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Commentationss Maothematicas Universitatis Carelinse

REMARKS ON CHARACTERS AND PSEUROCHARACTERS
Miroslav KATETOV, Przha
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concerning charact from the few known results,
recall the following one ( Jo Ne 5&&, pést, mat, fys,

66 (1937), 206=209 )¢ if .S s metri-able, M C S , then
X( M,S) < N, if and only if M - et M

is compact,

The present remarks, arisen in connection with the problem
) of the equality X Y for the set

® o

of rational numbers ( in the rezl line ), contain several simple

( considered by J, Novak

resgults conceérning charscters and pseudeocltaracters of sets as
well ag some related notions, It is te be neoted that the equali-
ty Ny,= 2 e is not assumed, We consider completely regu-
lar topological spaces ( ecalled aimply * spaces " ) only., The
terminology of J, Kelley, Generz=l Topology, 1955, is used

( with glight differences ). The prover of a set f? is deno=

ted card M 3 the letter 'S always denoltes a space,

lele Definition, A ~A?=baa@ ( a /46 =pseundobase ) of
is a collection (Z( of compact subsets such that every compact

AL



K<S ( respectively, every X € S ) is contained
in some A4 € X . The 4 —chsracter of S , denoted IXISJ
( respecti-vely, A& ~pseudocharacter, denoted fg"/’ (S) )
is the least cardinsl of a 4 -base ( 4? ~-pseudobase) of § .
Clearly, every % =base of S contains =z A ~base (X with
card ¢ = %X(S) and a /4 -pseudobase && with curd & =
= % 9// (S) °
lo2o If S is compact, AUB = S , AnB =& .
then X(A,S)—a,éx(g) , (F(/"/Sj“—“’é(g,) .
1.3, I£ S, , 52 are spaces, and & is a continuous
mapping of S, onto $;  such that 9‘1 (/() is compact

whenever & < Sy is so, then /é)((S;): A@X(Sz )
/él//(S»f)—c %L//(S&) o

l.4. Theorem, Let 51 s 53 be locally compact, Mz < S.,’

Moo= S, ,Mzcgl,ﬁ;—_-gz 3 let My o, Mg,
be homeomorphic. Then /{’(/‘14, S,/ = X (/‘14 / Sz) ’

(M, S;) = V/(Mz/ S, ) .

Proof. Consider only ¥~ , the proof for 4  being quite
analogouss Suppose first that S; is compzct. Let 7& be =
continuous mepping of the Cech = Stone compsctification ﬁM,,
onto S, , LX) = X for X € M, . Then /{/3’/‘77~/‘71)=
= S;— M, , and the restriction & of 72 to /;‘/‘71_./471
satisfies the conditions from l.3. Hence 4 {ﬂ/‘@ -M,) =

= %I (S;=M,) and therefore, by 1.c, A (1 1 5174 ) <
—= K( Ma S’1) o This implies the validity of the theorem
for compact S, , S5, o If $c are locally compact, choose
compact 7/ 2 S, with §- = 7, Then &, are open

in 7¢ und therefore X (/7c, S«') = XI/%,Z')

from which the theorem follows.

145« By 1.4, for a given O , the cardinsls xSy KJ,
LP(S, /<) where SCK ’ ?‘k » K 1is compact,
do not depend on K 3 they will be denoted z/( /S), —6(//(5)
and ealled extern=l character ( pseudochariacter ) of S o
Two spaces S; 53 will be called associated if the these
is o compact space K and subspaces S;' < K homeomorphic
with S¢ such that ' v &' = K , §'0 S, = & A

g ] we



Sq‘ = 52' = k « Clearly, if & , S‘Z sre
3ssoelated, then L/r (S,) = A X (S_z) ’
ey (S,) = V/ (gl) .

Clearly, }( (S, P) = »31( S) if S is dense
in the space R 3 if not, it may happen e. g. that
K(SR)>N0 ) LX(S)=4 ’

S,R)=No

160 If S is Ioeally compset O —compact, then

Ax (S) = No . |
le7s If /%[(5)§ Yo ,f{amiX[’\'IS} < Mo

for every X € S , then S s loeally compact O wcom=
pact.

Proof. Suppose thast 5 is not Jocally compset st QU € S .
Let A, , M= T2y, foTa A A -base of § ; let
Ga. form o Base aromd @ and let €, 2 6,2 -+ -
Sinee Gap, = Aae + ¢ s choose X € Gao — A
XNaw + a  denote K the set consisting of Qrand all X o

Then A is compact, K - A, # B v = 7,2, e .
which is a contradiction.

Remark, It is essy to see shat the assumption /r (x, S) <
< Yo connot be omltt@de

)
<o

dele I R is an orderecd set, let the least cardinal of
3 cofinal set in R be czlled cofinality character of £ .
Let NN dencte the set of 31l sequences of natural numbers
ordered ss follows : § fa § = { Hu} if
( and only if ) fn = Ha for every -t o The

cofinality character of AN will be denoted &

It is clear that X, = b < 2 3 by the X
suthor s knowledge neither of the equalitiss A= s A =2 .
has bepn proved as yet ( nor disproved, of course ).

Order the set F of all sequences of positive numbers as
follows @ (f/n} precedes {/?,,,_ f $f ( and only if )
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>
?’K = lf,k for every v . Zvidently, 6 s the
cofinality charucter of £

@

2e2e It S is metri~able, M C S s O ~compiet
then ¥ (/y, S ) < . S

$

<0
Froof. Let M = /hU K/n, /\/M compact. Let A4

N
be cofinsl in N o Choosing 3 metric JO for S ,
put Gm, 4 — {xe S i < (X, K, j< i} , 2nd, for any

-{ 5} e NV ' UAx = (/C , °

Irf H is 2 neighborhocd of M , Choose /ék with

Cm, é. < H amd we 4 with (£, = ¥
then M C Uxc K » Hence %X y X€EA , forn a

base around A7

<e3. Let S be metri-able, M S . If M- T M
is not compact, then X (M, Sj = & .

Proofs There exist ( distinct ) peinte A € M~ Dl My
such that {/fhu’y has no cluster point in A . Choose
2 metric f for § and put, for anv neighborhood & of ",
V[G) = {P(ék/ f—é}}éF( see ¢l )o Let U be
2 bose around ANy o If {f/"v% € [ , choose X, 6 S -/
with F(Xm_, &,4,) < e {M y f,,‘,) o Zince
H = s -U (XM) is a neighborhood of A , there
to €U with X CH .since (AHp, S-4) =
= P(/ﬂm /a\’/k) 5 {f/p‘_ } precedes @ ( Zt} in - °
Thus }5/2()) i 2 € U , form a2 cofinal set in /A~ .

< e4o Theorem, Let S be metri~uble ; let A7 C S be
0 =compict. Then X ("7 / S) = B if and only if
M- Jud M is not compact,

Remzrk., For instance, in Ea the character of every
non - compact closed set ( different from Ep ) is & .

Je

3.1 vefinition. 4o space S will be called a ‘/l- —gpace
if there is s transitive relation 6\ on S and a set /4
such that the sets (¥ € §: woal , @a€d  rforma

-2 G



/f-»bdse of S .

Clearly, any well ordered space is a vl =Space.

Remark., It is easy to prove that S isa .A. -space if
and only if it satisfies one of the following equivalent
conditions : (a) there is a /(nbase 4 such that, for

an € A ’ - $
7 AX&(LX#d

A-X+¢
(b) there is a /é =pseudobase '4 and a mapping ¥ of

the system X of 211 compact K< S  into S such that
Ke K , A€ A , Y(K)EA implies
KcA -
302+ Theorem. If S is a \/\, -gpace, then %I(S)
~ Ry (S)
Proof. Let O A be as in 3.1. Clearly, there is

B CA with card B = & @ (S) such that the
system @B of 21l {X€S : X L) fe B

is a A& -pseudobase, It is easy to prove that A is 3lso

s A -base.
Jeoe Let A ve s system of compact sets A4 C S sueh
) ¢ < > o 4"
that (1) for any compact K C S » K <€ VA,

=7
for some A( €A (2) if ./4' C A UA = S

' Hew

I

H

/
then ¢4 = V{ «» Then S ig a J =SPACE .

Proof, By (2), we csn choose, for any A € A » & point
/k_(/’) € A contained inno X € < , X + A4 o

Let 4 be directed by 2 relation < in such a way that all

fxeAd : Y< A } , A € Q , sre finite. For +€ S |
Yy e S put X O- 9, if ( 2nd enly if ) there are
4, € A , A, € A with xe A VR

)

Y z ( Az) « It is easy to see that J° 1is transi-
tive. If 4 = 4 (4) , then {NES : ¥ 1]

is equal to U.4X , henece compacta Condition (1) implies
X €
X<A . |

( since V4 is directed ) that {.XE § = xd‘?} .
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S alie 3 ('4) y A €A , form s /{«abase.,

Jed. The sartesian product of s/‘. -spaces lg 2 ~/\ =SPpACE
Pronf, Let 54 , € Z ,vbe A spoces, §= P
Lf:‘t d} 3 Af be ( for S? Y as in 3.1, Put {Xff o~ {Qf}
'1f‘ ( and only if ) X{ 67? for e”ﬂl‘y Ie put
p A f o Then A f possess { for § .‘: properties

q rad _}ff, 3919

3¢9 6 Theoreun, The cortesis

ccompact spaces ig 2 \/l -SpECa.
Pri')nf‘ﬁ Lf‘"t S :'i?e l~5 -.ﬂ] 1‘” C\‘SIY'T) jr‘:", l arac ﬁ“lp ‘f“'f ’1}1(3[1 t"l_g«r"a
i8 2 loeslly finite open rover { Zfa(} such that Z{q are
compacte Clzarly, there exists 2 subcover {Z(/ff and points |
/23 € Zl(; svich that no 2 2 lies in Z(Au . 2
By a2 well known theorem, there exist open ﬂﬂ’ with &g e kﬂ
V? < Z(ﬂ ] (/k/} - S . The collection of
has properties indicated in .33 hence S is s ~/\ ~8pace.
Now apply Jede

is @ssyv to see that %1{5) = ’é(f/ (‘5}
or any loceilv cempact § 3 neverheless, T dn not know whether

/é X[;W = & (,/(S) holds whenever S is 3 produet of

Jocally compnet spsces

Cioe

w-v,,

3¢be Corollary. Let R donete the space of retional numbers,
that of irrntion=1 ones, Then -£€ (R) = € V’(R) =

ke (J)=*y(G) ~ 6 ky(R) = eyp(d)=< Ho.
Proof. By <.4, /{(R) & y hencey R and J being
sgsociated, ,Qx(],) = ¢ e Since J is homeomorphic to

the ;;s:s:'"@:iucﬂt of XNo discrete countable spaces, we have,

/ﬁv/(}) - & ,hence € W (R) = £ .

t;ly 39/ N

Remark. The conjecturs seems probable that '%1 {R)'-‘- 4 (I/])
= b,

G
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