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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XI: 105-114 1975 

MODULAR, DISTRIBUTIVE AND SIMPLE 
INTERVALS OF THE LATTICE OF TOPOLOGIES 

Jlfel ROSICKV, Brno 
(Received February 25,1974) 

This paper deals with intervals of the lattice of topologies with respect to the 
lattice properties of modularity, distributivity and simplicity. The behaviour of the 
lattice of topologies and the lattice of T -̂topologies regarding this properties was 
studied by several authors (see [2], [9], [18]). Intervals of the lattice of topologies 
were investigated in some papers, too (see [15], [20]). All results presented in this 
paper are included in the author's thesis and were communicated at the Summer 
Session on the Theory of Ordered Sets and General Algebra held at Horn! Lipovd 
1972. 

All lattice definitions can be found in [19], We recall some of them. A mapping 
from a lattice L into a lattice 1! is called a v-homomorphism (complete v-homomor-
phism) if it preserves finite suprema (arbitrary suprema). Dually a A -homomorphism 
is defined.A lattice L is called simple if any homomorphism of L onto a lattice V 
is either an isomorphism or V consists of a single element. Let L be a lattice. We put 
[a) = {xeL x *z a}9 (a] = {x e L x ^ a}9 [a9 b] = {xeLa?£xS b}9 where a, 
b e L. The set-theoretic union (intersection) will be denoted by u(n), a lattice join 
(meet) by v( A). f\A means the restriction of a mapping / : X-+ Y onto a subset 
A £ X. A topology 3: on a set E is a system % of subsets of a set E closed under 
finite intersections and arbitrary joins. All necessary topological definitions are given 
in [3] or [11]. 

We shall give some results concerning lattices of topologies now. The system 31(E) 
of all topologies on a set E ordered by the set inclusion forms a complete lattice. 
The least element is the indiscrete topology {0, E} and the greatest element the discrete 
topology exp E. Meets coincide with set theoretic intersections and the join of two 
topologies %l9 %2 is the topology with the basis {Vn W\V€%i9 We%2}. The 
lattice 38(E) is atomic and any topology is a join of atoms. Atoms are precisely 
topologies {0, X, E}9 where 0 ^ X $ E. &(E) is dually atomic and any topology is 
a meet of dual atoms. Dual atoms, which are called utratopologies, are precisely 
topologies © VJ exp(E — {a})9 where aeEand © is an ultrafilter onEdifferent from 
the principal ultrafilter generated by a. An ultratopology is called free (principal) 
if © is free (principal). A detailed information on lattices of topologies is given in [13]. 
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The closure of a set X c E in the topology Z on E we denote by ClT(X), the interior 
by Int%(X). The relative topology induced by Z on X is denoted by Z/X. The symbol 
[X) means the principal filter on E generated by X s K. 

§1. CLOSURE OPERATIONS 

Among number of generalizations of the usual notion of topology the concept 
of closure operation plays an important role. A closure operation u on a set E is a 
mapping u : expE-+ expE having the following properties: 1° t/0 = 0 , 2°X £ uX 
for any X c K, 3°u(Xu 7) = UXKJ uY for any X, 7 c £ . Closure operations are 
investigated in details in [5] and the following notions and results are given there. 
Some further information on more general structures can be found in [17]. If a closure 
operation u fulfils the condition 4° uuX = uXfor any X £ E, it is called a topological 
closure operation. By this way we get the usual concept of topology. A subset U e E 
is a neighbourhood of a point x e E in a closure operation u on E if x $ u(E — U). 
A system of all neighbourhoods of x is denoted by 9lu(x). 9lM(x) is a filter. Conversely, 
for any system {<Sx}xeE °f filters on K with x e X for any Xe gx and x e E, there 
exists a closure operation u on F such that 9ta(x) = 55* for any xeE. A closure 
operation u is a topological closure operation iff for any xeE and Ue 9lu(x) there 
exists V e 9lu(x) with 9lM(y) for any yeV. 

The closure operations on E may be ordered in the following way: u g v iff uX 3 
,3 vX for any X c K. This ordering is dual to that used in [5]. The system %>(E) 
of all closure operations on E with ordering is a complete lattice. It holds 9lu v v(x) = 
= 9lM(x) v 9l„(x), 9ltlAt,(x) = 9lu(x) n 91 (x), where in the right sides of equalities 
are lattice operations in the lattice of filters. Since the lattice of filters is distributive, 
<tf(E) is a distributive lattice for any E (see [4]). Hence the mapping CI: @(E) -> ^(E), 
Cl(Z) = Cl% for any Z e @(E), is a v -homomorphism and lattices @(E) and Cl$(E) 
are isomorphic. But, in general, CI is not a homomorphism. We are going to find the 
conditions under which the mapping CI restricted to a subinterval of 38(E) is a homo­
morphism or an isomorphism. Thereby some investigations from [15] will be 
completed. 

1.1. Theorem. Let Ebea set, 5 i , X2 e $(E), Zx ^ Z2. The following conditions are 
equivalent: 
(i) CZ/fl!, a:2] : [Zt, Z2] -> [Cl%1, C/£J is a homomorphism 

(ii) It holds ZJM - Int%i)(M) = Z2\M - Int%1-(M)for any MeZ2. 
Proof: Put M = Int%[(M). 
Let (i) hold and Me %2. It is ZJM - M s Z2/M - M. Let0 # XeZ2jM - M. 

There exists Fe3:2 with X=Yn(M~ M). Denote N = YnM. Let 2 ' = 2^ v 

106 



v{<d,M,E}, %" ^%l v {9,N,E}. Let x*x- It is Me9tv(x) n ^Xx) ^ 

= V ) n 9 l C W ) W = 9 W ) A C I ( I - ) ( * ) -
 S i n C C * ' ' S ' e P E i . Z a L it holds 

C/(3:') n C/(3:") = Cl(%f n %"). Hence M e 9fe'nr(*). Thus there exists Zx e I ' n 3T 
with xeZxGM. There exist V^, Wx, ^ e ^ with Zx = Vxn M = W^u 
u ( W ; ' n N ) . Since Wxn(M-M)=®, rt holds Z x n (M - M) = W;'n Nn 
n(M - M)<=kNn<M - M) = Yn (M - jfiO = *. Put V = U Vx. It is Ve%i9 

xeX 

Vn(M-M)= U Vxn(M-lM)= (J [Vxn(M ^ M ) ] = (J [ Z * n ( M - M ) ] £ 
* e * x e X xeX 

£ X Since x e Vx for each x e X, one gets Vn (M - M) = X. Thus Xe 3^/M - M, 
i.e. 3:2/M - M ^%lM - M. 

Let (ii) hold. Since Cl/[%i, %2] is a v -homomorphism, it is an isotone mapping. 
Therefore Cl(%fn%") = Cl(%') A Cl(%") for all 3:', %" e[%u%2]. It remains to 
prove that C/(3:') A C/(3:") is a topological closure operation for all 3 / , 3:" e [%t, %2]. 
Let 3:', %" e[%l9 %2] and denote u = C / ( 3 / ) A C / ( 3 : " ) . We have to show that for 
x e E and U e 9tM(x) there exists V e 9lu(x) such that U e 9tw(y) for any y e V. Let x e E 
and Ue9lu(x). Hence Ue 9tx,(x) n 9 t x 0W and thus there exist Xe3:', Ye%" 
with JC e X £ U, x e Y £ U. Denote M = Xu Y. It is Xn Yn (M - M) e 3:2/M -
- M = %xjM - M. Thus we can find We %t such that Wn (M - M) = XnYn 
n(M-Af). We are going to prove (Wn X)u M = (Wn Y)u M. Let r e 
e ( W n X) - M. Then r e f f n ( I - i f ) c Y. Hence teWnY. Analogously it 
can be proven that (Wn Y) u M £ (Wn X) u M. Denote V = (Wn X)u M. 
We shall prove that V has the desired properties. It is Ve%' n %". Since C/(3:' n 
n 3:") S u>lt holds u(K - V) £ c/(.I' n 3:") (K - V) = F - V. Therefore w(K - V) = 
= K - V. Hence Ve 9ta(j) for any yeV. Since V £ [/, Ue 9lu(y) for any j e K . It 
remains to prove that xe V. If xe M — M, it holds x e W for x e X n Y and W n 
n (M — M) — Xn Yn (M — M). Therefore x e V holds. The proof is accomplished. 

1.2. Theorem: Let E be a set, %t,%2e $%(E), %x £ £ 2 - The following conditions 
are equivalent: 
(i) Clj[%x, %2] : [%i, %2] -* [ClXl, Cl%2] is an isomorphism 
(ii) For any M £ E every point of the set IntZ2(M) — IntZl(M) is isolated in the topo­

logy %t/M - IntXl(M). 
Proof: Let (i) hold. Let M £ E. Denote Mt = IntZl(M), i = 1, 2. Let a e M2 -

- Mi . Put 9tM(0 = 9lZi(t)fort^aandyiu(a) = 9t£l(a)v[M). The closure operation 
u satisfies the inequalities Cl%x = u <; C/$2. Since C/[3:i,3:2] is an isomorphism, 
there exists 3: e @(E) with u = C/(3:). Then, for some Ve %, we have a e V £ M. 
Let a 7- t e V. Since V e W^O = 9t£ l(0, it holds teMx. Thus V n <M - Mi) = {a}. 
Since Ve 9tu(a), there exists We %t such that aeWnM £ V. Hence l f n ( M - Mj) = 
= {a}. Therefore a is isolated in the topology %JM — Mx. 

Let (ii) hold. Let u e <£(E), ClZl = u <> C/$2. We must prove tha t« is a topological 
closure operation. Let x e £ , Ue9lu(x). It is xeInt%1(U). If x e IntZl(U), then for 
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V~Int%i(U) we have VeWu(x) and UeNu(y) for any ye V. Let x$IntZi(U). 
According to (ii) there exists WeXx with W r\ <jj - Int%i(U)) = {*}. Put F = 
= *Fn t/. It is Ve 9lu(x). Let >> e V, y # x. It holds y e Wn Int%i(U) e Xt. Hence 
Ue9lu(y). 

1.3. Corollary: Let E be a set, Xe 38(E). IfCl/[X) is a homomorphism, then it is an 
isomorphism. 

It is worthy to mention that if u e <$(E) and C138(E) n [«) is a lattice then u e C138{E) 
(see [14]). 

§2. MODULAR AND DISTRIBUTIVE INTERVALS OF 38(E) 

A. K. Steiner showed in [18] that the lattice 38(E) is not modular for card E ^ 3. 
In [2] it is proven that the lattice Jf (E) of all Tt-topologies on E is not modular for 
infinite E. We shall consider modular and distributive intervals of 38(E). A topology X 
on E is called nested if either X c y or Y s X for any X, Y e X. 

2.1. Theorem: Let E be a set9 X e 38(E). The following conditions are equivalent: 
(i) (X] is a modular lattice 

(ii) (X] is a distributive lattice 
<iii) £ is nested or X = {0,X ,£ - X9E} for X s E9 0 * X =* £. 

Proof: We shall prove (i) => (iii). Let (I] be modular and X be not nested. Then 
there exist X, Y e X with X $ Y and y $ X. Since (I] is modular, it holds {0, X, £} = 
= {0, X, £}v){0, F ,£}n {0,X,Xu Y9E}) = ({0,X,£}v{0, F,£}) n {0,X,Xu 
u y, £} = {0, X, Xu y, £}. Hence Xu y = £. Analogously we prove I n 7 = 0. 
Thus Y = E- X. L e t 0 # Z e 2 . T h e n Z $ X and X $ Z or Z $ y and y $ Z . 
Therefore Z = Xor Z = Y. Hence 2 = {0,X,E - X,£}. 

It remains to prove (iii) => (ii). If X = {0, X, £ - X, £} , the lattice (£] is clearly 
distributive. Let X be nested. We shall prove Xt v X2 = XtuX2. It is sufficient to 
show that Xt u X2 is a topology. Let X, y e 3^ u X2. Since either X £ y or y e X, 
it holds Xn YeXt u 2 2 - Let XieXt u 2 2 for every i e/. Let Ik = { fe1 / I ,6 l k } 
for k = 1,2. Since I is bested, there exists k such that U Xt = (J X, e 2fc. There-

fore I x u I 2 is a topology. Hence (X] is a sublattice of exp (exp E) and thus it is 
distributive. 

X can be considered as a complete lattice ( v i s u and A is the interior of inter­
section). Evidently (X] is the lattice of all subsets of the lattice X closed under finite 
meets and arbitrary joins. Therefore the previous theorem can be compared with the 
result of Ph. Dwinger (see [6]) asserting that the lattice of all subsets of a complete 
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lattice L closed under arbitrary meets is modular (distributive) iff L is a chain. In the 
light of the fact that lattices (3T| are special case of lattices of topologies on complete 
lattices it seems to be interesting to know when they are complemented. 

A topology % on E is called a T^-topology if Clz{x} - {x} is closed in % for every 
x e E (see [1]). TD is between T0 and T t . In [12] Larson proved that a TD-topology % 
is a minimal ^-topology iff it is nested. 

2.2. Corollary: Let E be a set, cardE > 2 and % be a Tropology on E. Then % is 
a minimal TD-topology iff (%] is a modular lattice. 

In the study of distributive intervals in the lattice of topologies the results of § 1. 
can be utilized. 

2.3. Theorem: Let E be a set, %l9%2€®(E), %t s %2.Let%JM - IntZu(M) = 
— %2/M - IntZit(M) for every Me%2. Then [%i>%2] is a distributive lattice. 
Proof follows from 1.1. because <S(E) is distributive. 

Valent and Larson proved in [20] that any finite distributive lattice is isomorphic 
to an interval in the lattice of all Tt-topologies on a certain set. It follows from the 
previous theorem that the converse assertion holds. 

2.4. Theorem: Any finite interval in the lattice of all Trtopologies on an arbitrary 
set E is distributive. 

Proof: Let E be a set, [%t, 3:2]
 a fin*te interval in the lattice of all Tropologies 

on E. Let Me%2. Denote M = IntZi(M). Suppose that M - M is an infinite set. 
It is {M - {x}/xeM - M} £ %2 - %t. Put %x = 2 ^ ( 0 , M - {x},E} for every 
x e M - M. Let x,yeM-Af, x±y. Suppose that M - {x} e %y. Then there 
exist V,We%l with M - {x} = Vu [M - {y})]. Hence j> e F £ M. It is a contra­
diction to y$M. Therefore the topologies %x, xeM - M, are mutually distinct, 
what contradicts the finiteness of [%x, %2], We have obtained that M — M is a finite 
set. Since %t is a Tropology, %JM — M and %2/M — M are discrete. According 
to 2.3. [%%, %2] is distributive. 

Valent and Larson described in [20] linear intervals in the lattice of T^-topologies. 
They showed that [%t, %2] being a linear interval in Jf (E) implies the existence of 
a free ultratopology 3: with %x = %2 n %. Therefore the condition from 2.3. holds 
in this case again. But in regard to 2.1. this condition is not necessary for the distri-
butivity of [%t, %2]. However, in the case %2 discrete it turns out this to be necessary 
even for modularity of the lattice [%t, %2]. 

2.5. Theorem. Let E be a set, % e @(E). The following conditions are equivalent: 
(i) [%) is a modular lattice 
(ii) [%) is a distributive lattice 
(iii) Cl/[%) : [%) -> [Clz) is an isomorphism 
(iv) %/M — Intz(M) is a discrete topology for every M £ E. 
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Proof: According to 1.2. (iv) implies (iii). Since %(E) is distributive (iii) implies(ii). 
Clearly (ii) => (i). It remains to prove that (i) => (iv). Denote Z = Intz(Z) for every 
Z c £ 

Let [3) be modular and M £ K. Let xeM- M. Let %x = { 0 , M u { x } u 
u (E - M), K}, 3 2 = {0, M - M, F}, 3 3 = {0, {*}, M u {x} u (K - M), K}. Evid­
ently 3 1 v 3 2 = 3 3 v 3 2 . Put 3 f l = 3 v 3 l 5 %h = 3 v 3 2 , 3 C = 3 v 3 3 . Since 
3 f l = 3 C , the modularity of [3) implies that 3 f lv(3 f tA3c) = (3 f lv3„)A3 c . It holds 
( 3 : a v 3 : * ) A 3 c = ( 3 v 3 1 v 3 2 ) A ( 3 v 3 3 ) - = ( 3 v 3 3 v 3 2 ) A ( 3 v 3 3 ) = 3 v 3 3 . T h e r e f o r e 
{x}eZav (XbA%c). Since 3 f l = 3 v S l 5 there exist Ve3, We36A3c with Vn 
n [ M u {x} u ,K - M)] n W = {x}. Hence Vn W c M - M. There exist Xt, X2, 
X3, Yi', Y2 G 3 such that W = Yj u [Y2 n M - M)] = Xx u (X2 n {x})u 
u [X3 n (M u {x} u (K - M))]. Let t G W - PV. Then teY2n(M - M). Hence 
r = x. We get W = Wu {x}. Therefore Vn W = Vn(Wu {*}) = (Vn IF) u 
u {*}. Since Vn W ^ M - M, it holds VnW = ®. Therefore Vn W = {x}. 
Thus {*} = Vn [Yj n (Y2 n (M - M))] 2 Vn (Yx u Y2) n (M - M). Since Vn 
n (Yi u Y2) G 3 , it holds {x} G 3 /M - M. Therefore (iv) holds. 

There is a question, whether it can be found a modular interval of J*(K) which is 
not distributive. 

A topology 3 fulfilling the equivalent conditions of 2.5. will be called an m-topo-
logy. We are going to give some examples and properties of this topologies. An 
Mi-topology is a topology without isolated points every dense subset of which is 
open (see [10]). A topology every dense subset of which is open is called in [3] sub-
maximal. In [3], excercises of § 8. it is proved that supposing 3 is submaximal the 
relative topology 3/C/£(M) — Intz(M) is discrete for every M s= K. Therefore any 
submaximal topology is an m-topology. For instance any free ultratopology is sub-
maximal. 

2.6. Lemma. Let E be a set and 3 a T0-topology on E which is an m-topology. Then 
the interior of any dense set is dense. 

Proof. Let X .= E be dense in 3 . Suppose that X = Int%(X) is not dense. Then 
there exists Vx G 3 with Vx 4= 0, Vx n X = 0. Since X is dense, there exists xe Vtn 
n X. As 3 is an m-topology, there exists V2 G 3 with V2 n (X — X) = {x}. It is 
Vtn V2n X = {x}. We can take y e Vt n V2, y ?- x because x $ X. Thus y $ X. 
Since Intz(E — X) = 0 and 3 is an m-topology, there exists V3 G 3 with V3 n 
(E - X) = {y}. Let V = Vx n V2 n V3. It is Ve3 and W e F g {x,y}. Since 2 
is a :r0-topology it must hold {x} e 3 or {y} e 3 . This is a contradiction to x G 
G X - X, y $ X and X dense. 

A topology is called resolvable if it contains two disjoint dense sets (see [10]). 

2.7. Corollary. Let E be a set and 3 a T0-topology which is an m-topology. Then X 
is not resolvable. 

The supposition 3 is a r0-topology is necessary. 
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2.8. Example. Let E be a set, A ^ E and card A = card (E - A)- Then there 
exists a bijective mapping/: A -• E - A. Let % be the topology generated by the 
system {{x,fx}/x e A}. % is not a T0-topology. It is easy to see that % is an m-topology 
and A,E — A are disjoint dense sets. 

2.9. Lemma. Let E be a set and % e @(E). The following conditions are equivalent: 
(i) The system D% of all dense sets in % is a filter 

(ii) Any dense set in % has the dense interior. 
Proof: Put Z = Intx(Z) for Z c K. 
Let (i) hold. Let X be dense in %. E - (X - X) is dense. Hence X = Xn [E -

— (X — X)] is dense. 
Let (ii) hold and X, Ye Dz. It is Xn C/x(Y) £ C/£(Xn Y). Hence X = Xn £ == 

= Xn C/s(Y) s C/£(Y) c C/x(Xn Y). 
Thus Xn YeD£, i.e. Xn YeD£. Therefore (i) holds. 
Another statements equivalent with the conditions of 2.9. are given in [7]. 

§3. SIMPLE INTERVALS OF SKE) 

Hartmanis proved in [9] that the lattice @(E) is simple for cardE # 2 and that 
the lattice Jf (E) is not simple for an infinite set E. It arises a question for which topo­
logies % the lattice [%) is simple. 

3.1. Lemma. Let E be a set andSe a sublattice of $(E). Let A £ E such that either 
Ae% for every %e& or E - Ae%eSe. Let \j/A% = %/A for every %eSe. Then 
a mapping ij/A : Se --> $(A) is a homomorphism. 

Proof: Let A £ E. It can be easily proved that \j/A :Se -> $(A) is a v-homo­
morphism which is a homomorphism whenever E — A eSe for every 2 e J£? (see [16]). 
Let A e % for every % e<e. Then ^ X = % n exp A for every % eSe. Hence ^ is 
a n-homomorphism and therefore it is a homomorphism. 

3.2. Lemma. Let E be a set and A s £. Jhew £ = exp (£ - ,4) u [A) e J^(£) anrf 
the mapping \\/A : [%) -> ^(A) w an isomorphism. 

Proof. Clearly % e 0&(E). Since Ae%, \j/A is according to 3.1. a homomorphism. 
Le t ! g l j ^ c i j and ^ ^ = i/^2:2. Let Xe%l.ltis X n Ae \I/A%X = ^ 3 : 2 s 
c I 2 . Since X - A e% £ £ 2 , it holds Xe%2. Analogously we prove %2 c l l t 

Thus \I*A is injective. 
Let %' e $(A). Let 3^ be the topology on E generated by the system % u %'. 

Clearly ^ ( ^ I ) = T- T h u s ^ 1s surjective. 
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3.3. Theorem. Let E be a set and Z e 38(E). The lattice [Z) is simple iffZ is either 
an ultratopology or a topology of the form exp (E — A)KJ [A) for A £ E, card 
A* 2. 

Proof: It Z is an ultratopology then [Z) is simple. It Z == exp(E — A)u [A) 
for A c E, card A # 2 then it follows from Hartmanis' result and from 3.2. that 
[Z) is simple. 

Let Z e 38(E) and [Z) be simple. Let Xe Z. We shall show that exp X <= Z or 
exp (E - X) £ z. Suppose that exp X $ Z. According to 3.L i//x : [Z) -> 38(X) is 
a homomorphism. Since \j/x(exp E) = exp X # \I/XZ, the mapping i/^ is injective. 
Let Z' be the topology on E generated by the system £ u exp X. It holds \I/XZ' = 
= exp X = ij/x(exp £).Hence 3/ = exp E. Thus exp (£ - X) s I . 

Let _4 = {x e 2-7{x} £ Z}. It follows from the above result that the relative topology 
Z/A is indiscrete. If A = 0 , then Z = exp (E - A) u [A) is a discrete topology. Let 
card A = 1. Then Z/M - Int%(M) is a discrete topology for every M c J?. By 2.5. 
the lattice [Z) is distributive. A distributive lattice is simple iff it contains less than 
three elements (see [19] Ch. IX, Ex. 15). 

Therefore l i s an ultratopology. Let card A > 1. It follows from 3.1. that \\tA ; [Z)-+ 
-* 38(A) is a homomorphism. Since i[/AZ # \j/A exp E, il/A is injective. Let Z' = Z u 
u {0, A, E}. As \I/AZ = ^ 2 ' , one gets Z = 2,'. Thus A e Z and 2, = exp (£ - ,4) u 
u [A). Since the lattice 38(A) is not simple for card A = 2, it follows from 3.2. that 
card A ^ 2. The proof is completed. 

3.4. Corollary. Let E be a set and Z a Tropology on E. Then the lattice [Z) is 
simple iff Z is either discrete or an ultratopology. 

Finally, we are going to give one result on homomorphisms of the lattice (Z], 
where Z is a Tropology. 

3.5. Theorem. Let E be a set and Z be a Tropology on E. The following conditions 
are equivalent: 
(i) For any non-injective homomorphismfof(Z] into a lattice L and any atom {0, X, E} 

of(Z] it holds J'{0, X, E} =f{0, E}. 
(ii) Any v -complete homomorphism of(Z] onto a v -complete lattice L, is either an 

isomorphism or L consists of a single element 
(iii) Z — {{«}} is not a topology for any isolated point a ofZ. 

Proof: (i) implies (ii) because any element of (Z] is a join of atoms. 
Let (ii) hold and a be an isolated point of Z. In the case cardE = 1 the theorem 

holds. Let cardE > 1. Suppose that Z - {{a}} is a topology. Let L == {0,1}, 
0 < 1, be a two-element chain. Let S g l Define fS = 0 for © c % - {{a}} and 
f® = 1 otherwise. It is easy to see that f: (Z] -+ L is a complete homomorphism. 
It isf{0, {a},E} ^f{0,-5}. Since card E > 1 and Z is a Tt-topology, there exists 
0 * VeZ with a$VIt holdsf{0, V,E} =f{0,E}. It is a contradiction. 
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Let (iii) hold. Let L be a lattice a n d / : ( I ] - > I a non-injective homomorphism. 
Denote 0 =/{0,2s}. We shall prove an auxiliary assertion 
(1) Let {0, X, E}9 {0, 7, E} be two atoms of (X]. Let Xn F ^ 0 and F $ X. Let 

/{0, X, £} = 0. Then/{0, 7, £} = 0. 
Itis/-{0,Xn 7,£} ^/({0,X,2s}v{0, Y,£}) =/{0,X ,£}v/{0,F,^}=/{0,7,£}. 

Thus/{0,Xn Y9E} = /{0,Xn 7,£} A/{0 , 7,£} =/){0,Xn 7,£}n{0, 7,£}) == 
= 0 because Y $ X. In the case card 7 = 1 it is 7 = 7 n X and therefore (1) 
holds. Let card 7 > 1. There exists xeXn 7. Since X is a Tropology, it holds 
7 - {x} e X. It is {0, 7, £} c {0, Xn 7, £} v {0, 7 - {*}, £}. In the same way as 
above we obtain/{0, 7, E} = 0. 

Since/is not injective and every element of [X] is a join of atoms, there exists an 
atom {0, V, E} of (X] such that/{0, V9 E} = 0. Let {0, X, E} be an atom of (X] and; 
X# V. Let cardX > 1. Thus there exists JceX with F ^ {*}. Therefore F n 
n (K - {*}) # 0. Evidently £ - {*} s V implies K - {x} = K It follows from (1) 
that/{0, E - {x}9 E} = 0. Again owing to (1) it holds/{0, X, E} = 0. Let cardX = 1. 
According to (iii) X — {X} is not a topology. Thus there exist Xi9 X2eX such that 
X = Xt n X2 and card Xf > 1, i = 1, 2. Therefore /{0, Xf, £} = 0 for i == 1, 2. It 
follows from {0, X, E} s {0, Xx, ^} v {0, X2, £} that /{0, X, Ĵ } = 0. 

Thereby we have shown that (iii) implies (i). 
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