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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS, 
X: 111—122, 1974 

PARTITIONS AND CONGRUENCES IN ALGEBRAS 
I. BASIC PROPERTIES 

TRAN DUC MAI, BRNO 

(Received September 10, 1973) 

0 A partition in a set G is a system A (possibly empty) of nonempty mutually 
disjoint subsets in G [4, 2, 7, 10, 11]. The empty system A will be called an empty 
partition and will be denoted by 0. 

The elements of a partition A in G are called blocks of the partition A; they are 
nonempty subsets in G. Let us denote by UA th£ union of all blocks belonging to 
the partition A. A is, of course, a partition on UA . The set UA will be called a 
domain of the partition A. 

0.1 Now, let A be a symmetric and transitive binary relation in the set G. A is an 
equivalence relation in the set UA = { x e G : xAx}. T P find it out, it suffices to 
verify that A is a binary relation in the set UA . Thus, let x, ye G, xAy hold; then 
from the symmetry of the relation A there follows yAx and from the transitivity 
xAx, yAy; thus x, ye UA: 

From the preceding consideration and from the fact that there exists a 1-1 
correspondence between all partitions on a Set and all equivalence relations in the 
same set, there follows the existence of a 1-1 correspondence between all partitions 
in the set G and all symmetric and transitive relations in G (cf. also [10], sec. 4 and 11). 
We shall find it useful to hold, if need be, the partitions in G for symmetric and 
transitive binary relations in G and vice versa. 

0.2 Let (G, Q) be a universal algebra with the system of operations Q, and let A 
be a partition (symmetric and transitive binary relation) in the set G. We say that A 
is a congruence in the algebra (G, Q) if for arbitrary n-ary we Q there holds: at, bte G 
aiAbi (i = 1, 2, . . . , n) -=> at ... ancoAb1 ... bna). A congruence A in an algebra 
(G, Q) will be called a congruence on the algebra (G, Q) if A is a partition (equivalence 
relation) on the set G. The empty partition is a congruence in the algebra (and not 
a congruence on a nonempty algebra). It will be suitable to hold also the empty set 
for an algebra with an arbitrary system of operations Q (though Q contains miliary 
aperations). From this reason the empty set can be considered as a subalgebra of 
orbitrary algebra (G, Q). 
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0.3 Notation: 

P(G) — system of all partitions (symmetric and transitive binary relations) in the 
set G. 

17(G) — system of all partitions (equivalence relation) on the set G. 
X(G) — system of all congruences in the algebra G. 
^(G) — system of all congruences on the algebra G. 

A number of papers have been devoted to the study of partitions in a set. From 
them there are quoted [2, 3, 4, 5, 7] used in the present paper. The subject of our 
interest will be to investigate the structure of the set P(G) of all partitions in a set G, 
and the structure of the set tf(G) of all congruences in G, where G will be a universal 
algebra or especially an .Q-group. 

0.4 The known facts summarized in the following theorem will be used without 
any further quotations. 

The set n(G) of all partitions on a set G is a complete semimodular9 relatively comple­
mented lattice, [8] Th. 67. The lattice P(G) is complete, semimodular and upper-
continuous, in general, it is not relatively complemented, [5] Th. 4.5, 4.1 and 5.3. 
7r(G) is a closed sublattice of P(G). The set #(G) of all congruences on an algebra G 
is a closed sublattice of the lattice n(G)9 [8] Th. 84. The lattice #(G), where G is an 
Q-group9 is modular, [6] IV, 2.2. The congruences on the group or on a relatively 
complemented lattice commute, [8], p. 170, [9] § 4, Theor. 7. If G is a lattice or an 
\-group9 then <€(G) is a distributive lattice, [8] Th. 90, [1] XIV § 5, Th. 10. 

0.5 The system P(G) of all partitions (symmetric and transitive binary relation) 
in a set G is a complete lattice with respect to partial order defined as follows: A :g B 
if xAy sa> xBy (A, B e P(G)). It is a matter of routine to prove that the greatest lower 
bound and the least upper bound in P(G) are constructed in the following way 
[2] sections 13,14): 

x(/iPAa) y = xAay for aU a 
a 

x(\fPAa) y = there exist elements x0 = x9 xi9..., xn„t, xn = y and indices 
a 

al9 ...,ccn such that x0Aai xl9 ..., xn.l Aaxn. 
As it is obvious the greatest lower bound and the least upper bound in n(G) are 

constructed in the same way (see [4], 3.4 and 3.5, [3] I, 3.4 and 3.5, [11]). 

0.6 When studying the structure of the set Jf (G) of all congruences in an algebra G 
we state first of all that Jf(G) is a complete lattice (1.1). The domain UA of a congru­
ence A e Jf(G) is a subalgebra of G (1.3). The nullblock A(0) = {.re G : xAO} of a 
congruence A in an fi-group is an ideal in UA and there holds A = \JAIA(0) (1.4). 
In 1.5 and 1.6 there are described the domain and the nullblock of the greatest lower 
bound and the least upper bound of a congruence system in an algebra or in an 
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O-group, respectively. The remainder of the paper concerns the following problem. 
Let <P(xa) and xiyp) be polynomials on a lattice (in indeterminates {xj and {yfi}> 
respectively), let {Aa} and {Bfi} be two systems of congruences in an D-group G. 
There are being looked for the conditions for the validity of implication pP(Aa) = 
= Xp(Bfi) *> <-V04«) = xABp)- For the particular polynomials #(*.) = x(**) = 
= V*a> ĥe solution of the problem is given in section 1.7. A certain sufficient con-

a 

dition (distributivity of the lattice Jf (G)) for the validity of the mentioned im­
plication is found in sections 1.9, 1.10 and 1.11. 

1.0 We shall investigate the structure of the set Jf (G) of all congruences in an 
algebra G. Some results will be derived only from the particular assumption that G 
is an O-group. An :Q-group is interpreted as a universal algebra whose operation 
system is the set Q enlarged by one binary (group addition), one unary (x r+ — x) 
and one miliary (0) operations. 

1.1 Let (G, Q) be an algebra. Then Jf (G) is a complete lattice with respect to the 
order given by inclusion (of binary relations). For {Aa} e Jf (G) there holds AJT^« = 

a 

= f\PA. If G is an Q-group9 then the set of all nonempty congruences in G is a closed 
a 

sublattice of the lattice Jf (G). 

Proof. The first statement will be proved by showing that A = /\PAa belongs 
a 

to Jf (G). The statement regarding Q-groups follows from the fact that Gmin (= parti­
tion containing only one block {0}) is the least nonempty congruence in G. 

If A is the empty partition, then A e Jf (G). If A is nonempty, let co e Q be an 
n-ary operation (n ^ 1), a{Aa •, i = 1, 2, . . . , n. Then aiA^a] for all a and i = 1, 2, . . . , 
..., n hence ax ... anmA<ILdl ... a'„co and thus ax ... ancoAa'x ... anco. A e Jf(G) is 
proved. 

1.2 Let (G, Q) be an algebra, {AJeJf(G). Then V*A =VpBy9 where by By 
a y 

is meant the congruence A^w^ ... V^A^ for arbitrary finite choice Aai9..., Aan in 
{Aa}-

Proof. Since Vr^« = Vjr^y = Vp-$y = Aa for all a, it is sufficient to prove that 
a y y 

A = yPBy is a congruence in G. Let us take an operation in O, for the sake of simplic-
y 

ity a binary one and let us donete it by o. A similar proof can be given for the opera­
tions of other arity ( = 1). Thus it will be proved xAx'9 yAy' => (x o y) A(x' o y'). 
From the definition of Yj> we get: 
xAx' s there exist xl9..., xn^x e G, BYt,..., Byn e {By} so that 

xBnxtBy2x2 ... xt)^iBynx\ 
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yAy' = there exist j / j , . . . , j m _ t e G, BSl,..., Bym e {By} so that 

yBily1By2y2...ym-1BSmy'. 

Hence 

(x o y) (Byi V* BSt) (Xl o y) (Byi vx BSi) (x2oy)... 

...(xn-ioy)(BynVrBSl)(x'oy)(BynV#BSi)(x'6yl)... 

...(x'oym_l)(BynV^BSm)(x'oy'). 

1.2.0 Corollary. Let (G,Q) be an algebra, { A J an up-directed subset of J f (G). 
Then V,r Ax =VP A,'. 

1.2.1 Definition. If A is a partition in a set G, then the set {x e G : xAx} is denoted 
by UA (see 0.1) and is called a domain of the partition A. 

1.3 UA = {x e G : y e G exists such that x Ay} for arbitrary partition A in the set G. 
Hence A is a partition on UA . Let (G, Q) be an algebra. For every A e c/t(G), UA is 
a subalgebra of G. 

Proof. The inclusion {x e G : there exists y e G such that XAy} e {x e G : xAx} 
results from the fact that the relation xAy implies yAx and both imply xAx. The 
inverse inclusion is evident. The other statements are obvious, too. 

1.3.1 Let (G, Q) be an algebra. As it was said above, the empty set is also included 
among subalgebras of the algebra G. The subalgebra generated in G by a subset 
Cv' s G is denoted by <(£> and in case (E = 0, by <£>, is meant the empty subalgebra 
in G. 

Let G be an O-group, 91 an O-subgroup of G. On the basis of the above agreement 
concerning subalgebras, 91 = 0 is not excluded. The ideal in 91 generated by a set 
(E g 91 is denoted by « £ » ~ u and in case(E = 0, by « C » g j , is meant the empty set. 
If G # A e Jf(G), let us denote A(0) = {x e G : xAO}. The set y*(0) is called a null-
block of the congruence A. The same terminology will be used also in case A e P(G), 
O e U A . 

1.4 Let G be an Q-group, 6 ?- A a congruence in G. Then A(0) is an ideal in UA , 
A(0) =5*- 0 and A = UA/A(0). The empty congruence A in G gives UA = 0 and 
A(0) .== 0. For formal reason, it is writen also in this case A = UA/A(0), and A(0) is 
considered as an ideal in UA . 

Proof. Since by 1.3 A ?- 0 is a congruence on the .Q-group UA, the statement 
follows from [6] III, 2.5. 

1.5 Let (G, Q) be an algebra, {Aa} £ Jf(G) or g P(G), respectively. Then thera 
holds with respect both to Jf and P: U(A-4a) = f\(UAa). If G is an Q-group, then 

a ' a, 4 
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when using notation © = f | ( U ^«) ' e = f\ IX(O)] there holds (/\xAa)(0) = 
a a a 

= (A.*--) (0) = e and A ^ a = ® / e = A ^ . -
a a oi 

Proof. Because of UAa 2 U(A^a) for all a (A refers both to Jf and to P -
* a 

see 1.1), we shall have U(A^a) £ 0(UA a ) . The reverse inclusion follows from the 
a a 

following: xe f |(UAa) => xe UAa for all a => xAax for all a => JC(A^«) * => 

^xeWAAJ.* 
a 

If now G is an iQ-group there holds: 
x e (AAU) (0) o x(hAa) 0oxAa0 for all a o x e Aa(0) for all a o x e fM«(0). 

a a a 

The remaining statement results from 1.1 and 1.4. 

1.5.1 Let A be a binary relation in a set G,Ct g G. The intersection of the relation A 
and the set £ is denoted by A n(£ and defined by the rule A n(£ == A n (C x(£) 
(or x(A n(£) j s x, >>e£, xAj) [3] I, 2.3, [4] 2.3. If A is a partition in G, so is 
And. If G is an algebra, (£ a subalgebra in G and A a congruence in G, then A n Ct 
is a congruence in G (also in (£). 

1.6 Let (G, £) fo> a« algebra' {Aa} c Jf(G) or c P(G). 77ie/* U ( V ^ a ) = 
a 

= <U(UAa)> or U(Vj>^J = U ( U / U , respectively. If G is an Q-group, {Ax} £ 

c Jf(G), then(\J*Ax) (0) = «uWo))»« = <(Vi*-J(0)>„ whm>21 = <U(UA,)>. 
a a a a 

Proof. Let A = V.r^a an<* C = A n 91. C is a congruence in the algebra G. 
a 

Since A = Aa for all a, we have UA 2 21 and therefore UC = \JA n 91 = SI. 
If xAaj for some a, then xAy, x j e UA a g 91 so xCy and hence C ^ Aa for all a, 
thus C = A. From this we conclude 91 = UC 2 UA , thus 91 = UA . 

The second equality: evidently U(Vp^a) =- UA a for all a, thus U(Vp^a -2 
a a ' 

=- U(U^a). Conversely, xe U(Vp^a) =* *(Vp-4a) * =* there exist x!, . . . , x„-t e G, 
a a a 

Aai, ->',Aane{Aa} such that xAaix!Aa2x2 . . . xn_!Aanx => xAaix! => x e UAai ===> 
=> x e \jOJAa). By this the reverse inclusion is proved and so the equality U(VPAa) = 

= U(u\Y 
a 

Let G be now an <2-group, {A,} £ X(G), / = « U ( A ( 0 ) ) » 8 . . By 1.4 A(0) is an 
a 

ideal in 21, A(0) = ^,(0) for all a thus ,4(0) 2 / . Again by 1.4, We have A = 2IM(0) = 

= 21// ^ UAa/A^O) = A„ for all a which implies ,4 = 21// = ^. We have obtained 
the equalities 2I/A(0) = A = 21/7 hence A(0) = / . 
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The remaining equality may be obtained from that proved above as follows: 

(V^.) (0) 3 (V^.) (0) 3 A.(0) for all a =» 
a a 

=> (V*AX) (0) 2 «(VPAX) (0)}>M 2 «U (^. (0 ) )» a = (V^.) (0) => 
a a a a 

=> (V^.) (0) = « ( V P ^ . ) (0)»a. 
a a 

1.6.1 Remark. From Theorem 1.6 it is evident that the lattice cf(G) is not a sub-
lattice of the lattice P(G). Indeed, U(Av#B) = <UA u UB} holds for A, Be JT(G) 
while U(AvPB) = UA u UB. 

Using 1.6 and 1.4, we have the following. 

1.6.2 Corollary. Let G be an Q-group, {AJ c= j f (G), ?t = <U(U/*J, J = 

= «U(^ . (0) )»« . Then \fxAa = 91/J. 

1.7 Le* G be an Q-group, {Aa}, {i?̂ } systems in Jf (G), fir = U(\/PAJ, #2 = 

- U ( V P ^ ) . 

If it is true 

a) <U(yJ,AJ = <U(V^)> 
«" /> 

and at the same time one of the conditions b, V, b": 

b ) f i , n V A = % n V ^ 
« 0 

b') fl, n (V^. ) (0) = fi2 n . ( V ^ ) (0) 
« 0 

b")(Vp^.)(0) = (Vp^)(0), 
a J» 

then V ^ . = V.r-'.f • 
« fi 

Proof. If we prove 1) U ( V ^ . ) = U(V*-*A) (=«0 and 2) ( V ^ . ) ( 0 ) = 

= (Vx-V) (°) ( = J ) > t h e n b y - •6"2 

V ^ . = 9 i / / = V ^ . 
« /» 

The equality 1) follows from a) and 1.6. We shall prove 2). First, it is clear that 
b => V. 
Next, from the relations 

( V ^ . ) ( 0 ) 2 £ t n ( V ^ . ) ( 0 ) 2 (VPAx)(0) 2 Aa(0) for all a there follows 
a a a 

(by 1.6) 
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(V*"4-)(0) 2 «fl. n (VJrAJ(0)»a( 2 «(Vi^J(0)»« 2 «\J(AM)»M = 
a a a a 

= (V^.)(0) 
• a 

thus (V^J(O) = «fl, n (V^ . ) (0 )» = «(V-^J(0)»«. If b') or b") holds, 
a a a 

then from the preceding equalities and from analogical equalities for Bfi there 
follows 2). 

1.7.1 Remark. In 1.7 it is possible to put the following weaker conditions instead 
of b') or b"), respectively: 

«f i i n (\fxA J ( 0 ) » . = «f i 2 n ( V**,) (0)»« 
a fi 

or 
« ( V P ^ « ) (0)»« = «(VpBp) (0)»*. 

1.7.2 Corollary. Let G be an Q-group, {Aa}, {Bp} systems in J f (G). Then 

VpAa= VpBp^VxA^VxBp. 
a fi a fi 

In the proof of 1.7 there was proved the following statement completing the second 
part of 1.6: 

1.7.3 Let G bean Q-group, {Aa} a system in Jf(G), 2 = U(VPAa), $t = <U(VPAa). 
a a 

Then 
(V*-A.) (0) = « f l n (V^AJ (0)»„. 

a a 

1.8 Definition. Let Q be a system of operations, / a nonempty set, {xa : cc e 1} a set 
of some elements. A polynomial (over Q in indeterminates xa (a 6 1)) is defined (by 
way of finite induction) as follows: 

a) Every xa (a e I) and every symbol of nullary operation in Q is a polynomial. 
b) If co e Q is an n-ary operation, n = 1, vl9..., vn polynomials, then vx . . . vnco 

is a polynomial. 

If (G, Q) is a complete lattice, we admit even infinite lattice operations. 
Let aa be an element of an algebra (G, Q) for every a e I . B y the value of a polynomial 

$(xa : a e I) in aa (a e I), is meant an element in G which we have got by substituting 
aa for xa and by replacing the symbols of nullary operations by corresponding elements 
of the algebra G and by applying the operations co, as prescribed in (G, Q). We denote 
by <PG(aa : a e / ) (or briefly by <PG(aa); similarly <P(xa)). 

1.8.1 Let us recall Corollary 1.7.2 to Theorem 1.7: For congruences Aa>Bfi in 
an .Q-group there holds VPAX = VPBfi => VxAa = V^Bp. 

' « fi a fi 
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It is a question whether there does not hold the following more general theorem: 

(1.8,1) Let Q' denote the system of the lattice operations, let $(xa) and x 0 » be 
polynomials over Q'. If Aa and Bp are two systems of congruences in an O-group G 
then (1.8,2) <f>P(Aa) = Xp(Bfi) *> <M^«) = X*(B,). 

The meaning of such a theorem consists in the possibility of transferring the first 
equality in (1.8,2) from P(G) to Jf (G). A special attention should be paid (and this 
is in possibilities of the theorem) to transferring the identity from P(G) to Jf (G). 
In more details: 

If the equality &(xa) = xOO holds for all systems {Aa} g P(G) (or g Jf (G)) 
according to P(G), then it holds also for all systems {Aa} g Jf(G) according to 
Jf(G). 

The rest of paragraph is devoted to the just mentioned problem. 

1.9 Let the lattice of all subalgebras of an algebra (G, Q) and the lattice of all 
subsets of a set G be denoted by the symbol S = S(G) and M = M(G), respectively. 
Let the symbol Q' denote as above the system of the lattice operations. 

1.9.1 Let <P(xa) be a polynomial over Q' in indeterminates xa. Let (G,Q) be an 
algebra, Aa congruences in G. Then 

U<MAa) = *s(VAa) 2 U*P(Aa) = *M(UAa). 

Remark. Because of 1.3 i)$#(A9) is a subalgebra in (G, Q) and thus 

U<MA a) 2 <UP(Aa)>. 

Proof. <P(xa) = V **(*«) or = /\¥fi(xa) is satisfied for suitable polynomials 
fi fi 

¥fi(xJ (P e B, card B = 2). Let us assume by way of induction that for every ft there 
holds 

(1.9,1) U ^ ( A a ) = *Ff(UAa) 2 UWP(Aa) = ^ ( U A a ) . 

The case <P(xa) = \/*F0(xa). By 1.6 and by induction hypothesis we have got 
fi 

U<MAa) = V(V*K(A)) - <U(U^04a)> = 
fi fi 

= <U(^(U-4a))> - V5^(U^a) = <f>s(UAa), 

thus 

Further 
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By induction hypothesis, the last member is obtained in the set 

<U(UK(Aa))> = U(V^AAa)) = U$AAa). 

Hence 

U<MAa) = U<M-4a). 

Finally by 1.6 and by induction hypothesis 

U<s>P(Aa) = U(VPWP(Aa)) = U(Uvp
P(Aa)) = U(K(UAa)) = #M(UAa) 

fi fi fi 
hence 

U<MAa) = <MUA a) 
is fulfilled. 
The case <£(xa) = /\Vfi(xa). By 1.5 one gets 

fi 

U$AAa) = U [ A ^ ( A a ) ] = ri[U^(-4a)]. 
fi fi 

By induction assumption, the last member equals 

As[<Ps(UAa)] = # s(UA a) 
fi 

and contains the set 

mun(Aa)i = U [ A P ^ ) ] = u#P(Aa). 
fi ? 

Thus it is proved 
U<MA a) = *,(UA a) a U#P(Aa). 

Finally, by 1.5 and by induction assumption there holds 

u$P(Aa) = u [Ap^ a ) ] = n[u«pF(Aa)] = OIVWA,)] = 
fi » » 

= AM[^M(UAa)] = <MUAa). 

This verifies 
U$P(At) = <MUAa). 

1.10 Let <P(xa) be a polynomial over Q' in indeterminates xa(<x e I). Let (G, Q) be an 
algebra, AJjxel) congruences in G. Let X(G) be distributive if only the finite lattice 
operations appear in $, let it be completely distributive otherwise. Then 

U$AAa) = # s(UAa) = <U<f>P(Aa)>, U<f>P(Aa) - #M(UAa). 

Proof. Our aim is to prove the equality U$AAa) = U#P(Aa). The other 
equalities follow directly from 1.9.1. As in the proof to 1.9.1 let #(xa) = WFp(xa) 

fi 
or = AYfi(Xa) be for suitable polynomials ¥fi(xa) (P e B). 

fi 
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Induction hypothesis: 

U ^ ( ^ a ) = <U>Ffi
P(Aa)> for all fi e B. 

The case $(xa) = V ^ O O - By 1.6 there holds 
p 

(1.10,1) <U<fv(Aj = < U [ V P ^ ( ^ J ] = <U[U^(Aa)]> s <U < u y ^ j » . 
fi p fi 

Last but one member contains the set <UWp
P(Aa)} for all /? e B therefore also the set 

<U <UWp(Aa)}y. Conseqently, it is possible to replace in (1.10,1) the inclusion by 
p 

the equality. By induction hypothesis, the last member in (1.10,1) equals 

<Q(U vpAAa))> = VlVxV'AAj} = U<MAJ. 
p p 

The case &(xa) = A^\xa). For suitable polynomials *Ffi,y(xa) (fi e B, y = F) there 
p 

holds <P(xa) = A V ^ ' W - If # contains only finite operations, the sets B, F are 
P y 

finite. From the (complete) distributivity of the lattice Jf(G) there follows 

AxVxV'tW = VxAxVfi*fm(Aa). 
P y / e r * fi 

If we denote A^' / ( / ? )(*a) = Tf(xa), we have ^ ( A J = VxT^AJ and we have 
P f 

reduced the discussion to the preceding case. In the present situation the induction 
hypothesis will concern the polynomials Tf (fe TB) instead of Wfi. There holds (in 
the third equality we use the complete distributivity of the lattice M(G), in the seventh 
one, the induction hypothesis): 

< u # ^ j > = <UApVp«^,y(Aa)> = <n u u ^ ( A j > = 
fi 'y fi y 

= < u nun-/wo<u> = <u <n u^ / woo» = 
feT* fi f fi 

= <U < U A P ^ / ( ^ J » = <U <Urft^j» = 
f fi f 

= <U Ur/(Aa)> = U V*Tf(Aa) = U^(A a ) . 
/ / 

The theorem is proved. 

1.10.1 Corollary. Let <P(xa) and x(yp) be polynomials over Q' in indeterminates 
xa (a € I) and yfi (p e J), respectively. Let (G, Q) be an algebra, Aa, Bp congruences 
in G. Let the lattice Jf(G) be distributive if only finite lattice operations appear in <P 
and x> and let it be completely distributive otherwise. 

Then there holds 

<U<PP(Aa)> = <Uxp(Bfi)=> U<fv(Aa) = U ^ ( ^ ) . 
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Proof follows from the fact that by 1.10 there is U<M>U = <U#j»04a)> and 
similarly for i(Bfi). 

1.11 Let the conditions of Theorem 1.10 be fulfilled. Then 

«(*p(Aa)) (0)»a = (<PAAa)) (0), where « = U<*v(Aa). 

Proof is analogous to that of 1.10. First, let <P(xa) = V*Fp(xa) for suitable poly-

nomials *Pfi(xa) (fi e B). The induction hypothesis 

(^(^ a))(0) = « ( ^ ( ^ a ) ) ( 0 ) » S / J , where 23, = U ^ ( A a ) . 

There holds (the second equality by induction hypothesis and the third one by 1.6) 

«i<PP(Aa))(0)})% = «(V P ^(^ a ) ) (0)» 9 t 2 « U « ( ^ ( ^ « ) ) ( 0 ) » ^ » m -

= « U ( ^ ( ^ a ) ) (0)»* = (V**kAa)) (0) = 
P P 

= (<M^a))(0) 2 «(<*>p(-4a))(0)»3. 

The last equality is true because for arbitrary Qfi e Jf (G) there is 

(V^Q,) (0) 2 (VpQfi) (0), (A*Qp) (0) = (APQfi) (0). 
p p p p 

Hence 

0.11,1) «(<PP(Aa)) (0)))^ = (&AAa)) (0). 

The second case #(xa) = A ^(x a)- For suitable polynomials Wp' y(xa) there holds 

W = AV^J(4 
fi y 

From the distributivity of the lattice Jf (G) there follows 
A*V*vfi'7(Aa) = WA^ / ( /%4«). 
P y / e P .9 

When denoting A ^ , / ( / 0 0 O = -T'fo), it will be <Jv(,4a) = V#T£(Aa) and the 
0 / 

discussion is reduced to the previous case. In the present situation the induction 
hypothesis will concern the polynomials Tf(xa) instead of !f^(xa). We have got 

«(^(^a))(0)»M = «(Ai>Vp,Fp'7(A«))(0)»9. 2 
P y 

2 « n u(^7(^j)(o)»at = u n(^,/(')(^j)(o)»a = 
f y / e r = /» 

= «U(A^/(/,)(^«))(o)»sl = «U(7,^a))(o)»s» = 
/ /» / 

= «U(riW)(o)»» = 0M^))(o) a «(*p(^«))(o)»a. 
/ 

So the equality (1.11,1) is proved. 

121 



1.11.1 Corollary. Let the conditions of Theorem 1.10.1 be satisfied. Then there 
holds 

$p(Aa) = Xp(Bfi) => $AA«) = xABp)-

Proof. By 1.10.1 there holds « = U ^ ( A J = UxA^,) and by 1.11.1 
(*AAJ) (0) = (xABfi)) (0) (= J). This implies (by 1.4) 

$AAa) = xABfi). 

1.12 Theorems 1.10 a«d 1.11 are not valid if we omit the hypothesis of (complete) 
distributivity of the lattice Jf(G). 

Proof. Let A, B, C, D be four distinct lines in the plane passing through the origin. 
Each of them represents a one-element partition in the plane G considered as the 
additive group of ordered couples of real numbers. All these four partitions belong 
to Jf (G). For 0(x, y, u, v) = (x V y) A (U V v) there clearly holds Ox(A, B, C, D) = 
= Gmax, thus U ^ ( A , B, C, D) = G = ($AA> B, C, D)) (0) whereas 

<PP(A, B, C, D) = {0}, thus <U<f>P(A, B, C, D)> = {0}, 

«(4>P(A, B, C, D)) (0)»„ = {0} (where 21 = U<*v(A, B, C, D) = G). 
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