) 0¢ F ( 0 aenotes the function identically zero
on P ) ;

1) That is, locally finite and such that the closures of any
two distinct sets of the {amily are disjoint.
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2) %,_1,,‘_-;:’0 for s11 m e N

3) It U  1is a neighborhood of 0 in (C(P), )
tren FN w(AnU) 4 &,

Proof :Let {6, | $€ G} vea dalacrete ranily of
open subsets of P , g € 6g ycard g 2 2%
Let A ¢ NV possess properties (1), (2), (3) frem propo-
sition 1. Let ¢ be a one-to-one mapping of A into & .
1t f €A ,wedenote Ay - {xek|axz}js]},
zpey(ﬂﬁ), /-;,-{/6 cr) | f'ZA%'f},

F - p e‘.JA F;; . Property (3) of “Z implies that £

is a closed set. For 969 let /’6 C(P) be such
that f%g)=4, £*|P-6 = O  .Wepu, for

m, m €N Amym {x-(%}eu | o(,,ugm},
S NN N SR RN

’

™ 2€6,

~

It is easy to prove that %Au,m =2 0 for all m < N.

1f U ig a netghborhood of 0 , then there exists a

2 = {Xm } € N" such that fm, € Y for
Mm = dEme o By property (2) of A there exists a
AeA B = { Bm} ,suchthat % &+ /5.
et { o} € N be an increasing sequence such that
Pim = Xgu bput A, = {fﬂ/ﬂﬁ.. /

£ -z f o It may be proved that = "/ > £,

Corrollary : If P is a normal space and there exists a
discrete family of power = Z Xo consisting of open
subsets of P , then the space (C(P), a') is not

regular

Remark : If P contains a dense countable subset, then
torevery A = { #mya} € C(P) such that @70

for 11 m € N , there exists a { Xm} € N¥  guen
that the set 8 = {AAGAl mn = af,,-_} has, in



.
® {5 e

(C (P), u,) precisely one cluster point, the point 0
Prarl i Let P cont=in a countable dense subset, Under
vhat conditiona is (C (P)I W » regular? (Clesrly it is
sweh 1f P it=e1f i3 countabla),
II,

I this port vwe shull evazine th: [ -reduction of the
touslogy AL o C(P) We notice that a spnace (C(P) M/)
is Flsereete 17 on? only iF Tor overy: fe C(P) there
exists a HC C(P) anern tha
1Y for eva g € C(P) ’ 9+ ’# , there exirts a
e T Gy TR G

N ___.[__> /
. } if‘ {’in }e H ’ Lh oy {n " N S
Dafinitions:
W oaheall e 31 O(P) Cevary louble soquonce {{m n }

of Tunctios ron C(P) J1eh the
i /{mm’ n} O , o w11l m €} ’

N N
<) if‘{km,!c N _ iolinoeearing, {nm, }G N y then
‘ mv

ve ehell el 4 (P) avery Joudlo sequencs {f’bm,n }

A% r‘ctinr' B C(P) smebh tusts

Dk _..,......._é 1 for »13 m € ’ N
)i {k } is incressing, {’n }E N '
4

{ j € C(P)N s then gkm . hk,:m.’ﬂ

. Theore.m 1o For every space P containing ~ doens courte
-ble subset ths following properties sre equivzlant:,

1) (C(P);"-b is not =n F—space;

=) there existis an ¢(P) 3
3} th~re exicts & J (P) H

43 (C('P) / & is discrete.
—— _ /

2) ff(P) iz = g =gysiem, 88 ‘égfingé iq EQ] e
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Proof : No (C((P), ««) ig diserete snd therefore

4) =7 1) is trivial,

1) < 2) is proved in [3] o

2) => 3) : Let {ﬁm } ¢ CP) veen (P,
Let X4 € C(E4 be defined as follows:
e () = O ifxygxl- .
Xy (%) = (/m+4)(/m(7 ~m 4+ 4) if -3 5

=4 = J-

/m+/l
A

K (%) = 41 it 4—_/,”7 = 7.

For every X € P we put /A’m‘,/m. (X) =

= X, ( 71~ ’//m/m(*)l),

It is easy to prove that { Aom } is a g’* (?) °
3 = 4) : lLet {ag, @g,... be dense in P

For 4,{ € N dencte by M&’e the set of

£ € C(P)  such that | feag)-1)z £
clearly /kqe/\’&,z = C(P)~ (1) o Let ¥ be

a one=to-one mapping of NxN onte N R
Let {,A/A/m_} be a 7(7’) ; sinee 4,

) m /k 4 /

we may suppose ( replacing, if neeessary, { Aa,m /

by { /A,/_;, /u,,f-m.} with JV4 sufficiently large )
that for any 4 , s € N ana .A%‘?(%,/) 0

9
| by m (%) - 4] < _347 o Then, evidently,

(%) | A@r) Fonn(s) = 1|73l # A= 4), £<l

Denote by H,, the set of all ‘f- /%/4,,,,, where /{eN,
AL eN , feM,, A = WY(X,€) . Clearly

7/ , ’49’(4,1),4» = £ ir Le Mg ¢ § henee
Aty O C(P) - ('/) - Suppose %,/ € IL/'I )
?,L. —1—-9 // o Then, for some (,@‘} 9 {'Zc; ]
{m, } from N” » we have % = % ‘ /ﬂ’/*.'; me )

4. € /‘7;.,/1‘. L, A= V(é.-}ll');, Sinee {’&'ﬂj
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is a J(P) snd *ﬁi . ’#%4., n; "—""> // , almost., all /St,'

are equal to some ff(f‘” L) Therefore, foo lsrge 4 ,
fieMu, g ) 14; (@) Fuo;, m; (i) —
4 |> __.- 5 thiq con'traiictg ; >4 o Thus

H1 o Putting, fo~ g € C(P) H =
’¢£L4+(} lft 1} we obtain,u,H99= C(P)-—(g).

There follow_sever-l criteris which show, in some cases,

when (C (P) u,) " is an F- pace 2nd when it is not so
(2nd thereLoﬂe, if cont~ins a countable dense subset,
(C (P) AL ) is discrete). Proofs are omitted,
Pr'opoui'tiO"l 1. (containe 4] Yo If P is 2 countable
Qz,ace, then (C(P) u) is an -spece (metrizable even) ,0

Proposition 2, If for evory ‘)é € C (P) there exists
2 countable A CP sueh that % is constant on P—

then (C (P),u/) is an F—spaceo

Precposition 3. If P is a dense-in-itself non-meager 3)
norae 1 sgpace containing o countable metrizeble dense subspace,

then (C (P), M is not sn - F -space. ’
Proposition 4, If. P is the ﬂ-compactific'aticn of some
infinite discrete space, then (C(P) F M,) is not an
=3pace. _
Prornsi‘tion 5. Let A i‘e a closed G'o/” et of a
fiormal space ((, (’* M) is not an F—space, then
nor is - (C ), ,u,) ( (A) a ) is discrete
and - containa a countfable dense (in “A )

subget, then (C (P), ) is discrete also.

I2 in theorem 1 we omit the condition of separability of
9 the theorem ceases ‘tc hold. In this case only properties
(1), (2), (3) are equivalent., Property (4) is nct equivalent
to then, |

3) That is, P iz not & urion of countably many nowhere
dense seta. '
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as following example shows,

Let A be some space sush that (C(A) , 1) ig not

an F space, Let M be a set, cara M > (card C(AY) ™,
Let B = MU(f) bve a compact Hausdorff space with a
unique nen-isolated point § . We put P= AUB,
ANnNB = @, , A , B are closed in P , Clearly,
if A is a compact Housdorff space, P is such also.

( C(P), ) is not an F -space ( the existence
of an  (P) is evident ), but (C(P), A" )  is mot
diserete = this may be proved using proposition 2,

Nevertheless (‘((P)/ ’bt‘) is slso discrete for some
important non-separable spaces,; e.g., for OL -separable
netrie spaces with X = & Mo , end zlso for their

A -compactifications, as shewn in the following theorem.

In this theorem ang its proef, A denotes the closure
of s set ACP in P

Theorem 2., If P is a normal space containing a disecreste
normally imbedded 4) subget of power « = X o  and a

dense subset of power <2 % , then (C(P), Af) i@,
discrete. H’
—— a

Lemms : Let Z | . be sets, card 2 = o = X

card = = 2° o Then there exists a colleciion { Zf.”‘- ]
§f € :,/"GN}Of subsets of Z  such that
) if e = | my;, mueN , m, + m, , then

'Zfﬂ"w N anmz. = ¢ J

4) A set a iz snid te be noronllv “ubheddcd in - spaes P
if QRC? g every Rended continuens ®Miwretion on Q
can be axtendecd continnensly to P . By digcr.te subset’
we negang, in this theoren, siuply & subsel whiclh, ag a sub-
space, contains isolsted points only.
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(2) if f‘. € — are distinct, ", € N , then _/']Zf_,n,
=g [ ]

is unzountables

This lemma follows essily from the following propddition
( ofs [1) , D. 489 ). If R is the topological product of
2%  intervals {0, 4> , then R contains a dense
subset of power < o e whdse intersection with
every non-void Gs subset of R is uncountsable.
(Let ¢  be a one-to-one mapping of A inte Z . If

R={int] rye<ony, neZ}, Aga= {iriehl

A

Ve € (711 %) } , we put Z g m = v (Agn) ).

Proot of theorem 2 : Let X CP e dense, Z € P

discrete normally imbedded, cerd Z = & = o Ho |
X —_—
cord X 2% ,put = = XX N and let
{Z )/ | § E__-, h € N} be a collection of subsets

of Zz with properties (1), (2) from the lemms, and su¢h

that if § = [x,m] € = cthen X & Z g 4.
Since Z is normally imbeddeéd, the collection me}
— !
is disjoint, be (1), for any fixed § € = . This
implies, by normality of P , the existence of open sets
Gfrm- > Z §o W such that for any fixed f [Af /mj
{Giu’"’} ig digjointy, X e G §,m o Now choose, for
any _fe__.s,m.éN , a functicn /ﬁ,,h_é('(P)
equal to O ou Z  TRL% mn ohd toe Ton P Gf,,wo Clearly
ia) for any fé = ’%f —> 4 s (b) for any
" /Pv . —
fél:x/’”'gé" ,Afm(x) - 1 gv“.:if Fa€ —
are distinct, my €N, # € C(P) , then

/4; /ﬁ-f‘,m’k :(/‘-> i f‘aim& Afll’“ (’3’) @ where
? é Z f‘, /Plv‘ Yo

Let //4 denote the set of all / /4

with § = [x, m], L €C(P), |£x)- 4, z 4 -
By (), Z. Agm £ s hence by D C(P)-(1).
Suppose that 2, € Hy « G4 =7 A4 . Then %e w

a/"%_fu’“& ' f{ [X,(,/m.‘J ée(’(?))
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e
.I{((«\’g)—’llg/m% o Since 5&7 A , We
obtain; by (c), that almost all |7 are equal to some
[A' vm] € = . Hence, for large A& ,[A&)-1] =
—,”-:;' and by (b) I Ea) Me x) = - 3 therefore
A
] 2+« x) -1 / z T which is contradiction. We
have proved that . H, = (?) (1) Now, if g€ (1P

ut Hgp={g+F-1 | £€ Hi % ;then ahy - Clp)-
- (%)-

o
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