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IDEALS OF IV-ALGEBRAS 

IVAN CHAJDA, Pferov 

(Received September 19, 1973) 

Homomorphic mapping of direct products of algebras are investigated from the 
point of the direct decompositions of mappings in papers [4] and [5]. There is proved 
that for direct products of so-called pseudo-ordered algebras we can state the converse 
of the theorem on direct products of surjective homomorphisms. For N-algebras 
(they are direct products of algebras without zero-divisors) we can state only a weak 
analog of the converse of this theorem. From it there is clear that the N-algebras 
play an important role in the theory of direct decompositions of homomorphisms. 
N-algebras are for example atomic Boolean algebras, lattices generated by chains 
with, the least (or greatest) element, 1-groups in which the minimal condition holds 
(see [4]), direct products of rings without zero-divisors, linear O-algebras and Q-groups 
without nilpotent elements (where Q contains n-ary operation for n > 1) — see [ l] , 
[6], and other algebras important in applications. 

In this paper, there are defined ideals in N-algebras. The definition is similar to the 
definition of ideal in rings (see [7]) and in linear jQ-algebras (see [6], [1]). These 
ideals are used for investigation of direct decompositions of homomorphic mappings. 
This paper is a continuation of papers [4] and [5], all concepts and notations are 
taken from there. 

1. 

In the whole paper the symbol 91 denotes a class of algebras with zero 0, binary 
operation © and a set Q of n-ary operations fulfilling identities: 

(i) 0 © a = a © 0 = a for each A e 91 and arbitrary ae A 
(ii) 00 ... 0 co = 0 for each co e Q. 

Let A e9l. We say that A is without zero-divisors iff there exists Q' ^ 0, Q' c Q 
that for each coe Q' the arity of is greater than 1 and 

(iii) axa2 ... anco = 0 iff a{ — 0 for at least one ie {1, ..., n). 

Operations from Q' are called regular. Direct products of algebras without zero-
divisors are called N-algebras. 

Let A e 91 be without zero-divisors. We say that A is strongly pseudo-ordered if 
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there exists Q" c Q\ Q" ^ 0 such that for each COGQ" and arbitrary n-tupl 
ax, ..., an e A the following holds: 

(iv) a^ ... aneo = a{ for suitable / e {1, ..., n}. 

It is clear that each element of strongly pseudo-ordered algebra is idempotent with 
regard to operations from Q". 

Operations from Q are denoted by the same symbols in all algebras of 31. Let 
Axe31 for T e T The direct product of AT is denoted by f ] Ax. By the symbol AT 

T G T 

(resp. Y\AX for T' cz F) we denote a subalgebra of f| ^T s u c n t n a t FrT^T = -4T, 
TGT ' ^ ^ ^ T G T 

prx,At = 0 for %' # x (resp.pr, f[Ax = Ax for t G T'andprT, Y\AX = 0 for T' G F - F). 
T6T ' T6T ' 

In the whole paper the concept "algebra without zero-divisors" mean the algebra 
of 31 without zero-divisors which is not one-elemented. 

2. 

In paper [5], there is proved that for N-algebras the theorem analogous to the 
classical Remark-Krull-Schmidt's theorem (see [7]) is valid, i.e., if AT, Ba are al­
gebras without zerodivisors, A = \\AX, A = \\Ba, then card T = card S and 

T e T (X 6 S 

there exists a permutation n of S such that Ax = Bn(a) for each T e T. 

Lemma A. Let A be an AJ-algebra, coe Q and cobea direct product of regular opera­
tions of corresponding direct factors, co n-ary. Then it holds 

(v) ax ... ai.i0Aai+l ... anco = 0A 

for arbitrary al9 . . . ,# ,_ ! , ai+1, ...,aneA. 
Accordingly, for each N-algebra there exists at least one co e Q satisfying (v). The 
set of all co G Q satisfying (v) is denoted by Q0. 

Proof. Let AT is without zero-divisors for all T G T, A = \\ Ax. 
XGT 

Let co fulfil assumptions of the lemma A. Then 

prt(ax ... ai.i0Aai+1 ... anco) = prx(ax) ... prx(ai^1)0prx(ai+1) ...prx(an)co = 0. 

From it follows ax ... ai-i0Aai+l ... anco = 0A. 

Definition 1. A subset B of an N-algebra A is said to be ideal if: 

(I) a,beB=>a®beB 

(II) ax, ..., an e A, at e B, co e Q0 => ax ... anco e B. 

From the lemma A follows the correctness of the definition 1. 
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Lemma B. 0^ e Bfor each ideal B of an N-algebra A. 

Proof. Let B be an ideal of an N-algebra A, co be the direct product of regular 
operations of corresponding direct factors, ax, ...,ane A, a(e B, aj = 0 and i # j , 
co n-ary. Then 0^ = ax ... aj„x 0Aaj + x ... anco, but ax ... anco e B by (II) of the 
definition 1, then 0^ e B. 

Theorem 1. Let ~ be an arbitrary congruence relation on an N-algebra A. The 
subset of all elements ae A with a ~ 0A is an ideal of A. 

Proof. Let cp be a canonical homomorphism of A onto Aj~. Then a ~ 0A if 
a e ker cp. Denote B = ker cp. Let a, b e B, then cp(a © b) = cp(a) © cp(b) = <p(0A) © 
© <P®A) = <?(0A ® 0A) = <K0A)> 1-e- a ® be B. Let aL, ..., an G A, a, e B, 6O e Q0. 
Then ^(aj ...,flf_1flI.ai+1 ... anco) = pfo) ... cp(a^x) cp(0A) cp(ai+x) ... (p(a„) co = 
= <p(a! ... 0;-i 0^a i+1 ... flBco) = cp(0A), i.e. ^ ... anooeB. q.e.d. 

We can easy prove the theorem: 

Theorem 2. The intersection of arbitrary set of ideals of an N-algebra A is an ideal 
of A. The ideals of an N-algebra A form the complete lattice with the least element 
{0A} and the greatest element A with respect to the set inclusion. 

Definition 2. An N-algebra A is said to be distributive if there holds 

(vi) at ... a,..-. 0Aai+i ... anco = 0A 

(vii) ax ... a^x(b © c)ai + l ... anco = 

= ( ^ ... ai.ibai + 1 ... anco) © (ax ... a^x cai+x ... anco) 

for each coe Q, b, c, ax, ...,ai_x, ai+x, ..., ane A and arbitrary ie {1, . . . , «} . The 
operations co e Q of distributive algebra are called distributive. 

Definition 3. An ideal B of an N-algebra A is said to be normal if for any aeA 
holds a © B = B © a. 

Theorem 3. Let A be a distributive N-algebra with the associative operation ©. 
A partition of A is induced by a congruence relation on A if it is a partition by a normal 
ideal of A. 

Proof. If ~ is a congruence relation on A, then ~ induces a partition by the 
ideal B = ker cp, where cp is the canonical homomorphism of A onto A/~, which 
follows from the theorem 1. 

Let axea © B, then ax = a © bx for some element bx e B. From it we obtain 
cp(ax) = cp(a) © cp(bx) = <p(a), i.e. ax ~ a = 0A © a. By the lemma B0Ae B, thus 
ax e B + a. The converse inclusion is obtained analogously, thus a © B = B © a 
and B is a normal ideal. 

Conversely: let A be an N-algebra with associative operation ©, B be a normal 
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ideal of A. By the lemma B 0A e B, thus a © B run over the whole algebra A for 
a e A. Let us consider the partition A/B, i.e. the set of all classes a © B for a e A. 

(a) Let ax © a2 = a3, denote a; = af © B for / '= 1, 2, 3. Let ai G ax, a2 e a2, 
then there exist bi9 b2 e B so that ai = ax © bi9 a'2 == a2 © b2. Then ai © a2 = 
= (aj © bx) © (a2 © b2). From normality of B follows the existence of b3 e B 
so that a2@b2 = b3 © a2, thus ai © a2 = (ax © b2) © (b3 © a2) = ai © V © 
© a2 = a! © a2 © b for b'9 b e B, © beeing associative. From it we have a\ © a2 e 
e a3. Let a3 G a3, then a'3 = a3 © b3 = ax © a2 © b3 = (al © OJ © (a2 © b3) 
for some b3 G B, thus af

3eai © a2. Hence a^ © a2 = a3. 
(b) Let A be distributive, xx, ..., xn e A9 xt e B, co be a distributive operation and 

xi ... xna> = x. Then 

x!^ ... xnco = (x! © B) (x2 © B) ... (xn ® B)co = 
= *I (X 2 © B) ... (xn © B)co® B(x2 © B) ... (xn © B) co = 

= *i(*2 © B) .. (*„ © B) co © B = 
= *1*2(*3 © * ) ••' (*» © * ) ® © *1^(*3 © # ) ••• (^n®B)C0®B = 
= xix2(x3 © B) ... (xn © B) CO © B = ... = xi ... xnOJ © B = x, 

as we obtain from identities (vi) and (vii) in the definition 2. Thus, the partition of A 
by normal ideal B is induced by a congruence relation. 

q.e.d. 

3. 

Definition 4. An ideal B of an N-algebra A is called prime if there exists co e Q 
which is the direct product of regular operations such that 

(viii) aXa2 ... anco G B => a,, G B for at least one je {1, . . . , «} . 

Theorem 4. The homomorphic image of a distributive algebra A without zero-
divisors is an algebra without zero-divisors if the kernel of the homomorphism is a 
normal prime ideal of A. 

Proof. Let A be an distributive algebra without zero-divisors, cp be a homomorphic 
mapping of A into C G9L By the theorem 3 B = ker cp is a normal ideal in A, ^(0^) 
is a unique zero of an algebra cp(A) by the lemma A in [5]. Let B be a prime ideal, 
a>0 be an n-ary operation fulfilling (viii) and let al9 ..., an e A, cp(at) ... <p(an) co0 = 
= cp(0A). Then cp(ax ... anco0) = cp(0A) and from it aX ... anco0eB9 i.e. a/GB for 
at least one J, in other words cp(a^ = <p(0 )̂. Thus co0 is a regular operation in <pG4), 
i.e. Q' # 0 for <p(A). 

Conversely —let <p(A) be without zero-divisors, B = ker <p, at ... ancoeB and cD 
be a regular operation in <p(A() (by the lemma A in [5] co is regular in A too). Then 
<p(a! ... anco) = cp(0A)9 from this cp(ax) ... <p(an)co = cp(0A)9 i.e. <p(af) = ^)(0j for 
at least one ie {I, ..., n). Thus af G B and B is a prime ideal. 

q.e.d. 
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With this concepts we can now investigate direct decompositions of homomorphic 
mappings of N-algebras. 

Theorem 5. Let Ax, Bx be distributive algebras without zero-divisors, A = f ] .A t , 
T € T 

B = \\BX, <p be a homomorphic mapping of A onto B so that Ax n ker <p is a normal 
teT 

prime ideal of A x for each xeT. Then <p = Yl(Pt> where <ptis a homomorphic mapping 
T 6 T 

of Ax onto Bn(x), where n is a permutation of the index set T. 

Proof. If Ax n ker <p is a prime ideal in Ax, then cp(Ax) is without zero-divisors 
by the theorem 4 and by the corollary 3 in [5] we obtain the assertion of the theorem 5. 

Remark. The theorem 5 is a converse of the theorem 1 in [4] (or theorem in [3], 
p. 217) for the class of homomorphisms for which ker cp n At is a normal prime 
ideal in Ax, Ax are distributive.- These conditions are fulfilled for arbitrary homo-
morphism, if Ax, Bx are rings without zero-divisors (see [7]) or for homomorphism 
preserving sup and inf, if At, Bt are completely ordered groups (see [4]). Other 
examples are in the theory of .G-rings. 

Theorem 6. Each ideal of a strongly pseudo-ordered algebra A e^U is the prime 
ideal. 

Proof. Let B be an ideal of strongly pseudo-ordered algebra A, ax, ...,aneA, 
ax ... anco e B, but ax ... anco = a{ for each n-ary co e Q", thus ate B and B is the 
prime ideal by the definition 4. 

We can state now theorems about the homomorphic mappings of the type "into". 

Theorem 7. Let Ax, Bae% be distributive algebras without zero-divisors and A = 
= Y\ Ax, B = Yl Ba.Let (p be a homomorphic mapping of A into B with card (p(A) > 1. 

T6T aeS 

Let Ax n ker (p be a normal prime ideal in Axfor each xe T. Then there exists T # 0 , 

T £ T such that <p(A) = (p(A*), where A* = J ] At and <p\A* = ["] (px, where <px 
xeT' tt-r 

is a homomorphic mapping of Ax onto an algebra B(T) without zero-divisors, which is 
isomorphic with a subalgebra of B. 

Proof. If Ax n ker <p is a normal prime ideal in At, then cp(Ax) is without zero-
divisors by the theorem 4. Let us denote (p(Ax) = B(x). Let us denote by T the subset 
of T for which % e T => (p(Ax) ^ q>(0A). From card (p(A) > 1 it follows T # 0. 

It is clear that <p(A) = cp(A*). Let x' * x", x', x" € T and B^ n W> # {<p(0A)}. 

Then for * e (B(T'} n B{x'f)) - {(p(0A)} there exists axeAx., a2eAx., such that 
cp(ax) = b, cp(a2) = b. By the lemma A in [4] we have ax # 0A ^ a2. Let co be the 
direct product of regular operations, then (p(axa2 ... a2(o) = <p(0A) because x' # x" 

and prxax = 0 for x * x" and prxa2 = 0 for x' ^ T", but cp(ax) <p(a2) ... cp(a2) co = 
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= bb ... bco # (p(0A) because b ?- (p(0A) and by the lemma A in [4] <p(A) has no 

zero different from ^(0^). By the theorem 4 B{x) is without zero-divisors for each 

TET From this contradiction there follows B{x) n / ' = {(p(0A)} for arbitrary 

T\ T" e T', T' # t". From this we obtain <p(A) = f ] B(x) and <p|^ = fj <pT, where 

^ t = p r t 9 a n d ^ = <pT(^). 
q.e.d. 

Corollary 8. Let Axe
(U be distributive strongly pseudo-ordered algebras for x e T, 

A = Yl Ax and B e 91. Lef <p be a homomorphic mapping of A into B with card cp(A) > 1. 
t e T 

Then there exists T # 0 , r c T such that <p(A) = <p(A*)9 where A* = f ] AT and 
T 6 T 

^U* == 0 ^t» wAere cpx is a homomorphic mapping of Ax onto a distributive strongly 

pseudo-ordered algebra isomorphic with a subalgebra of B. 

The proof follow directly from the theorems 6 and 7. 

Remark. Direct products of distributive strongly pseudo-ordered algebras are 

for instance all atomic Boolean algebras and all distributive lattices generated by 

chains with the least (or greatest) element (see [2] and [4]). 
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