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CERTAIN HIGHER MONOTONICITY PROPERTIES 
OF i-th DERIVATIVES OF SOLUTIONS 

OF y" + a(t)y' + b(t)y = o 

JAROMIR VOSMANSKY, Brno1) 

(Received June 18, 1973) 

1. I N T R O D U C T I O N 

In this paper there are derived certain higher mono tonicity properties of the 
sequences {R(

k

l)}k=,o denoted simply by {Kl0}, where the terms R[l) are defined, for 
fixed A > — 1 , by 

я 
dř, 

fk + l 

<> = R^W, X) = j* W(t) | exp [ l j* a((0 d.l />(.) 
tk 

where y(t) is an arbitrary (non trivial) solution of 

(VI) y' + a(t)y' + Ht)y = o9 

and t (
0

l\ t il), . . . 2 ) is any sequence of consecutive zeros of i-th derivative (i -= 0,1,2,...) 
of any solution z(t) of (1.2) which may or may not be linearly independent of y(t). 
The functions at(t) will be defined later. The indefinite integral denotes here as well 
as throughout this paper any primitive function. The condition X > — 1 is required 
to assure convergence of the integral defining Rk

l) and the function W(t) is any 
sufficiently monotonic function taken subject to the same restriction. The equation 
(1.1) together with everything else in this paper is considered in the real domain. 

The function q>(t) is said to be n-times monotonic or monotonic of order n on an 
interval (a, b) if 

(1.2) ( - I ) ' ' <pu\t) ^ 0 0 = 0, 1, ...,n;te(a,b)). 

x) The main part of this work was done during the author's stay at the Istituto Matematico 
"Ulisse Dini", Universita degli Studi, Firenze and was published there as a preprint No. 1972/17. 
The principal result of this paper was presented on EQUADIFF III, Czechoslovak Conference on 
Differential Equations and Their Applications, held in Brno in August 1972. 

2 ) It is convenient to use the notation {tk}, {t'k}, {t"k} for n -= 0, 1, 2. 
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For such a function we write (p(t) e Mn(a> b). If (1.2) holds for n = oo,f(t) is said to 
be completely monotonic and Mn = M„(0. oo),3) 

A sequence {tk} is said to be n-times monotonic if 

(1.3) (-iyAl'ffc = 0 0 = 0, l , . . . , ;k = 0, 1,...). 

Here A°tk = /*, Atk = tk+l - tk9...,A
ntk = An~1tk+l - A""1/,. If (1.3) holds for 

n = oo, {tk} is called completely monotonic. 
In 1963 L. Lorch and P. Szego ([3], [4]) found out a simple sufficient condition 

for monotonicity of order n of the sequence of differences {Atk}k = 0 in case of a(t) == 0 
(b(0 = q(0)i i.e. for the differential equation 

(1.4) u" + q(0u = 0. 

They have proved that the conditions q' e Af„, q(oo) > 0 are sufficient for the mono­
tonicity of order n of {Atk} and {Mk}> where 

tk+i 

Ă. M*= |y(0 l d*, A> - l , k = 0,1,2,... 
tk 

In connection with the above mentioned results, L. Lorch pointed out the problem 
of finding some sufficient conditions for higher monotonicity of sequences {At^0}^ 
for some integer / ^ 1. In the paper [9] it is shown that the above mentioned 
conditions q' e Mn, q(co) > 0 are sufficient for monotonicity of order n — 2 of the 
sequences {Atk} and {Mk}9 where 

íк + l 

Mi= U~*(0y'(0lAd^ Я> -l,fe = 0,l,2,... 

tк 

The paper [9] gives, however, the solution of Lorch's problem for the equation (1.5) 
in case of / = 1. The sequences {tk} or {Mk}, respectively, are studied in [9] as 
sequences {Tk}, {Mk}, respectively, of consecutive zeros or corresponding terms, 
respectively, of any solution Y(t) = [q(0]"*y(0 of 

Y" + Q(t) Y = 0, 

where 
3 *1 4 II 

q l a 

This way is, however, not possible to be used for higher derivatives. 

3 ) This is a usual definition of higher monotonicity. A little different one (n-th and (n —- l)-th 
derivatives are not required) is given, e.g. in [8]. 

88 



Later it was noticed in [5] by L. Lorch, P. Szego and M. M u l d o o n that one 
may modify Mk and Mk by including an arbitrary function W(t) provided that W(t) 
is sufficiently monotonic. This paper contains the solution of the mentioned problem 
for the more general equation (1.1) and any nonnegative integer /. The terms Mk 

and Mk are included as special cases in the general term Rk
l). 

It proved to be fruitful to study the sequences {Rk
l)} directly for the more general 

equation (1.1) since the derivative of any solution of (1.1) satisfies certain equation 
of the same type. Some properties of {Rk

l)} can be obtained by suitable transformation 
of equation (1.1) into (1.4). 

By special choice of W(t) and A in the integral defining the terms R(
k
l), we can 

obtain R(
k
l)(W, X) having different geometrical (or other) meaning. 

In case of W(t) = 1, / = 0 we have 

(1.5) R',> = Ri , >(l ,0)=. i !> 1 - . i , > = A.i,>. 

By other special choice we have, e.g. 

(1.6) - W i , 2) = -AyHQ (k = 0, 1, 2,...) 

or 

(1.7) l$Xwt, 2) = -Ary ' -^f jp) ] 2 (i = 1, 2,.. .; k = 0, 1, 2,...) 

or 

(1.8) A R ^ W ? , 1) = A i y 1 " 1 ^ ! (/ = 1,2,..., k = 0, 1,2,...). 

Some properties of (1.6), (1.7) and (1.8) are given in Sections 7, 8 as conclusions 
of the principal Theorem 5.1. In Section 3 there are some former results concerning 
the Sturm-Liouville differential equation (1.4) extended to the more general equation 

(1.1). 
Certain applications of the derived results for Bessel functions are given in [11]. 
All main results are for simplicity formulated for t e (0, oo) but there are no difficul­

ties to replace the mentioned interval by (a, oo) where a e ( — oo, oo) is an arbitrary 
number. All lemmas and theorems are stated as to be applied to w-times monotonic 
functions and sequences. For the case of complete monotonicity it suffices to put 
n = oo. 

2. P R E L I M I N A R Y R E S U L T S 

Let a0(t) == a(t), b0(t) = b(t) be continuous and sufficiently differentiable functions 
on (0, oo). Let a,(0> *.(0 be defined recurrently for / = 1, 2, 3 , . . . by formulas 

(2.1,) at(t) = « i - i 6 ' i _ i / ^ - i bt(t) = A._i + *{-i - fli-iftj-i/fti-i. 
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Suppose that bt(t) ^ 0 for te(0, oo) and all needed /. Let the function f(0 be 
defined by 

(2.2,) f(t) = b§ - y a\ - 1 * ? (J = 0, 1, 2, ...). 

Lemma 2.1. Let i ^ 1 be an arbitrary? but fixed integer and a0(t) functions such that 
aj(t), bj(t) defined by (2A) are differ entiable bj(t) ± 0 for j = 0 , 1 , . . . , / and t e (0, oo). 
Let y = x(t), o(t) be non-trivial linearly independent solutions of 

(1.10) f + a0(t)y' + b0(0y = 0. 

Then y = x{l)(t), z{i)(t) are non-trivial linearly indepedent solutions of 

(1.11) f + at(t)y
f + bt(t)y = 0. 

Proof. We use the induction with respect to /. For / = 0 the lemma is trivial. Let 
us suppose that the assertion holds for somej, 0 — j < /, consequently the pair xu)(t), 
za)(t) is a fundamental system of solutions of the equation (lAj). 

Any solution y(t) of (lAj) is at the same time a solution of 

f + ajy" + (bj + a'j)y' + b'jy = 0 

and hence by (lAj) a solution of 

ym + (a} - b'j\jb)f + (bj + a) - ajb'jlbj)y' = 0, 

i.e. of the equation (lAj+l), where.a j+1, bj+l are defined by (2Aj + l). Thus the 
functions xa+1)(t), za + 1)(t) satisfy the equation ( l . l i + 1). 

It remains to show that xa + 1)(t), za+1)(t) are linearly independent. Let us suppose 
the contrary. Then there exists a number kx # 0 such that x(i+1)(0 = kiz0 + 1 )(0 and 
thus xa\t) = kxz

a)(t) + k2. In case of k2 = 0 the functions xU)(t), za\t) are not 
linearly independent which is a contradiction with the assumptions. If k2 ^ 0, 
then (1.1;) must have a solution y = k2. This is, however, possible only if ^.(0 = 0 
and we have again the contradiction. Hence the lemma is proved. 

Lemma 2.2. Let at(t), bt(t) be defined by (2.1) and suppose that at(t) e Cj, b.(0 e C0 

for t > 0 and an arbitrary? but fixed integer i. The transformation 

(2.3.) y(t) = u(í) exp -yjйiWdíj, 

transforms (1.1;) into the differential equation 

(2.4f) « * + / i W « = 0, 

where fi(t) is defined by (2.2,). 
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Proof. For proof in case of / = 0 see, e.g., [1] p. 7. For / = 1, 2, ... the proof is 
the same. 

Lemma 2.3. Let a(t), f}(t)9 g(t) and cp(t), respectively, be n-times differentiate 

functions on an interval I and g(I), respectively. 

i) If kt —^ 0, k2 — 0, kx + k2 > 0 are arbitrary constants and 

(2.5) (- iya ( f> ^ 0, ( - 1 ) ^ ( 0 £ 0 (i = 0, 1 , . . . , n; tel), 

then 

(2.6) ( - 1 ) ' D![kta(t) + k2P(ty] =0, ( - l ) 1 D\[a(t) p(t)l = 0 

(/ = 0,l,...,n;tel). 

If in addition, strict inequality holds throughout (2.5) at least for a(t) and fl(t) 7-= 0, 

then strict inequality holds throughout (2.6). 

ii) If 

(2.7) ( - l ) l + V } ( 0 = 0 (1 = 1,2, . . . , « ; teI) 

and 

(2.8) ( - l )V '">( t ) -=0 (<* = l , 2 , . . . , n ; f e # ( I ) , 

then 

(2.9) ( - i y D > [ g ( l ) ] ^ 0 ( / = l , 2 , . . . , n ; t e I ) . 

If, in addition, g'(t) > 0 and strict inequality holds throughout (2.8), or if (p'(t) < 0 
and strict inequality holds throughout (2.7), then strict inequality holds throughout 
(2.9). 

In particular, ifg(t) satisfies (2.1) andg'(t) > Ofor t e I = (a, b), 00 < a < b ^ 00, 
then 

(2.10) (- iyD ;e-* ( f ) > 0 (/ = 0, 1, ...,n;te(a, b)). 

If in addition, g(t) > 0, then 

(2.11) ( - i y I>; [g (0 ] _ 1 > o 0 = 0, i , . . . , n ; t € ( a , b ) ) , 

Proof. The proof of the first part of (2.6) is trivial. The second part of (2.6) 
follows from the formula 

(2.i2) Dx«(t)p(m = i Q^w'-^o. 
If strict inequality holds throughout (2.5) for <x(t), we find that the right-hand side 
of (2.12) includes the nonzero term a(l)(t) f$(t) for any / = 0, 1 , . . . , n and the modified 
form of i) holds, too. 
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For the proof of ii) see, e.g. [5] p. 1241. (2.10) and (2.11) follows from the modified 
form of (2.9) since 

( ~ i y A ^ ~ f > 0 (i = 0, 1 , . . . ; le (~oo, oo)) 
and 

( - l y ' D j r 1 > 0 (i== 0, l , . . . ; / e ( 0 , oo)). 

Lemma 2.4. If q>(t)e Mn (n ;> 1) and (p(t) is not eventually constant (q>'(t) > 0) 
for t e (0, oo), then 

(2A3) ( _ - l ) y O ( , ) > 0 (i = 0, l , . . . , / i - 1 ) . 

Proof. For proof see [10] p. 40 (Lemma 0.3). 

3. H I G H E R M O N O T O N I C I T Y O F {Rk}k=0 

In this section some former results concerning the Sturm-Liouvilie differential 
equation (1.2) are extended to the more general equation 

(3.1) y" + a(t)y' + b(t)y = 0, 

where a(t) e C*(0, oo). There are studied quantities Rk associated with the equation (3.1) 
which is a certain generalization of the similar quantities Mk studied, by L. Lorch, 
P. Szego, and M. E. Muldoon in [5]. 

For fixed X > — 1 and suitable, sufficiently monotonic W(t) we define the quantities 
Rk by 

tk+i 

(3.2) Rk = Rk(W, X) = J W(t) y(t)exp{^L(t)dt\ *dt, (k = 0, 1, 2, ...), 
tk 

where y(t) is an arbitrary non-trivial solution of (3.1) and {tk}k=0 any sequence of 
consecutive zeros of any non-trivial solution z(t) of (3.1) which may or may not be 
linearly independent of y(t). 

Theorem 3.1. Let n^. 2 be an integer and W(t) > 0 any function of class A£n. For 
the coefficients a(t), b(t) in equation (3.1) suppose that the function 

(3.3) / W = b(f)_l_a '(0_la2(0 

satisfies 

(3.4) f'(t) e M„, f'(t) >0forte (0, oo), /(oo) > 0. 

Then for Rk defined by (3.2) there holds 

(3.5) (-l)JAJRk>0 ( y = 0 , \,...,n;k = 0, 1,2,...) 
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If in adition, 

(3.6) (-\)JWu\t) > 0 (f= 1,2,. . . , i t; 0 < t < oo), 

then the hypothesis f(t) > 0 may be weakened to f(f) _; 0 and n = 1 is allowed. 
Finally, if both f'(t) > 0 and (3.6) are weakened to f(t) = 0, ( - \)JWu\t) ^ 0 

(j = 1, 2 , . . . , n; 0 < / < oo), then /he symbol " > " m (3.5) /wust 6e replaced by " = " 
and n -= 1 is allowed, too. 

Corollary 3.1. Le/ n _ \ be an integer and X > 0 a/?j number. For a(t), b(t) adf(t) 
in (3.1) and (3.3) suppose that 

(3.7) a(0 e Mn_ t ,a(/) >0forte (0, oo), 

(3.8) f(0eM„,/(a))>0. 

Then /or P* defined by 
tk + t 

(3.9) P t = Pk(X) = f | XO \X dt (k = 0, 1,...), 

tk 

where {tk} and y(t) have the same meaning as In (3.2), there holds 

(3A0) ( - \)J AJPk > 0 (j = 0, 1 , . . . , * ; * == 0, 1, 2, . . . ) . 

In particular the sequence {Pfc(l)}fc°=o of the areas bounded by the successive arches 
or waves (having consecutive zeros as end-points) of the graph of any solution of(3.\) 
is monotonic of order n. 

Modifications similar to those in Theorem 3.1 are possible, too. 

4. PROOFS OF THEOREM 3.1 AND COROLLARY 3.1. 

Suppose first that f(t) > 0 for t e (0, oo). The conditions of Theorem 3.1 are 
sufficient for the validity of Lemma 1 p. 41 in [10] and the equation 

(4.1) y> +f(t)y = 0. 

By this Lemma, equation (4.1) possesses a pair of solution u -= r(t), s(t) such that 

p(t) = r\t) + s2(t) 
satisfies for t e (0, oo) 

(4.2) ( - iy 'p ( J ) ( t ) > 0 0 = 0 ,1 , ...,n - 1), ( - l ) > ( n ) ( / ) = 0. 

It follows from [5] p. 1244, (Theorem 3.1) that under the above mentioned conditions 
we have 

(4.3) (-l)JAJMk>0 O = 0 , l , . . . , n ; f c = 0 ,1 ,2 , . . . ) 
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for 

(4.4) Mk = Mk(W, X) = f W(t) | u(t) \x dt, 

tk 

where u(t) is an arbitrary (non-trivial) solution of (4.1) and {tk} any sequence of 
consecutive zeros of any non-trivial solution v(t) of (4.1) which may or may not be 
linearly independent of u(t). 

Since the transformation (2.3) preserves zeros tk of solutions u(t)9 y(t), respec­
tively, it follows from Lemma 2.2 that 

ffc+І 
IA 

Rk ш Rk(W, X) = ľ W(t) Kt)exp | 1 L ( 0 d Д dí = 
tk 

•łc+1 

= (w(t)\u(t)\*dt = Mk(W,X) = Mk 

tk 

and the assertion (3.5) follows from (4.4). 
To prove the modified form of Theorem 3.1 suppose now/'(0 = 0 ai1d validity 

of (3.6)./'(0 £ Mw implies (see [2] Theorems 18.1B, 20.1„) the existence of a function 
p(t) in (4.2) such that 

(4.5) p(t) > 0, ( - l)Jpa\t) = 0 (j = 1, 2, . . . , n; 0 < t < co). 

The assertion (3.5) follows from the modified form of Theorem 3.1 in [5], p. 1244 
in the same way as in the first part of this proof. 

The weakened assertion in case of f'(t)i = 0, (-\)JWJ(t) = 0 (j = 1,2,...,«; 
0 < t < oo) follows immediately from the proof of Theorem 3.1 in [5] in the same 
way as mentioned above. 

To prove the Corollary 3.1 we put in Theorem 3.1 

W(t) = W0(t) = e""*(r), where g(t) = y k j a(t) dr. 

We have 

g'(t) = yAa(0 > 0, ( - i y + 1 g°'>(0 ^ 0 (j = 2, ..., H; 0 < t < oo). 

The second part of Lemma 2.3 implies that 

( - i y WlftO > 0 0 = 0, 1,...,«; 0 < t < oo), 

and the assertion (3.10) follows from the modified form of Theorem 3.1 since 
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*k(W0, X) = f W0(t). e x p j l A L(t)dt\ | y(t) \x dt = Pk. 
tk 

The second part of Corollary 3A can be received by putting X = 1 and z(t) = y(t) 
in (3.9). The last sentence is obvious. 

5. H I G H E R MONOTONICITY OF {4°}*% 

This section includes the principal result of the present paper. Theorem 3.1 is 
included in Theorem 5.1 as a special case if we admit i = 0. Only a little change in 
formulations would be needed. 

In this section we shall study sequences {I?[l)}£°=o> where R^ is defined for fixed 
X > - 1 by 

tk+i 

(5.1) R? = R«>(W9 X) = f W(t) . expjyA f ai(t)dt\ | y^t^dt, 

tli} 

where y(t) is an arbitrary (non-trivial) solution of (3.1), t0
iy, t^,... denotes any 

sequence of consecutive zeros of /-th derivative (/ = 1,2,...) of any non-trivial 
solution z(t) of (3.1) which may or may not be linearly independent of y(t). The 
function a((t) is defined recurrently by (2.1) on the base of the coefficients a(t)9 b(t) 
of (3.1). 

Theorem 5.1. Let n ^ 2, / ^ 1 be arbitrary but fixed integers, W(t) > 0 any 
function of class Mn and t e (0, co). Let the coefficients a(t) = a0(t)9 b(t) = b0(t) of 
(3.1) = (1.10) be such that aj(t) (j = 0, 1,...,/), b/0 # 0(f= 0, 1, . . . , / - \)defined 
by (2.1) are differentiate. For the function f(t) defined by (2.2) suppose that 

(5.2) fK0eMn,f;>0 for t e (0, co), f(oo) > 0. 

Then for R^ defined by (5.1) there holds 

(5.3) ( - l)J A ^ 0 > 0 (j = 0, 1, ..., n; k = 0, 1,...). 

If in addition (3.6) holds, then the hypothesis f\(t) > 0 may be weakened tof't(t) ^ 0 
and n = 1 is allowed. If the sharp inequality f > 0 is weakened, then the symbol 
44 > " in (5.3) must be replaced by ";>" and n = 1 is allowed, too. 

Proof. If z0(t) denotes some solution of equation (3.1) = (1.10)> then on the base 
of Lemma 2.1 under above mentioned assumptions z^Xt) complies with the equation 
(l.li) and conversely, i.e. to any solution z((t) of (l.lf) then there exists a suitable 
solution z0(0 of (1.10) such that z0

l)(t) = zt(t) for / e (0, co). 
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If {4°}r=o denotes the sequence of consecutive zeros of the /-th derivative of above 
mentioned solution z0(t) of (1.10), then this sequence represents the sequence of 
consecutive zeros of suitable solution of (1.1/), explicitly zt(t) = z0

l)(t). 
Theorem 5.1 follows now from Theorem 3.1 if we replace equation (3.1) by (1.1,-). 

Corollary 5.1. Let the conditions of Theorem 5.1 be satisfied. Then 

(5.4) ( ~ i y + l A i 4 f ) > 0 0" = 0 , 1 , . . . , n + 1; k = 0,1,2,...). 

Consequently the sequence of differences of consecutive zeros of the i-th derivative of 
any solution of (1.1) is monotonic of order n. 

Proof. To prove the corollary, it suffices to put W(t) = 1 and X = 0 in (5.3). The 
Validity of (5.4) for j = 0 is obvious. 

6. REMARKS 

(i) Theorem 5.1 has a quite general character. In the case of concrete equation, 
however, it may be difficult to verify the higher monotonicity off\(t\ especially for 
great /. But it is possible to deduce some conditions for higher monotonicity of 

/J(0, involving only the coefficients a(t), b(t) of (1.1). Some simple ones are mentioned 
below. 

(ii) The explicit form of ft(t) is 

(6.1) f^^b + ^b^lb^^b^ib'+^a^^a^jab'ib. 

In case of a(t) = 0 (b(t) = q(t))9 i.e. for the equation (1.2), it is proved in [9] p. 107 
(Lemma 3) that q'(t)e Mn+2>

 a(0 > 0 implies 

(6.2) QV)eMH, Q(oo) = q(co), 

where 

Q(t) = q-^-q'2lq2+±-q"lq. 

The mentioned lemma constitutes, however, a criterion for higher monotonicity of 
/,(/) = Q(t) in this special case, 

(iii) We can easy verify that 

a(t)eMm+2,b'(t)eMn+2,b(t)>0 (/e(0,oo)) 
(6.3) 

fc(oo)_i_a2(oo)>o, 



imply 

(6.4) ( - l)Jf[J + 1\t) = 0, / (oo) > 0 (j = 0, V . . . , n; t e (0, oo)). 

If, in addition, b'(t) > 0, then the symbol " = " in (6.4) may be replaced by " > " . 
From this follows that in case of i = 1 the basic assumptions (5.2) in Theorem 5.1 

may be replaced by (6.3) and b'(t) > 0. 
To prove the above, we use Lemma 2.3. It implies that under conditions (6.3) 

there holds 
-b"\b e Mn + X, b'\b e Mn + 2 , ab'\b e Mn + 2 

and hence 

(6.5) (b"\b)f e M„, ( -b ' 2 /b 2 ) ' e Mn+x,(-ab'\by e Mn+l. 

Since all members of the derivative of (6.1) are of class Mn, we have/ / ( l)e Mn. 
As it was shown in [9] p. 108 there holds 

limN> + Yb"lb ~ ^b'2lb | = *(«>)• 

In the same way we can prove that 

S..L5-' - T - 1 - •ir-*''*].- -T-*<->-
and the proof of (6.4) is complete. 

To prove the sharpened assertion we consider the explicit form (6.1) o f / ( t ) . 

(6.1) includes the term ~^-b'2\b2. From (6.5) it follows (b'2\b2) e Mn + 2. Since 

(b'\by < 0, it holds that (b,2\b2)f < 0, and Lemma 2.4 implies 

( - i y DJ(bf2\b2) > 0 0 = 0, l , . . . , /z + 1, r e (0,oo)). 

This implies that the expression (—\)JDJf[(t) includes the strictly positive term for 
j = 0, 1, . . . , n and therefore (6.4) holds with sharpened sign " > " . 

(iv) The conditions (and also assertions) of the above mentioned theorems have 
a more simple form in case of completely monotonic functions. If q> e M^, i.e. 
( - iy (p(J)(t) ^ 0 forf = 0, 1, . . . , then sharp inequality holds for a n y / unless (p(t) 
is eventually constant (See Lemma 2.4). From the same lemma it follows that the 
conditions (3.6) for the function W(t) may be replaced by W(t)e M„+ 1 , W'(t) > 0. 

7. H I G H E R M O N O T O N I C I T Y O F {y2(td}t-o> {W'1* (4 0)] 2}*% 

As an application of the preceding theorems, it is possible to derive some higher 
monotonicity properties of the above mentioned sequences which seem to be some 
analoques of Sonin's theorem. 
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Theorem 7.1. Let n*z 1 be an arbitrary but fixed integer. Suppose that the condi­
tions (6.3) are satisfied and that 

(7.1) a(t) >0or a(t) = 0, b'(t) > Ofor t e (0, oo). 

Then 

(7.2) ( - i y Ajy2(ti) > 0 (j = 0, 1,..., /i + 1; k = 0, 1,...), 

wAere >>(/) denotes any solution of (1.1) am/ {tiJfcLo any sequence of consecutive zeros 
of its derivative. Hence the sequence {y2(tk)}k

X)^o is monotonic of order n + 1. 

Proof. Consider the expression 

tk + l 

(7.3) P;= jVexp|~2 fad.l- | r | fc- 1 ex P r-2 fadrlldL 

t'k 

After integration by parts we have 
tk+l 

(7.4) 

fk 

fk+l 

П = b ' 2 ^ 1 ] ! ^ 1 -2 ľ y W + /') Ь"1 dí = 

fk+ 

= 2J\/d.-A/(.;). 
fk 

because of vanishing of the first term. On the other hand 

fk+i 

(7.5) P'k = - j b'\b'lb + 2a)y 2df = 

fk 

fk+i 

= - exp - I a d H ^ / ò + ^a^.Ь-^exp \\aát y'2 dí = 

tк 

tк+i 

= - I |(Ь7Ь + 2a)expľ-íadЛ|.|expГ|(a-Ь7Ь)dt|/2|dř = 
tк 

ffc+i 

- - ľ W, . í e x p ľ y ľa. díl / ľ dí = -JtøІҒ., 2), 



where 

(7.6) Wx ss Wx(t) = (b'lb + 2a) exp [ - J a df]. 

By comparison (7.4) and (7.5) we obtain 

(7.7) R&Wlf2)=-Ay2W. 

It will be shown now that Theorem 5.1 is applicable in case of i = 1, n *> 1. 
Suppose first that a(t) > 0, (2A0) implies that 

( - i y D / e x p [ - J a d t ] > 0 0 = 0, l , . . . , n + 3, r e (0 , oo)). 

Since b'\beMn+2 and 0 < ae Mn+2, we have 0 < (b'lb + 2a)eMn+2. For 
the function Wx(t) defined by (7.6), it follows from the first part of Lemma 2.3 that 

(7.8) (-l)jW(
i
j)(t)>0 ( I - = 0 , l , . . . , r c + 2;fe(0,oo)). 

On the other hand Remark (iii) in Section 6 shows that under conditions (6.3) 
the functionfx(0 satisfies f[(t) e M„,fi(oo) > 0. Thus, the conditions of the modified 
form of Theorem 5.1 are, in this case, fulfilled. Hence and from (7.7) it follows 

(7.9) ( ~ i y AJK = ( - i y + 1 Aj+iy2(tk) > 0 (j = 0, 1,...,«; k == 0, 1,...). 

Because of y2(t'k) > 0, (7.2) follows directly from (7.9). 

Suppose now that a(t) = 0, b'(t) > 0. Using Lemma 2.3 we get b'jbeMn+2. 
Lemma 2.4 implies that ( — 1)JDj[b'lb~] > 0 forj = 0, 1 , . . . n + 1. Since in this case 
exp [— J a dr] = const we can see that (7.8) holds again with nonessential exeption 
for j = n + 2. This completes the proof. 

Remark 7.2. The conclusion (7.2) remains true if the hypothesis (6.3) are replaced 
by the slightly more general ones 

(7.10) / / e M^f^oo) > 0, (b'lb + 2a) exp [ - 2 J a dt] e Mn. 

It follows directly from the proof of Theorem 7.1. 

Remark 7.2. During compiling the final version of this work there was published 
the paper [6] including the similar sufficient conditions implying the validity of (7.2). 
They are formulated for the selfadjoint equation 

(g(t)yj +f(t)y = o. 

Theorem 7.2. Let n, i ̂  1 be arbitrary but fixed integers and t e (0, oo). Let the 
coefficients a(t) = a0(t), b(t) s b0(t) of (\.l) be such that a/0 (j = 0, 1 , . . . , / - 1), 
b{t) # 0 (j == 0, 1,..... i — 2), defined by (2A), are differentiable. Suppose that 

a^x(t)e Mn+i+i>&J-i(0 e Mi+.+i> bi-i(0 > 0 for te (0, oo), 
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(7.11) fr,_1(co)-la2_1(oo)>0 

and 
ai,1(t)>0 or fl,-!(0 = 0,*;_-(0> 0 for te(0,oo). 

Then 

(7.13) (-l)JAJly^1)(t(
k
i)']2 > 0 (f = 0, l , . . . ,n + i ;k = 0, 1,...), 

where y(t) denotes any solution O/(1A) and {4l)}£°=0 any sequence of consecutive zeros 
of its i-th derivative. Consequently the sequence {[_y(i~l) (Al)Y}k=o Is ntonotonic 
of order n + 1. 

Proof. Proof of Theorem 7.2 is similar to the proof of the preceding one. We 
consider 

(7.i4) IJ£°=-A[>>('-1>.f;i2 = 
Ji) 
f/c + 1 

= | F / > e x p | [ a i _ 1 d t | T ^ U - - 1 i e x p | - 2 L ^ d l l l d f = 

t y 

where 

(7.15) Wt= W{(t) = ' ( 4 ; . 1 / V i + 2al..1)exp {- f a^ dt) 

instead of P* and (lAf) instead .of (1.1). 

Remark 7.2. The conclusion of Theorem 7.2 remains true if the hypotheses (7.11) 
&re replaced by the slightly more general ones 

(7.16) / / e J I f ^ o o ) > OtW-Jb^ + 2a,.! exp{- f a^dr} eM„. 

It is immediately seen from the proofs of Theorems 7.1 and 7.2. 

Remark 7.3. As a very simple example for Theorem 7.2 in case of any /, it is 
possible to consider the equation 

(7.17) y" + ay' + by = 0, 

where a, b are constants such that a > 0, b — — a2 > 0. In this case at(t) = a, 

bt(t) = 6 and Wt(t) = e~fl* for any /. (7.13) holds therefore for any solution of (7.17) 
and any /. 

In this case, however, we do not obtain from Theorem 7.2 any other results than 
from Theorem 7.1 since the equation (l.lj) is the same for any /. 
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8. H I G H E R M O N O T O N I C I T Y O F {| y(t\) 1}*%, {| y*-1) (t(
k
l)) |}£.0-. • 

As another applications of Theorems 3.1 and 5.1 we give below some higher 
monotonicity properties of above mentioned sequences. 

Theorem 8.1. Let n ^ 1, / > 1 be arbitrary but fixed integers and t e (0, oo). Let 
the coefficients a(t) = a0(t\ b(t) = b0(t) of (1.1) be such that aft) (j = 0, 1, . . . , /), 
0 ^ bj(t)(j = 0, 1 , . . . , /— 1) defined by (2.1) are differ entiable. For the function a {(t) 
and f(t) defined by (2.2) suppose that 

(8.1) 0 < at(t)eMn 

(8.2) fXO eMu9f £co)>0. 

Then 

(8.3) ( - l y A ' C l / - 1 ^ . ) ! + I / ' " " ( i f ) I ] > 0 ( / = 0 J , . . . / » ; * = 0, 1,...), 

and 

(8.4) ( - l y A M ^ - 1 ^ ^ ^ ) ! > 0 a = 0 , l , . . . n ; k - 0 , l , . . . ) , 

where e = 0 or U y(t) denotes any non-trivial solution of (1.1) and {40K°=o ^ #wy 
sequence of consecutive zeros of its i-th derivative. 

Proof. Theorem 8.1 follows from Theorem 5.1 by putting 

a^t) dt (8.5) Л = l, ВД = exp^-y 

We have 

dt = (8.6) Rp(W„ 1) = f Wt j exp | ± ja, dtj / " 

f k 

J») . . • • • • . - • ' . • . . . 
* k + l 

- f l/ i ) ld t = i/ i-1 )(ti il0l + l/ i"1)(4 i))l-: ' 

i •;; 
Using Lemmas 2.3 and 2.4, we obtain (for Wt(t) defined by (8.5)) 

(~\)j W\j)(t) > 0 0 = 0, l , . . . , n ; r e ( 0 , o o ) ) . 

We can easy verify that the other conditions of the modified form of Theorem 5.1 

are satisfied, too. (8.3) follows then from (5.3) and (8.6). 

(8.4) follows from (8.3) since 

A[| /'-"(/i'J,) I + IZ '- 1 ^ ) I] = I /'-1> (4+2) I - I ^ ( i _ 1 ) (4°) I (fc = 0, 1,...), 
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and 
I / 1 " " (#2*) I > 0 (* = 0, l , . . . ; e = Oor 1). 

Corollary 8.1. Let us suppose that n 2> 1 that (6.3) and (7A) hold for a(t), b(t) in 

(y\), and that 

(8.7) 0 < ax(t) s (a - b'/*>) € Mn. 

(8.8) ( - l)J Aj | j ^ + 2 * ) | > 0 (j = 0, 1 , . . . , n; k = 0, 1,...), 

w/iere e = 0 or 1, y(t) denotes any solution of (1.1) and {tk} any sequence of consecu­

tive zeros of its derivative. 

Proof. (6.3) and (7.1) imply (8.2) (See Remark (ii) in § 6). Then (8.8) follows 

from (8.4) by putting i = 1. 

Remark 8.1. A typical equation satisfying the conditions of most of the obtained 

theorems is the Bessel equation. In the paper [11] there are derived some higher 

monotonicity properties of the Bessel functions. 
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