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AN OSCILLATION CRITERION FOR THIRD 
ORDER LINEAR D I F F E R E N T I A L EQUATIONS 

VÁCLAV TRYHUK, Český Těšín 
(Received June 17, 1974) 

We investigate a linear differential equation of the third order of the form 

(L) ym + p(t)y' + q(0y = 0. 

We assume that the functions p(t), q(t) are continuous and do not change sign on 
[a, oo). 

This equation (L) was studied by several authors, namely GreguS, Hanan [1], 
Rab, Svec, Zlamal [4], and the main results have been collected by Lazer [2] 
giving the most important papers of the above mentioned authors in the list of 
references. Some new results were obtained by Singh [3]. 

Let p(t)e Cl[a, oo). Then investigating this equation (L), Mammana's identity 
written in the form 

t 

(M) F(y(t)) = F(y(a)) + j [_2q(s) - p'(*)] y2(s) ds, 
a 

where F(y(t)) -= y'\t) - 2y(0y"(0 - p(t)y\t) 
has a very important role. 

A nontrivial solution of the equation (L) is called oscillatory if it has infinitely 
many zeros on [a, oo), otherwise nonoscillatory. 

In the proofs of some theorems in the papers [2], [3] there is used the procedure 
given in the form of the following. 

Lemma 1. Let ut(t) e Cr[a, oo) be functions, cin constants, n > a positive integers, 
i = 1, 2,.., s. Let the sequences {y„z)} be defined by the relations 

yiz) = I v ! " , f c? = 1, 2 = 0, 1, ..., m = r. 
i = l i=-l 

Then there exists the sequence {nj} such that cinj -* c( and {yif} converge on every 
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finite subinterval of [a, oo) uniformly to the functions 

/ z ) = I <*.{*>, X > ? - 1 for « y ^oo . 

We shall consider the case of p(t) ^ 0, q(t) < 0. 

Lemma 2. Let p(t) ^ 0, q(t) < 0 and y(t) be a nontrivial solution of the equation (L) 
satisfying y(t)y'(t) 4= 0 on [a, oo). Theny(t)y'(t) > 0 holds on this interval 

Proof: Lety(0y '(0 < 0. We can suppose without loss of generality that y(t) > 0-
Then on [a, oo) there holds 

-ym(t)=My'(t) + q(t)y(t)<*-

The function y"(t) *s increasing and b *z a exists such that on [b, oo) there holds 
either y"(t) g 0 or y"(t) ^ 0. 

In the first case, y'(t) < 0 is a nonincreasing function and for c ^ b there exists 
a positive constant Kt such that y'(t) < — Kx on [c, oo). By integrating this in­
equality from c to t we obtain 

y(t) S —Kx(t - c) + y(c) -> - oo for f -* oo 

which is a contradiction for X 0 > 0 on [a, oo). 
Now let j>"(t) 1̂  0. Since j>"(0 is a strongly increasing function, there exists d^b 

and a positive constant K2 such that y"(t) > K2 on [d, oo). By integration from d to t, 

/ ( t ) > K2(* - d) + y'(d). 

We see that y'(t) has a zero on [d, oo), which is a contradiction. 
Thus we have proved that y{t)y'(t) > 0 on [a, oo). 

Lemma 3. Let p(t) ^ 0, q(t) < 0, and y(t) be a nontrivial nonoscillatory solution of 
the equation (L) satisfying F(y(t)) > 0 on [a, oo). Then c e [a, oo) exists such that 
y(0y'(0> 0 for all t ^ c. 

Proof: Let y(t) be any solution of (L) which is nonoscillatory. Let t0 be its last 
zero. If y(t) is nonvanishing on [a, oo), let t0 be arbitrary. We can suppose without 
loss of generality that y(t) > 0 for all t > t0. 

We assert that the function y'(t) has at most one zero on (f0, oo). Indeed, if tt 6 
€ (t0, oo) is a zero of y'(t), F(y(tt)) > 0 and hence y"(tt) < 0. Consequently tx is the 
unique zero. 

Let c > tx > t0. Then y(0y'(0 ^ 0 holds on [c, oo) and the assertion follows 
from Lemma 2. 
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Lemma 4. Let p(t) *> 0, q(t) < 0 and p'(t) - 2q(t) ^ 0. If 
0 

[p'(0-2g(0]d' = «> Í' 
and y(t) is a nontrivial solution of the equation (L) satisfying F(y(t)) > 0 on [a, oo), 
then y(t) is an oscillatory solution. 

Proof by contradiction: Let y(t) •£ 0 be a nonoscillatory solution of the equation 
(L) and F(y(t)) > 0 on [a, oo). By Lemma 3 there exists c e [a, oo) such that y(t) y'(t)> 
> 0 on [c, oo). Without loss of generality we can suppose y(t) > 0. Then for arbitrary 
d ^ c there exists a positive constant K such that we can put y(t) *g; K on [d, oo). 
From Mammana's identity (M) it follows 

t 

F(y(t)) = F(y(d)) - J [>'(,) - 2.j(s)] y2(s) ds 
a 

t 

£F(y(d))-K2 ^tp'(s)-2q(s)-]ds 
a 

and for t -» oo there is F(y(0) -* — oo, which is a contradiction with our supposition. 
We have proved that y(t) cannot be nonoscillatory under the given supposition. 

Lemma 5. Let p(t) § 0, q(t) < 0 and p'(t) - 2q(t) ^ 0. If 

lp'(t)-2q(t)-]dt=co, 
/ ' 

tAcrt tAc nontrivial solution y(t) of the equation (L) is nonoscillatory iff ce [a, oo) 
exists such that F(y(c)) S 0-

Proof: Let y(t) be a nontrivial solution of the equation (L). If F(y(0) > 0 on 
[a, oo), then j>(f) is oscillatory by Lemma 4. Then c e [a, oo) exists for nonoscillatory 
y(t) such that F(y(c)) ^ 0. 

On the contrary, if F(y(ct)) ^ 0 for some cl e [a, oo), then F(y(t)) < 0 on (c, oo) 
since F(y(0) cannot be a constant. Let us suppose that y(t) has the root in tQ e (c, oo). 
Then F(0>(fo)) = y/2(to) s= 0, which is a contradiction. The solution y(t) must be 
nonoscillatory. Thus the assertion is proved. 

Theorem 1. Let p(t) ^ 0, q(t) < 0 and p'(t) - 2q(t) ^ 0. If 
oo 

Jiy(0-2«(0]d<--oo, 
a 

then the equation (L) has two linearly independent oscillatory solutions. 
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Proof: Let the solutions ut(t), »i(t), u3(t) of the equation (L) satisfy the initial 
conditions 

u<JH„\-ji - J 0 ' ' + . / + - 1 i = L2 ,3 , 
«V(«) = « > U + 1 - { 1 ) i = y + 1 ) , . 0 . 1 , 2 . 

Let n > a be positive integers, bin, b3n and c2n, c3n constants such that the solu­
tions of equation (L) of the form 

vn(t) = blnux(t) + b3nu3(t), 

H>„(0 = c2nu2(t) + c3nw3(t), 
(b\n + b\n = **, + c\n - 1) 

satisfy i>n(/i) = wn(n) = 0. Then F(vn(n)) = 0, F(wn(n)) > 0 and since F(y(t)) cannot 
be a constant on intervals of the form [t0, oo), there holds 

(1) F(vn(t)) > 0, F(wn(t)) > 0 on [a, bn), where bn -> oo as n -+ oo. 

By Lemma 1 the sequence {nk} exists such that vnic(t) converges for nk ~» oo on 
every finite subinterval from [a, oo) uniformly to the function v(t) and there holds. 

t/s>(0 = blU\s\t) + &3u
(
3
s)(0, ^ = 0,1, 2, 

6? + 6̂  = 1. 

From (1) it follows that F(v(t)) ^ 0 on [a, oo). As F((yt)) is a nonincreasing func­
tion and is not a constant on [a, oo), there must be F(v(t)) > 0 on [a, oo). In the 
contrary case F(v(t)) obtains negative values, which is a contradiction. We shall 
prove similarly that F((w(t)) > 0 and c\ + c\ = 1 on [a, oo). 

Solutions v(t), w(t) are oscillatory by Lemma 4. Let the solutions v(t), w(t) be 
depend. As b\ + ft3 = c\ + c3 = 1 is satisfied, there holds i;(t) = Kw3(0 for some 
K # 0. Then however i?(/) is nonoscillatory by Lemma 5, because F(u3(a)) = 0 
by definition of u3(t)9 which is a contradiction. 

We have proved that v(t), w(t) are linearly independent solutions; this completes 
the proof. 

Theorem 2. Let p(t) }>Q be a bounded function, q(t) < 0, 

LP'(0-<K0]d' = oo. J' 
If y(t) is a nontrivial nonoscillatory solution of the equation (L) satisfying y'(t) ^ Q 
on [a, oo), then y(t) is unbounded. 

Proof: Let y(t) be a nonoscillatory solution of the equation (L) satisfying y'(0 ^ 0 
on [a, oo). Without loss of generality we can assume y(t) > 0 on [a, oo). By Lemma 2 
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there holds y(t) y'(t) > 0 on this interval. Then c e [a, oo) and a positive constant Kx 

exist such that we can put y(t) ^ Kx on [c, oo). 
Let us suppose that y(t) is a bounded solution. Since p(t) is a bounded function 

by the supposition, positive constants K2, K3 exist such that y(t) = K2 andp(f) 5£ K3 

on [c, oo). By means of integration of the equation (L) within the limits c, t we obtain 

t 

=JV(s ) -/ ( ' ) + P(t)y(t) - y\c) - p(c)y(c) = | [p'(s) - q(s)]y(s)ds. 

There holds 
t 

y"(t) + K3K2 + const = j [p'(s) - q(sj] y(s)ds = 

C 

t 

= X?|[p'(s)-€(s)]ds. 
C 

Hence we have y"(t) -> oo for t ~> oo. A positive constant N for de [c, oo) exists 
such that / ( 0 > N on [d, oo). By integration from d to t then y(t) > N(t — d) + 
+ y(d) -> oo for t -> oo, which is a contradiction. Then the solution y(t)is unbounded. 

So the assertion is proved. 

Example: Let us consider the equation (L) on the interval [2, oo) for 

P(0 = i - -3-r 2>o, (2(0 = ^ - r 3 - | - r 1 < o . 

Further there holds 

and 

p'(0-24(0 = y Г 1 + - g - Г 3 > 0 

00 

í-lp'(t) - 2q(tJ\dt = co. 
2 

By Theorem 1 this equation has two linearly independent oscillatory solutions 

v(t) = r 1 / 3 cos t, w(t) = r 1 / 3 sin * 

for which the functions F of Mammana's identity (M) are positive. Further linearly 
independent solution of this equation is nonoscillatory 

u(t) = t l \ F(u(t)) -+ - oo for t -> oo. 

It can be easily verified that for u(t) the suppositions of Theorem 2 are satisfied. 
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