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1. INTRODUCTION

In this paper one internal characterization of semilattices satisfying the descending
chain condition is given. Further the distinguishing subsets of semigroups are
constructed. The results concerning the distinguishing subsets of semilattices satisfying
the maximum condition are given in [4]. In the introductory part we give some
known definitions and results.

1.1. Definition. Let G be an ordered set, E = G. The set E is called an initial
segment of G if, for all elements x € E and y € G, the condition y < x implies y € E.

1.2. Lemma. Let G be a lower semilattice’ J = G. Then J is an ideal in G iff J is an
initial segment.

Proof. Let J £ G be an ideal. Let xe J, yeG, y 2 x. Then x = x A ye J.
Hence J is an initial segment in G.

Let J be an initial segment in G. Let xe€ J, y € G be arbitrary. Then we have
x Ay £ xand hence x A ye Jand Jis an ideal in G.

1.3. Definition. Let G be an ordered set and let H be a well-ordered set. A one-one
isotone mapping ¢ of G into H is called a good extension of G.

Theorem (V. NovAk [1], Theorem 2.3) — Let G be an ordered set. Then G has
a good extension if and only if G satisfies the descending chain condition.

1.4. Definition. Let G be a semigroup, L £ G its subset. For x, ye G we put
(x, y) € Eg,1, if, for any u, ve G, the condition uxv € L is equivalent to uyv e L.

1.5. Remark. It is easy to prove that the relation Zg, . is a congruence-relation on G

(See [2], [3D).
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1.6. Definition. Let G a semigroup, L < G a set, u, v € G. We say that the elements
x, ye G, x # y, are distinguished by u and v with respet to L if the condition uxv e L,
uyv € L, are not equivalent. We say that L distinguishes G if, for any x, ye G, x # y,
there are u, v € G such that x, y are distinguished by « and v with respet to L.

2. ACHARACTERIZATION OF SEMILATTICES SATISFYING
THE DESCENDING CHAIN CONDITION

2.1. Theorem. Let G be a semigroup satisfying the folowing conditions:

L. There exists a (transfinite or finite) sequence (a,), < 3 (where & is an ordinal)
in which each element of G appears precisely once such that for every o < 3 the set
{a,;1 < a} is an ideal in G.

2. For every x € G there exists a natural number n(x) = 2 such that x"™® = x.

Then G is a lower semilattice satisfying the descending chain condition.

Proof. a) First we prove that all elements of G are idempotent.

Let xeG. Let A < & be the least ordinal number such that xe J, = {a,;1 < 4}.
We show that A is an isolated ordinal number. Let us admit that A is a limit ordinal
number. Then according to the condition 1. J; = {J J,. Hence x € J, for u < 4 and

n<i
it is a contradiction with the minimality of A. Therefore A is isolated.

_ Simultaneously xe J,, x¢ J,_,. For n(x) = 2 it follows x> = x and x is an
idempotent element in G. Let n(x) > 2. From the definition of the ideal we have
X2 x = x"9~1le J  According to the condition 1. it is J, — J,_; = {x}.
Hence x"™ "' e J,_;or x"¥ 1 e {x}. Let "™ 1 eJ,_,. Thenx"® !  x = xe J,_,
which is a contradiction with the assumption that x¢ J,_,. Hence x"™~! = x.
Analogously it can be proved that x"™®~* = x for every k for which n(x) — k = 2.

b) We prove that under the conditions 1. and 2. the semigroup operation is
commutative.

Let us suppose that there exist x, y e G such that xy # yx. Let 1 < § be the
least ordinal number with the property xy € J,. By a), 1 is isolated. We can suppose,
without loss of generality, that yx ¢ J,. If we had xy € J,, there would exist an iso-
lated ordinal number o < A such that yx € J, and xy ¢ J, and the whole following
part of proof would be done aneilogously. Thus, we suppose xye J, yx¢ J,. The
condition xy € J, implies y(xy) yx € J,. In the part a) of the proof we have proved
that every element x e G is idempotent. Hence yxyyx = yxyx = yx. We have
yx e J; which is a contradiction to the assumption that yx¢ J,. Thus we have
proved that there are no elements x, y € G for which xy # yx holds. Such semigroup —
operation is commutative.
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From the parts a) and b) this proof it follows that G is an idempotent and com-
mutative semigroup and hence a semilattice. Let the binary semigroup operation be
written in the form of infimum (A ). Then G is a lower semilattice. We prove that the
semilattice-ordering of G has a good extension.

©) If A # p, then a, # a,. We prove that a; A a, = a, implies u < A. Let us
admit 4 < u. Then J,,, contains a; and does not contain a,. But J,,, contains also
a, A a, = a, and it is a contradiction. Hence there exists a good extension of the
primary partial ordering.

Using the part c) of this proof and NovAk’s Theorem (see the introduction) we
have that G satisfies the descending chain condition.

2.2. Theorem. Let G be a semigroup. Then the following statements are equivalent:

A. G is a lower semilattice satisfying the descending chain condition.
B. a) There exists a (transfinite or finite) sequence (a,),.g in which each
element of G appears precisely once such that for every a < 3 the set
{a,;1 < o} is an ideal in G.
b) For every x € G there exists a natural number n(x) = 2 such that x"® = x.

Proof. The statement B implies 4 according to Theorem 2.1. A4 implies B follows
from [1] Theorem 2.3.

2.3. Theorem. Let G be a semigroup, I < G an ideal in G. Let L distinguish I. Let
the following conditions be valid for G:

1. There exists a (transfinite or finite) sequence (a,), < in which each-element
of G — I appears precisely once such that J, = 1V {a,;1 < &} is an ideal in G for
every a < 9.

2. x* = x forevery xe G — I.

Then there exists L < G distinguishing G.

Proof. First, we carry out some preparatory considerations.

a) An arbitrary union of ideals of a semigroup is an ideal in this semigroup.
Let us have an element x e |J J,. For arbitrary a, b€ G, ax, xbe |J J,. Indeed,

x€K xeK
let %, be an index from K for which x e J,, . For arbitrary a, b€ G ax, xbe J,,

and hence ax, xbe |J J,.
x€K

b) In this part of the proof we construct distinguishing subsets for the given
sequence of ideals satisfying the conditions of this Theorem.

The ideal I, has a distinguishing subset L, according to the assumption of the
Theorem.
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Let 0 < « < § be an ordinal. Suppose that, for each A < «, we have defined
a distinguishing subset L, of J, satisfying the following condition: If A < u < a
then L, = J; n L,. Then we define L, in the following way:

Let « be isolated. Then J,_, is an ideal in G such that L,_, distinguishes J,_,.
Then the sets L,_, or L,_, v {a,_,} distinguish J, = J,_, U {a,_,}.

Indeed, if there exist for every xe J,_, elements u,, v, € L,_, such that L,_,
contains precisely one of the elements u xv,, u.a,_, v, then both sets L,_,, L,_; v
U {a,_,} distinguish the ideal J,. We define L, to be one of these sets.

If there exists x € J,_ such that for every u, ve J,_, the set L,_, contains either
both elements uxv, ua,_,v or none, then there exists precisely one such element x.
We have a,_xa,_,€J,_. Ifa,_,xa,_, € L,_, we define the distinguishing subset
L, of the ideal J, to be L,_,. This is possible for a,_,a,_,a,_; = a,_ according
to assumption 2) of this theorem and according to a,_; ¢ L,_,. Therefore the set
L,_, distinquishes J,. If a,_,xa,_, ¢ L,_, then we define the distinguishing set
L,of J,tobe L, , v {a,_,}. This is possible because a,_;xa,_, € J,_, and hence
Ay 1XAy_y # Ay_1d,_1d,_ = a,_,; and simultaneouslya,_ €L, =L, ; v {a,_,}.

If o is a limit number then J, = {J J, and we define the distinguishing subset L,

v<a

to be the union | L,.

v<a
If A<a<3then L, = J, nL,. We prove it by induction. For each ordinal
o we denote by V() the following assertion: If A < o then L; = J, n L,.

Then V(0) holds trivially as there is no ordinal A < 0.

Let us have 0 < a < § and suppose that V() holds for each B, 0 < f < o
If o is isolated and 4 = « — | then we have L, =L, , or L,=L,_, v {a,_},
where a,_,€J,. Then L,_, =J,_, nL,.

If o is isolated and A <o —1 then L, =J,nL,_, =J,n(J,-1nL,) =
=(;nJ,_)nL,=J,nL,.

If o is a limit ordinal then J/;nL,=J,n(UL)=U (/;nL) = U (J;nL)v

1<a 1<a A<i<a
v U (;nL)=L,, Thus, V() holds.
1S4
Let « be a limit number. Then J, = |J J, is an ideal by (a). Let us admit that

v<a
L, = U L, does not distinguish J,. It means there exists at least one pair x, y € J,

v<a
such that it holds for all elements u, v € J,, simultaneously either uxv, uyv e L, or
uxv, uyv ¢ L,. Let us consider the first case. The second is analogous.

It holds x, ye J, = U J,, therefore there exists v, < o such that x, ye Iy,

vV<a

Since J, has a distinguishing subset L, , there exist ug, vy € J, such that either
uoxvo ¢ L, , uoyvo € L, OF ugxvg € L, , uopvo ¢ L, . We consider the first case again,
the second being analogous. Since x, y € J, then also upxv, € Jy, and uoyvo € J, .
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Simultaneously uoxvo ¢ L, , toyvo € L, and ugyvo€ L, = |J L,. From the construc-
. vV
tion of distinguishing subsets in the part b) and from the condition wugxv, ¢ L, it
follows that uyxv, is an element of no distinguishing subset L, 'for » = v, and hence
ugxvy does not liein L, = |J L, and L, distinguishes J,,.
v<a

2.4 Example. Let S be a lower semillattice with the operation A satisfying the
descending chain condition with the least element e. Further let G be the free idempotent
monoid with the operation o and with the unit e and generators a, b. Let G n S = {e}.
Let us put 4 = G U S and let us define '

e if x=e=y_
x if y=e#x
y if x=e#y

X.y=3xXAy if x#e#y;,x,yes
xoy if x#e#y;x,yeC
x ' if x#e#y;xeG,yeS
y if x#e#y;,xeS,yeq

Then the following statements hold:

(i) . is a monoidal operation on %.

(ii)) G is an ideal in 9. : : .
(iii) The set Ly = {a.b.a, b.a.b} distinguishes G.
(iv) There exists L = % such that L distinguishes 4.

Proof. (i) Evidently, e is the unit in 4. We must prove that the operation e is
associative. The following evidently holds from the definition of monoidal operation:
Let xe G, ye S then x.y = x = y. x. If the elements u, v, we 4 are all from G
or from S then (u.v) . w = u.(v.w). If one of elements a, b, ¢ — let us denote it
by z — is in G and the remaining two are in S then certainly (u.v) . w =z = u.
. (v. w). If two of the elements u, v, w are in G then let us denote their product by z.
We have again (u.v) . w=z=u.(.w).

(ii) The second statement follows from the definition of the monoidal operation
on%.

(iii) We find, for every two elements x, y € G, x # y, the elements u, v such that
either uxve Ly, uyv ¢ Ly or uxv ¢ Ly, uyv € L,. We choose all the possible unordered
pairs x, y € G and for every pair the respective elements u, v € G.

X,y u, v u.x.v u.y.v

e, a b, b béL, . b.a.bel,
e, b a,a a¢lL, a.b.aelL,
e,a.b - e a ag¢L, a.b.ael,
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e,b.a e, b bé¢L, b.a.beL,
e,a.b.a e e e¢lL, a.b.aelL,
e,b.a.b e e e¢lL, b.a.beL,
a, b a,a a¢l, a.b.aelL,
a,a.b e, a a¢l, a.b.ael,
a,b.a e b a.bé¢L, b.a.beL,
a,a.b.a e, e a¢l, a.b.ael,
ab.a.b e e - a¢lL, b.a.beL,
b,a.b e, a b.a¢L, a.b.aelL,
b,b.a e, b b¢L, b.a.belL,
b,a.b.a e, e b¢L, a.b.aelL,
b,b.a.b e e b¢L, b.a.belL,
a.bb.a e, b a.b¢L, b.a.beL,
a.b,a.b.a e e a.b¢l, a.b.ael,
a.bb.a.b e, e a.b¢L, b.a.beL,
b.a,a.b.a e e b.a¢lL, a.b.ael,
b.a,b.a.b e e b.a¢L, b.a.belL,
a.b.a,b.a.b b,e b.a¢lL, b.a.beL,

We have chosen for every pair x, y from G Some elements u, v such that uxv ¢ L,,
uyve L,. Hence L, distinguishes G. (iv) The monoid ¥ satisfies the assumptions of the
Theorem 2.3. Therefore there exists a distinguishing subset L in 4.

REFERENCES

[1] Novak V.: On the Well Dimension of Ordered Sets, Czechoslovak Math. Journ. 19 (94), (1969)
1—16

[2] Novotny M.: On Some Relations defined by Languages Prague Studies in Mathematical Lin-
guistics 4, (1972), 157—170

[3] Schein B. M.: Homomorphism and Subdirect Decompositions of Semigroups. Pacific J. Math.
17 (1966), 529—547

[4] Zapletal J.: Distinguishing Subsets in Semilattices, Arch. Math. 2; IX; 73—82, Brno

J. Zapletal
602 00 Brno, Hilleho 6
Czechoslovakia

128



		webmaster@dml.cz
	2012-05-09T15:35:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




