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ARCH . MATH. 4, SCRIPTA F A C SCI. NAT. UJEP BRUNENS1S 
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ASYMPTOTIC BEHAVIOUR OF THE EQUATION 
x" + p(t) x + q(t) x = 0 

WITH COMPLEX-VALUED COEFFICIENTS 

M1LOS RAB, Brno 
(Received March 3, 1975) 

1- Introduction. The aim of this paper is to study the asymptotic behaviour of 
solutions of the differential equation 

(1) x" + p(t) x' + q(t) x = 0. 

Although the situation is in the case of complex-valued coefficients more complicated 
than in the real case, some results similar to those concerning the real case can be 
proved using the transformation of (1) into a Riccati differential equation and applying 
Ljapunov's method and Wazewski's principle. Some results concerning the real 
differential equation can be found in a paper by MAftlK—RAB [1]. 

The equation (1) will be compared with a differential equation with constant 
coefficients. In the latter case the associated Riccati differential equation w' + w2 + 

+ pw + q = 0 has two singular points w = — (-p ± (p2 — 4q)*) if p2 — Aq ?- 0. 

One of them is stable the other unstable focus. The equation z' = r(t) — z2jp(t) 
with complex-valued coefficients has been studied in [2] and [3]. 

2. Notations. Let G and K denote the sets of all real or, complex numbers, 
respectively. If z = u + iv, u, v e R, i = yj — 1, we denote Re z = u, Im z = v, z = 
= u — iv, | z | = (zz)*. If z T* 0, then arg z denotes the angle q> such that 

Re z . Im Z „ ^ 
cos q> = —:—;-, sin (p = ———, 0 _ if> < in. 

If zu z2e K, the distance d(zx, z2) is defined by | zl — z2\. Let a0,b0e K, a0 9-= b0 

and let y be a real parameter, — 1 g y_.- 1. Then / 

2Re* 0 (w - a 0 ) 
(2) ľ = 

| w - a 0 | 2 + | Ь 0 | 

represents an eliptic pencil of circles with singular points A0 == a0 + b0, B0 = 
= a0 - b0. 

For y e [- 1,0), the circles Ky cover the half-planeJF^e B0(w - a 0) < 0, for y e (0,1] 
the half-plane Re B0(w - a0) > 0. The straight-line ke 50(w — a0) = 0, which is the 
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radical axis of the pencil, corresponds to the value y = 0. The circle Ke corresponding 
to the value y = Q has the centre a0 + b0Q~l and the radius r = | bog"1 | 0 — Q2)*-
The singular points A0, B0 correspond to the values y = 1, y = — 1, respectively. 
The symbol int KQ denotes the interior of Ke, int Ke means the closure of this set. 

For brevity, we shall often omit the independent variable, writting e.g. f instead 
of f(0 etc 

3. Definitions. We shall say that the equation 

(3) g(t) w' + w2 + P(t) w + Q(t) = 0 

is regular, if there exists at least one solution w(t) which is defined for t -» oo and 
that it is strongly regular if all its solutions are defined for t -^ oo. 

The equation (1) is said to be nonoscillatory on J = [t0, oo) if each solution has 
on / only a finite number of zeros. 

Note that the equation x" + x = 0 is not nonoscillatory although it has a non-
oscillatory solution x = elt since e.g. the solution x = sin / has infinitely many 
zeros on J. 

4. Lemma. Let p, q,f g be complex-valued functions such that 

(4) P(t\ q(t) 6 C°(J),f(t\ g(t) e C\J), g(t) * 0. 

Put 
P=Pg-g' + 2f Q = qg2 +f2 + pfg +f'g -fg'. 

i) If x is a solution of(\) on an interval J0 c J and x(t) ^ Oon J0, then the function 

w = gx'x'V- f 
is a solution of (3) on J0. 

ii) If w is a solution of (3) on JQ cz J and p e J0, then the function 

t 

= exp I ( (™ + f)g-
p 

is a solution of (\) on J0. 

iii) The equation (1) has at least one nonoscillatory solution if and only if (3) is 
regular: the equation (1) is nonoscillatory if and only if (3) is strongly regular. 

The proof will be omitted here. Its real analog is proved in [1, p. 213]. 
Let the assumptions (4) be fulfilled. Denote 

A - (gf - pg)2 - W + qg), 

(5) A = - / + l ( g ' - pg + A% B = - / + 1 (g* -pg- # ) . 
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Then there is A + B = - P , AB =~ Q so that the equation (3) may be written in the 
form 

(6) g(t) w' + [w - A(t)) [w - B(t)] = 0. 

2 
If we put a = — (A + B), b = — (A - B) then it is 

(7) g(t) w' + [w - a(t)]2 - b2(t) = 0. 

5. Theorem. Let us suppose (4). Let a0,b0e K be such that a0 =~- b0 and 

00 

(8) Rcbog'\t)>0, \Reb0g-l(t)dt = oo. * Í 
Í0 

Define 

(9) h(t) - ^ ~ ^ k(t) = a{t) ~ a° 
( ) m ' bog(t) ' W bog(t) ' 

(10) x(t) = (| h(0 - b0g(t) k\t) I + I b0k(t) |) R e ' 1 lWW 

aw/ suppose 

(11) lim sup x(t) = k0 < 1. 
f ->00 

Then /here ex«C5 a ft > t0 such that 

(12) * (0 < 1 for t>ztl 

and each solution u(t) (1) whose initial conditions at tt satisfy 

(13) «(/.) * 0, Re SogOO «'(»*.) «"»(/.) ^ Re 50[a0 +f(tO] 

ha5 no zeros for t > tx and it is 

(14) limsup | a0 + V " 1 + f( t) - s(t)"'(t)«_ 1(t) | ^ \boQo1 | (1 - (?o)* 
r-*oo 

where 

(15) Oo = 0 - x g ) * . 

Proof. Let u(l) be a solution of (1) satisfying (13). Then the function 

(16) w^gu'u'1-/ 

is by i) of Lemma 4 a solution of (3). The statement of the theorem will be proved 
by means of Ljapunov's method applied to the equation (3). Let us investigate for 
this purpose the pencil (2). Under the substitution 

(17) z = w-a0 
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the equation (3) is equivalent to 

(18) g(t)z' + [z + a0 - a(t)]2 - b2(t) = 0 

and the pencil (2) to 
2 Re b0z 

y = • 

M 2 + |ŕ>ol2 

If z = z(t) is any trajectory of (18), then the point Z(t) pertains to the circle Ky 

having the equation 

(19) . y W = ^ - M ^ , w h e r e a t ) = M t ) i 2 + lt>ol2. 

Differentiation yields 

£2y' = 2i Re B0z' -2ReB0z.2 Re zz' = 

= 2 Re B0zzz' + 2 Re b0B0z' - 2 Re B0zzz' - 2 Re b0z
2z' = 

= 2 Re b0z'(B2
0 - z2). 

Using the fact that z(t) satisfies (18), we get 

« y = 2 Re ^ - ' [ f t 2 - (z + a0 - a)2] (B2
0 - z2) 

and with respect to (9) 

?y' = 2 Re b0g~\bl + b0gh - z2 + 2b0gkz - b2
0g

2k2) (B2
0 - z2) = 

= 2 Re b0g-l(b2
0 - z2) (B2

0 - z2) + 24> + 4«P, 

where 

4> = Re b2
0(h - b0gk2) (Bl - z2), f = Re b2

0kz(B2
0 - z2). 

Since 

(20) | b\ - Z2 |2 = "-(I - y>), 

it holds 

(21) y' = 2(1 - y2) Re fc^-i + 2<*>r 2 + 4 ¥ T 2-

Now using the inequality £ = | z |2 + | b0 \
2 > 2 \ b0z \ and (20) we get 

(22) i wr21 = r 1 1 bgfez i (i - y2)± = 11 boZ r11 b2kz \ (i - v
2)± = 

- y l M , | ( i - y 2 ) * 

and 

(23) | <Pr2 | = r 1 I K |2 I A - bogk
2 | (1 - y*)* = | /. - ^ | (1 - y2)± 
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since { > | b0 |2- Consequently, (21), (22), (23) and (10) yield the following basic 
inequality 

(24) | y'(0 - 2[1 - y2(t)] Re b0g'l(t) | = 2[1 - y2(t)f x(t) Re b0g~*(t). 

From (11) and (12) it follows that there exists xt, x0 < xx < 1 such that x(t) < xx 

for t > tx. Putting QX = (1 - x2)*, we get from (24) 

y'(0 = 2[1 - y2(t)f ([1 - y2(t)f - [1 - ffJ]*) Re b0^
_1(0 

so that y'(0 > ° f o r a l l t f o r which | y(t) \ < QX. Now, since (13), (16) and (17) 
imply Re 50z(ti) ^ 0, we conclude that for each t2 > tx for which z(t) is defined 
there exists a Q2, 0 < Q2 < QX such that z(0eintKC 2 for t = i*2. This is the con­
sequence of two facts: 

1° y(t) is increasing if | y(t) | < QX; 
2° the straight line Re B0z = 0 belongs to the pencil (2) for y = 0 and 

KeieintK,2. 
Since the trajectory z(t) cannot leave the circle KC2, it is defined on the whole 

interval [tx, oo). 
Now, we shall prove 

(25) limd[z(r),intKJ = 0. 
f-+00 

Obviously it is sufficient to verify that to each Q, 0 < Q < Q0, there exists a time 
h ^ h such that z(t) e int KQ for t ^ t3. To prove this, choose a. Qi9 Q < Qi < Q0 = 
= (1 — *o)*- Then it is x0 < (1 — g*)* < 1 so that in view of (11) there exists a time 
t2 = tx such that x(0 < (1 - Q\)* for f = t2. Hence for * = r 2 

(26) ?'(r) > 2[1 - y2(t)f ([1 - y2(t)f - (1 - <??)*) Re bo^KO-

It follows from this inequality that yf(t) > 0 for all t = t2 for which | y(t) | < QX . 
If z(/2) e int Kc, then z(t) e KQ for all f > t2 obviously. Suppose consequently z(t2) e 
e int KQ and admit there is no t3 = t2 implying z(tz) e int KQ. In this case the trajectory 
z(t) is situated for t = f2 in the domain D, 

D = {z e K: Re B0z > 0, ze int KJ. 

The values y(t) corresponding to z(t) e D satisfy 0 < y(t) < Q < QX and in view 
of (26) it holds 

(27) y'(0 > 2(1 - Q2f [(1 - Q2f - (I - Q\f] Re b0g'\t) > 0. 

Integrating this inequality from t2 to t, we get 
Г 

ľ(í) jž У(í2) + 2(1 - вУ [(- " Q2Ť ~ (1 ~ QÏft J R e b0g~l (5) ds 00 

for t -* oo 
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which contradicts the fact that | y(t) | ;= 1. Hence there exists a t3 = t2 such that 
z(t3) eint Ke. Then it is of course by (27) z(t)eint KQ for all t > t3. Since Q was 
arbitrarily near to Q0, (25) is proved. But (25) is equivalent to 

lim sup | boQo
l - z(t) | ^ | boQo

 l | (1 - QD* 
f->oo 

for the circle K6o has in the z-plane the centre b0Q0
 l and the radius r = | b0Q0

 1 | . 
. (1 — go)* Thus, with respect to (17) and (16) the inequality (14) is proved and the 
proof is complete. 

6. Theorem. Let the assumptions of Theorem 5 be satisfied. Then there exist a T > t0 

and a solution v(t) of the equation (1) which has no zeros for t = T and which satisfies 
the condition 

(28) lim sup | a0 - boQo < +f(t) -g(t)v'(t)v~Ht) | ^ | - W 1 10 -Co)*. 

Proof. Let yt e G, —Q0 < yt < 0. First we shall prove of all that there exist 
?LT > t0 and a trajectory z(t) of (18) denned for all t = Tand contained in the interior 
of Kyi. To this purpose choose a y0, yx < y0 < 0 and a T0^t0 su<?h that 

(29) * ( 0 < 0 - V i ) i for t = r 0 . 

Denote F(z) = Re b0z(zz + b0bo)_1 anc* define 

O = {(l, z): teR,zeK}, 

u(t,z) = F(z) - y0, 

v(t, z) = F0 - t, , 

Q° = {(/ ,z)€fl : y0 > F(z),t > T0}, 

U = {(t,z)eQ:y0 = F(z),t= T0}, 

V = { ( t ,z )6 (2 :y 0 = F(z),t= F0}., 

On the set U, the derivative u(t, z) with respect to (18) is 

u(t, z) = 2[1 - y2(t)] Re b0g-l(t) + T 2 K 0 ] (2<f>[Z(0] + 4<P[z(f)]). 

Using (22), (23) and (29), we get 

u(t, z) > 2[1 - y2(t)f ([1 - y2(/)l* " [1 - ?iJ) Re *o^" HO-

Since (t, z)e U implies y(t) = y0, it is on U u(t,z) > 0. Next it holds v(t, z) ^ 
= — 1 < 0 on V. Hence, using the notations and results from Hartman's monograph 
[4, pp. 278 — 283], Q° is a (u, v)-subset of Q with respect to (18) and it is 

Q°E = Q°SE= U- V={(t,z)eQ:y0=F(z),t> T0}, 

where QE (QSE) is the subset of all egress paints (strict egress points) of 0° . Por 
any T > T0 define 

S={(t,z)eQ:F(z)^y0,t=T}. 
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Then S n Q^ = {(f, z)eQ : F(z) = y0, t = T) is a retract of QE (e.g. the mapping 
(/, z) -• (F, z) is a retraction) but is not a retract of S. For if there exists a retraction 
IT : S -> S n QE, then there exists a continuous mapping of S into itself (e.g. the 
product of 17 and the symmetry with respect to the centre of the circle S n QE) 
without fixed pointSj which is impossible. 

Hence all the assumptions of Wazewski's principle are fulfilled so that there exists 
a solution z(0 of (18) such that (t, z(t)) e Q° for all t ^ T. 

Now we are going to prove that z(t) fulfils 

(30) limd[z(0,intK_J = 0. 
t-+oo 

Suppose by contradiction that (30) is not satisfied. Then there exists ay2e.R, — Q0 < 
< 7i < Ji a nd a sequence {tn}, tn -> co such that z(tn) e int Ky2, n = 1, 2, .... Choose 
a T2 = T so large that x(t) < (1 - y\)* for t ^ T2. Then there exists an n0 such 
that tno > Tt. But z(/„0) e int Kn and z(l)e intKy2 for all t g tBo since 

(31) yf(t) = 2[1 - y2(t)f ([1 - ?
2(l)]^ - (1 - y\f) Re ̂ ^ ( O > 0 

for all t ^ T2 for which | y(r) \<y2. On the other hand z(t) e int Kn so that the 
corresponding values of y(t) satisfy 

(32) y2 <y(t)<yi 

and for t = tno is by (31) 

/ ( 0 = 2(1 - y\f [(1 - y?)* - (1 - y\f] Re b0g~\t). 

Integrating this inequality from t„0 to f we receive in view of (8) y(t) -+ oo for t -> oo, 
which contradicts (32). Thus (30) is satisfied and this implies (28) in the same way 
as in the proof of Theorem 5, This completes the proof. 

7. Theorem. Suppose in addition to the assumptions stated in Theorem 5 

(33) lim x(t) = 0. 

f-*oo 

Then each solution u(t) of the equation (1) satisfying (13) has no zeros for t = tt and 

(34) lim [g(t) uf(t) iT*(0 ~ fit)] = a0 + b0 

and there exists a solution v(t) with the property 

(35) lim |jf(01/(0 V x(0 ~ f(t)] = a0-bQ. 
t-+<x> 

Proof. The relations (34) and (35) follow from (14), (28), respectively, for (33) 
implies x0 = 0 and £0 = - by (15). 
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8. Theorem. Let us suppose (4) and let the functions A(t), B(t) defined by (5) satisfy 

(38) lim A(t) = A0, lim B(t) = B0, A0, B0e K, A0 * B0. 
t-*ao t-+co 

Let for a0 = — (A0 + B0), b0 = —- (A0 — B0) the assumptions of Theorem 1 be 

fulfilled and let either 
00 

(39) | <\A(t) | < oo 
to 

or 
oo 

(40) j \dB(t)\ < oo. 

ro 

Then there exists a fundamental system of solutions u, v 0/(1) such that 

(41) 

í t 

u(t) ~ exp ( / + Á)g~l, v(t) ~ exp ( / + B)g~i. 

Proof. Let us suppose (40). Since all the assumptions of Theorem 7 are fulfilled, 
it follows in view of (16) that there exist solutions wt(t), w2(t) of (3) converging to 
A0, B0, respectively, for t -• oo. Let f_ _ t0 be so large that wx(t), w2(t) are defined 
for t = t1 and wx(t) # B(t). From the identity 

t 

log[w1(0-B(03--c1 + J d ^ 1 _ " / 
- B ) 

IUSLWIVM - x»vtjj = ci -r i — — 
J wi 
ti 

it follows 

J ^ - • « [ - * ) - * n + J^-«-
tl ti 

It is seen from (38) and (40) that the right hand side has a limit for t -> oo and this 
oo 

implies the convergence of the integral J w'1(w1 — J9)"1. 
ti 

On the other hand, in view of (6), w\(wx - B)"1 = (A - wjg'1 and thus the 
00 

integral J (A - wj g~l is convergent, too. By Lemma 4 there exists a solution xx(t) 
tt 

of (1) such that xt(t) ?- 0 for t = f_ and w = gXjX^1 - / . Hence there exists the 
limit 

t 

ìim í [ ( л + / ) g -'-*' .*;- '] 
f-»ao J 
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and consequently 

This implies 

for a suitable ce K. 
Now, let 

t 

lim[-logx,(0+ fa+.flg"1]. 
r-*oo J 

*г(0 ~ C Є X P M+/)в" 

.x2(í) = exp ( w г + Л g " 1 

so that x2 is by Lemma 4 a solution of (1). Let W(t) denote the wronskian of xt 

and x2; then there is a ct e K such that 

w(0 ~ c i e x P " ~ P-

Then there is 

g(t) W(t) x^d) x2

l(t) = g(t) [x'2(t) x~2\t) - x\(t) x~\t)] = w2(t) - wt(t) -+ 
—• B 0 — A0 = c 2 . 

Hence, 

* 2 ( t ) ~ CagW^TOxr 1 ^)- c4g(0exp I ( - p - ( A + / ) g _ 1 ) . 

But with respect to (5) it is -pg -A—f=*B+f— g'so that 
t t 

x2(t) ~ c5g(0exp J (B + f - g^g" 1 = c0exp f(B + / ) g " \ 

If (39) is satisfied we prove first the existence of c0 and then the one of c. Putting 
u(t) = c~1x1(t)9 v(t) = c~xx2(t), (41) is fulfilled and the proof is complete. 

9. Theorem. Let p(t), q(t) e C°(J) and let 

(42) lim p(t) = p0, lim q(t) = q0. 
'~*QO t->O0 

Let either 

(43) \dp(t)\<co 

Гo 

201 



or 
oo 

í' (44) J | dg(r) | < oo. 
to 

Define A2 = p2 — 4q and suppose 

(45) lim A(t) = A, Re A* > 0. 
t-*co 

Then there exists a fundamental system of solutions of (I) such that 
• t t 

f 1 r i 
u(t) ~ exp —(-p + A*), v(0 - exp —(-p - A*). 

Proof. The statement is a consequence of Theorem 8 for g = l, f= 0. Actually, 
(42) and (45) imply (38) and (43), (44) imply (39), (40), respectively. Since A = 
= — p + A*, B = —p — A*, (33) is satisfied, too, for it is h = (A — A) /1~*, k = 
= (—p + p0) /1~* and all the assumptions of Theorem 8 are fulfilled. 

10. Theorem. Let the assumptions (8) be fulfilled for some constants a0, b0 G K, 
a0 ^ b0. Lef 

(47) 

(48) 

ou 

Í í b\t) -b\- [a(0 - a 0Y | i g- '(0 I dř < oo, 
řo 

00 

l « ( 0 - - o l l g " ' ( 0 i d í < co. 

jThe/i each solution of (I) having no zeros on the interval [tl9 00), tx _ t0 fulfils one 
of the conditions 

0 0 

Í-
(49) lim [g(t)x'(t)x-l(t) -f(tj] = a0 + b0, 

t-*oo 
0 

J g ( 0 * ' ( 0 * - 1 ( 0 - / ( 0 - -0 - M Refcog'^Odt < oo, 

(50) lim [g(0* ' (0* _ 1 (0 - / ( ' ) ] = a0-b0, 
t->ao 

0 0 

J I g(t)x'(t)x-l(t) -/(*) - ao + bo I Re b0g-\t)dt < 00. 
r t 

Proof. Let x(t) be any solution of (1), x(t) # 0 for t = ^ . Then z(t) =-. 
= g(f) *'(0 * _ 1 ( 0 - / ( 0 - «0 is a trajectory of (18) defined for r = rx. The point z(t) 
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of this trajectory pertains to a certain circle Ky(o and y(t) is given by (19). From the 
basic inequality (24) and the fact that 

(51) | y(0 | _- -

we get 

(52) | y'(t) - 2[1 - y2(0] Re b0g~Ht) \ < x(t) Re b0g-\t). 

According to (47) and (48) it is , 
00 

íx(0Ref3og _ 1 (0 d ř <°°-

Integrating the inequality (52) from /_ to t, we see that 
00 

(53) f [ l - ?
2 ( 0 ] R e 6 0 g " , ( O d t < o o 

since the assumption that this integral is divergent implies y(t) -> oo and this contra­
dicts (51). Hence 

jVíOldí < 00. 

Therefore y(t) converges to a real number when t -» oo and with respect to (53) and (8) 
it is either lim y(t) = 1 or lim y(t) = —1. This means that 

(54) 

or 

(55) 

Since 

lim z(t) = b0 

limz(0 = — 60. 

i - y ( 0 _ | z (Qть 0 i 2 

ľ(0 2Rei»oz(0 
we get in view of (54) and (55) 

(56) | z(0 + b0 | < c. (* **?)*- c_ f-J-M—)*^ c.[l - y2(0]* 
w _ 01 _ x^ | y ( 0 | j ^ ^ ( O K I T K O ) / ~ W J 

for suitable cx,c2e R and large enough t. On the other hand if follows from (24) 

-7-°Cлt +У(0[І -yWRebog-^O 
2[1 - ľ

2 ( 0 ] 
_Şx(0Re£7og_1(0-
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00 

IЃ 

Using the same argument as in the proof of (53), we get 

v ( 0 D - V 2 ( 0 ] * R e b o g _ , ( 0 d r | < o o , 

which is equivalent to 
GO * 

[ l-y 2 (0] i Re/> o g- , (/)dr<oo 

and this guarantees, respecting (56), the convergence of the integrals 

z(t)T b0 I Re bog"HO d. < oo. Í' 
The relations (54), (55) and (57) imply in view of (17) and (16) the statement. The 
proof is complete. 
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