Archivum Mathematicum

Ivan Chajda
Direct products of homomorphic mappings. II

Archivum Mathematicum, Vol. 10 (1974), No. 1, 1--8

Persistent URL: http://dml.cz/dmlcz/104813

Terms of use:
© Masaryk University, 1974
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to

digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/104813
http://project.dml.cz

ARCH. MATH. 1, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS,
X: 1—8, 1974

DIRECT PRODUCTS
OF HOMOMORPHIC MAPPINGS II

IVAN CHAIJDA, Prerov
(Received May 17, 1973)

In [4] it is proved that for direct products of so called pseudo-ordered algebras
we can state the converse of the theorem on direct product of homomorphisms of
the type “onto” (see [3] p. 127 or [4], Theorem 1). There exists very extensive class
of algebras in which a more weak theorem than that holds. We can state also a similar
assertion for homomorphic mapping of the type ““into”. These are the main golas
of this paper. Apart from this, there is described one type of pseudo-ordered algebras
(others are given in [4]) and there is given a characteristic of these algebras by means
of a binary relation.

This paper is a continuation of [4], all conceptions and notations are taken from
there.

1.

In whole this paper denotes the symbol 2 a class of algebras with a zero element 0,
binary operation @ and a set of n-ary (n = 1) operations Q fulfilling identities:

()a® 0 =0@ a = aforeach 4 €A and an arbitrary element a € 4.

(i) 00 ... 0w = O for each w € Q.
An algebra 4 e is said to be without zero-divisors iff there exists Q' < Q,
Q' # = such that for each w € Q' there holds:

(iii) arity of w is greater than 1 and a,a, ... a,0 = 0 iff a; = O for at least one
ie{l,..,n}.
Operations from Q' are called regular. An algebra 4 e is said to be pseudo-
ordered if A is without zero-divisors and there exists Q" < Q’, Q" # o such
that for each w € Q" the following identity is true:

(iv) a,a, ... a,0 = ap, whereax = aoraeQand ax = 0iffa = 0;ie{l,..., n}.

Then « is called the operation corresponding to w € Q"'.

Let A, e for Te T, A =[] 4, (the direct product of 4,). By the symbol 4,
teT

(resp. [] 4, for T’ = T)we denote a subalgebra of A fulfilling pr. 4., = 4., pr.A., =
teT’ -
= 0 for © # 14 (resp. pro([] 4.) = 4., for 1o € T" and pr, ([[ 4) =Ofort, e T —
teT’ teT’



— T’). An isomorphic mapping j of [] 4, onto [] 4, such that pr, (i([] 4,)) =
teT’ teT’ teT’

= pro(]] 4.) for each , € T" is called the natural isomorphism. The inverse mapping
teT’

of j is called the natural isomorphism, too.
In [3] p. 127 the following theorem is stated:

Theorem 1. Let B be a class of algebras, A,, B,€ B and ¢, be a homomorphic

mapping of A, onto (resp. into) B, for t € T. Then ¢ = [| @, is a homomorphic mapping
te€T
of A =[] 4, onto (resp. into) B = ] B,.
teT t€T

Proof see [4], theorem 1.

In [4] there is proved that for direct products of pseudoordered algebras and
for surjective homomorphisms the converse of the theorem 1 is true. For N-algebras
and arbitrary homomorphisms only a weaker statement can be proved:

Theorem 2. Let A, B, e be algebras without zero-divisors, A = || 4., B = H B,,
teT oceS

T, s be finite sets, @ be a homomorphic mapping of A onto B. Then there exists a set 1
of indices a, and injective mappings of I into T and of I into 2° assigning to each a € I
just one 1,€ T and S, < S that:

MUS, =85S, nS,. =0 fora,a"el,a' # o'

ael R
() If T* = {t,, x €I}, then p(A*) = @(A), where A* =[] 4,,
ael]
() ¢ | 4* = [1f., where f, is a homomorphic mapping of A, onto [] B, .
a€l geS,

Proof. By the theorem 2 in [4], there exists just one 7, € T such that ¢(4,,) 2 B,
foreacho e S. Let T* = {r,, « € I} be a set of all these indices 7, without repetition
(each 7, is in T* only one times). Then ([ | 4.) 2 [] B, = B = ¢(A4), thus ¢(4*) =

ael c€S

= @(A). It is obvious that card I < card S. Denote S, the set of all ¢ € S for which
7, is the same (i.e. o€ S, = B, < ¢(4,,)). Evidently J S, = S. From 2 in [4] we
acl
obtain S, N S, = . Let i, be a natural isomorphism of [] B, onto [] B,, j, be
GES, GESa

a natural isomorphism of 4, onto 4, , thenf, = i,. ¢ | 4, .j, and ¢ | A* =[] fa-
v ael

Corollary 3. Let A,, B, be algebras without zero-divisors, T finite set A = H A,
teT

B =[] B, and ¢ be a homomorphic mapping of A onto B for which ¢(A4,) is an algebra
teT .
without zero-divisors for each t € T. Then there exists a permutation n of the set T

such that ¢ = [] @., where ¢. is a homomorphic maping of A, onto B,().
teT

Proof. For each t € T, ¢(4,) is without zero-divisors, thus card S, = 1 for each



o € 1. From the condition |J S, = S we obtain card I = card S, but S = T, thus

ael

T* = T and the assertion follows from the theorem 2.

Corollary 4. Let A, B, be rings without zero-divisors, A = H A, B=1]]|B, Tbe

teT teT
a finite set and @ be a homomorphic mapping of A onto B for which (4, N ker ¢) be a

prime-ideal in A, for each 1€ T. Then ¢ = H(p,, where @, is a homomorphic
teT '

mapping of A, onto B, n is a permutation of the index set T.

Proof. Let 4, 0 ker ¢ be a prime-ideal in 4,, then ¢ induces a congruence ¢ on
A, and the factor-ring 4,/@ is without zero-divisors (see [5]), ¢(4,) is isomorphic
with 4,/@. Then ¢(4,) is without zero-divisors, too. From corollary 3 we obtain the
assertion.

Corollary 5. Let A,, B, be simple-rings (or fields) for te T, @ be a surjective homomor-

phic mapping of the direct product A =[] A, onto direct product B =[[B,, T
teT teT

finite. Then ¢ = H @., where @, is a surjective homomorphic mapping of A, onto
teT

B, ™ is a permutation of the index set T.

Proof. The mapping ¢ | 4, is a homomorphic mapping, ker ¢ | A, = 4, N ker g,
but ker (p‘| A, is an ideal in A4,. Fields and simple-rings have no proper ideals, then
A, ker ¢ is the zero 0 € 4, or whole 4, for each t € T, but they are primeideals.

From the theorem 2 in [4] there follows an analog of the classical Krull-Remark-
Schmidt theorem (for rings see [5]):

Corollary 6. Let A,, A, be algebras without zero-divisors for 1€ T, yeT, and [ |
teT

A,ﬂq A,, be isomorphic algebras.

where A is an N-albegra.

Then card T = card T and there exists a permutation n of the set T such that y €
€l = A, = Ay, for just one t € T; in other words, the direct decomposition of an
algebra A in algebras without zero-divisors is uniquely determined up to order of
direct factors.

Proof. Let [[ 4,, [] 4,, be isomorphic then there exists an isomorphic map-

teT yel
ping ¢ of [] 4, onto [] 4, and isomorphic mapping ¢~"' of [] 4, onto ] 4.,
teT yel yel teT

o9 ' = ¢ '¢ = id,. By the theorem 2 in [4] there exists just one 4, for each 4,

such that ¢(4,) = A4, and just one A4, for each 4, such that ¢~'(4,) 2 4,. Thus,
A, =09~ '(4,) 2 ¢(4,) 2 4,, but 4, 2 A, is impossible for y # y’. Then y =y’
and A, = A, = ¢(4,). We obtain ¢~ '(4,) = 4, analogously.

From the corollary 6 we get a generalization of the first part of the theorem 4.1.

in [1].



2.

Lemma A. Let A €N, O, be a zero-element of A and ¢ be a homomorphic mapping
of A into BeU. Then ¢(0,) is a zero-element of ¢(A) and we have no other zero-
elements in p(A).

Proof. Let be ¢p(4), let ae 4 and @(a@) = b. Then b @ ¢(0,) = ¢(a) ® ¢(0,) =
= @@ ® 0,) = ¢(a) = b, analogously ¢(0,) ® b = b. Let w be an arbitrary n-ary
operation from Q, then ¢(0,) ¢(0,)... ¢(0,) w = (0,0, ...0,0) = ¢(0,), Thus,
¢(0,) is a zero of ¢(A4). The unicity of the zero ¢(0,) is evident.

Lemma B. Let A €U be a pseudo-ordered algebra, ¢ be a homomorphic mapping
of A into BeN fulfilling ¢(0,) = 0g. Then @(A) is a pseudo-ordered algebra and
o(A4) eN.

Proof. Let b,,...,b,€ 9(A), b, # 03 and let a,,...,a,€ 4, ¢(a;) = b; and w
be an arbitrary operation from Q. Then b, ... b0 = ¢(a,) ... ¢(a,) ® = ¢(a, ...
... a,w) = @(aa) = ¢(a;) o = bo for some i€ {1, ..., n}. By the lemma A we have

" 90 a = (0,). Let b; = 05 = ¢(0,) for some j, then b, ... 05... b,w = @(a, ...
... 0, ... a,0) = ¢(0,) = 05. Conversely, let b, ... b,w = Og, then 05 = o(a, ... a,0)
= @(a;) « = b, then b; = Oy for some i e {1, ..., n}. The assertion is evident.

Lemma C. Let A €U be a pseudo-ordered algebra and o = id, the corresponding
operation for each w € Q. Let ¢ be a homomorphic mapping of A into Be. Then
@(A) is a pseudo-ordered algebra with the same Q"'.

Proof. Let b, € ¢(A), b; # ¢(0,) for i = 1, ..., n. Analogously as in the proof
of Lemma B we obtain b, ... b,w = b;. Let b; = ¢(0,), then b, ... b, = ¢(a, ...
...04...a,0) = ¢(0,). Conversely, let b, ...b,w = ¢(0,), then ¢(0,) = ¢(a, ...
...a,w) = @(a;) = b, for some i€ {1, ..., n}. The assertion is evident.

Theorem 7. Let A,, B, € be algebras without zero-divisors, T, S be finite sets, A =

= [1 4., B =[] B,, let ¢ be a homomorphic mapping of A into B and let at least
teT c€ES

one of the following conditions be true:

(M ¢(0,) = 0Op ‘
(I) A,, B, are pseudo-ordered and there exists wy € Q"' such that the corresponding
operation a = id (for eachte T, o € S).

~

Then for each o € S we have pr,p(A) = pr,¢(0,) or there exists just one t,€ T such
that pr,¢(A) = pryo(4. ).

Proof. The inclusion pr,¢(A4) 2 pr,@(A,) is evident for each te T and o€ S.



Let prq,@(A4) # pre,@(0,) for o, € S and suppose that it does not exist 7o € T with
pro@(Ay) 2 pro@(A4). Then there exists a set 7' < 7T such that

Prao( Il,A,) 2 pr,¢(A),

because for T’ = T it is true. Accordingly, card T’ > 1. Lett,, 1, € T', 1, # 1,.
(a) Let there exist @, € 4,,, a, € A4,, such that

Proe®(@1) # pryo®(0,) # pr,,(a,).

If the condition (1) is fulfilled, then ¢(a,a, ... @a,w) = ¢(0,) = 0y for an arbitrary
n-ary o which is the direct product of regulary operations from Q’, but pr,¢(a,)
Preo®(@3) ... proo@(a,) o # pr,,»(0,) = pr, 0p which is a contradiction. If the
condition (II) is fulfilled, then @(a,a, ... @) = ¢(0,), but pr, ©(@,) pre,9@a,) ...
ce Preo(@3) Wo = pro.@(a@;) # pry,9(0,) which is a contradiction again.

(b) Let the assumption (a) be not true, then there exists 7, € T such that pr, ¢(4,)=
= pf,,ocp( 0,) for t # 7,. Let b, € pr, @(A), b,, # pr,,9(0,). Let us choose arbitrary
a€ A fulfilling pr, ¢(a) = b,,. By the lemma A we have a # 0,. We can write
a =a~(r;)) @ ¢, where pr.,c =0 (and pr,a_(r;) = 0 for t # 15). Then ¢(c) = ¢(0,)
by the assumption (b), and: pr,,@(a) = pre,@(ate) ® ¢) = pr,,¢(a(te)) @ pre,@(©,),
by the lemma A we obtain pr, ¢(a) = pr,,@(a(t,)). From this it is obvious that
Preo®(A) < pr,,9(A,,), contrary to the assumption of the proof.

Corollary 8. Let A,, B, €U be algebras without zero-divisors, T, S be finite sets,
A= H A,, B =[] B,, be a homomorphic mapping of A into B and let at least one of

teT cgEeS

the conditions (I), (I of the theorem 7 be true. Let S’ be the least subset of S such that
be o(A)= pr,b = pr,0(0,)  for gesS — S

Let S' # . Then there exists a set I' of indices y such that to each y €T corresponds
Just one v,€ T and S, < S fulfilling: -
MUS,=5,5,nS,=0fory,y el,y #y",and 1, # 1,

yer

(2) T* = {1, yeTI}, then p(A) = @(A*), where A* = ]—TAIV

verl
) ¢ | 4* = [ o,, where ¢, is a homomorphic mapping of A, onto Bs and Bs =
yel
= {be @(4); pr,b = pr,0(0,) for c€S — S,}.

Proof. By the theorem 7, there exists just one t, € T for each ¢ € S such that
pro@p(A) = pr,o(A,.,). Let us denote by T* the set of all these pairwise different .
For each 1, € T* we denote S, a subset of all ¢, for which

6 € Sy = pr,op(A) = pr,p(4,,).



Then ¢(4,,) = Bs, (by notation of the theorem 8). Let us denote T* = {r,,yeI}.
Then by the theorem 7, to each 7, € T* there corresponds just one S, < S and S,, N
NSy = o fory # 7" and U S, = §’. By the theorem 7 we obtain ¢(4*) = ¢(4).

yerl _
Let js, be a natural isomorphism of Bg, onto H B, and i, be a natural isomorphism
o€S,
of A, onto 4, , then ¢, =js . ¢ | A4, .i,. It is evident that ¢ | 4* = ] o,.

vel
This corollary is more weak than the converse of Theorem 1 for homomorphisms

of the type “into” fulfilling (I) or (II). However, we can easy show an example when
the converse of Theorem 1 for homomorphisms of the type ““into’ is not generally
true (not even for pseudo-ordered algebras).

From Lemmas B, C, Theorem 4 in [4] and Corollary 8 there follows directly:

Corollary 9. Let A., B, de completely ordered groups or chains with the maximal
element or chains with the minimal element and ¢ be a supremum and infimum preserving
homomorphic mapping of A =[] A4, into B = I1 B.. where T is a finite index set.

teT teT e
Then there exist a set T* = T such that ¢(A) = ¢(A*), where A* =[] A, and
teT*
@(4) =[] B™, where B™ is a completely ordered group or chain with the maxi-

yel
mal element or chain with the minimal element for each vyel, respectively, and
Q| A* = 1@, where o, is order preserving homomorphic mapping of A, onto B®.
yer

3.

In [13] it is proved that for direct products of pseudo-ordered algebras is true
the converse of the theorem 1 for mappings of the type “onto”. Let us introduce
a new conception:

Definition. Let A € W be an algebra, let w € Q. The operation w is said to be weak-
commutative iff the following identity for each a, be A holds: ab ... bw = ba ... aw.

It is clear that for binary operations the conceptions of weak-commutativity and
commutativity are equivalent.

Definition. A4 binary relation R on an algebra A €U is said to be weak-antisym-
metric iff {a, b) € R and {b, a) € R imply ax = bx, where ax = a or o« € Q is a_unary
operation for which as. = 0 iff a = 0. A binary relation R is called the pseudo-ordering
on A iff it is reflexive, weak-antisymmetric and complete on A.

Theorem 10. Let A €N be a pseudo-ordered algebra and let there exist a weak-
commutative operation w € Q''. Then there exists a pseudo-ordering on A.

Proof. Let 4 €U be a pseudo-ordered algebra and we Q"' be weak-commutative.
Introduce the relation P:

{a,b)eP iff ab...bw = ax.



From aa ... aw = ax we obtain a reflexivity of P. For each a, be A we have ab ...
...bw = aa or ab ... bw = ba, thus, P is complete. If {a, by € P and (b, a) € P,
then ab ... bw = aa, ba ... aw = ba and from weak-commutativity we obtain ax =
= bu; accordingly, P is a pseudo-ordering.

Theorem 11. Let A be an algebra with a zero-element 0 and a set Q of n-ary opera-
tions w fulfilling 00 ... Ow = 0 for each we Q. Let an antisymmetrical pseudo-
ordering P be defined on A. Then A is the pseudo-ordered algebra with a commu-
tative binary operation wq e Q.

Proof. Let us define operations @ and w, by the following way: a, b € 4, then
(,byePiff a®b=>b@® a=>b and abw, = baw, = ax, where « is the identity
on A. It implies 0® 0 =0, 00w, = 0 and from completeness of P we obtain
a,a,wy = a; fori = 1 or 2. Summary, w, € Q"' is commutative and 4 is a pseudo-
ordered algebra with 0, @ and the set of operations Q U {w,}.

It is clear that each homomorphism of an algebra 4 with pseudo-odering P preserv-
ing P preserves operations @ and w,, too.

Corollary 12. Let A be a completely ordered algebra with zero 0 and a set Q of
operations fulfilling 00 ... 0w = O for each w € Q. Then A is a pseudo-ordered algebra.

It follows directly from the theorem 11 because each complete ordering is a pseudo-
ordering. From the theorem 11 we obtain: '

Theorem 13. Let A, B algebras with a zero 0 and with the same set Q of n-ary opera-
tions fulfilling 00 ... 0w = O for each we€ Q. Let P be a pseudo-ordering on 4, Q
pseudo-ordering on B and let ¢ be a homomorphic mapping of 4 into B fulfilling
¢©(0) = 0 and preserving pseudo-ordering (i.e. {a, b) € P = {¢p(a), ¢(b)> € Q). Then
¢(A) is a pseudo-ordered algebra and ¢ preserves @ and w, (introduced in the proof
of the theorem 11).

Corollary 14. Let A., B, be algebras of the same class of algebras with zero 0 and
a set Q of operations fulfilling 00 ... 0w = 0 for each w € Q, let P, (resp. Q.) be a pseudo-
ordering on A, (resp. B,) and R (resp. S) be a direct product of P_(resp. Q.), i.e.{a, b) €
€ Riff a(x), b(r)y € P, for each t€ T, T finite and A = [ A,, B = [] B.. Let ¢ be

teT teT

a homomorphic mapping of A onto B preserving the boundary of R. Then ¢ =[] o.,
teT

where . is a homomorphic mapping of A, onto By, preserves pseudo-ordering and
n is a permutation of T.

Remark. We say that ¢ preserves the boundary of the relation P = 1_[ P if ¢
teT

preserves the direct product of the operations @ and w, introduced in the proof of
the theorem 11.
This corollary follows directly from the theorem 13 and the theorem 7 in [4].



Corollary 15. The converse of the theorem 1 for o-homomorphisms of the type
“onto” is true for direct products of completely ordered algebras with 0 and a set Q
of n-ary operations fulfilling 00 ... 0w = 0, if ¢ preserves supremum and infimum.

Theorem 16. Each cyclically ordered set (see to [2]) is a pseudo-ordered algebra.

Proof. Let 4 be a cyclically ordered set, fix a, € A. Then the set 4 — {a,} is
completely ordered. This ordering S is induced by a cyclical ordering—see [2],
and S is uniquely corresponding to cyclical ordering on A and conversely. Let us
extend S to S’ by the following way: $" = Son 4 — {a,}, ay, a) € S’ and {a, ay) ¢
¢ S’ for each ae A — {ao}. Then S’ is uniquely corresponding to S and to cyclical
ordering on A, too. By the Theorem 4 in [4], 4 is a pseudo-ordered algebra.

Let A, be cyclically ordered set for each 7 € T. We can introduce so called partially
cyclical ordering C on 4 = [] 4, by the rule: <a, b, c) € C iff a(), b(1), c(z)> e C,,

teT
where C, is a cyclical ordering on 4,. From the Theorem 16 and the Theorem 7 in

[4] there follows:
Corollary 17. Let A,, B, be cyclically ordered sets, T finite, A = [ A,, B=1[]B.

teT teT
and S be a partial ordering which is the direct product of complete orderings S, cor-
respoding to C, by the proof of the Theorem 16. Let ¢ be a homomorphic mapping
of A onto B preserving binary operations supremum and infimum of the partial or-

dering S. Then there exists a permutation 1 of the index set T that ¢ = [| @, where
teT

@, is a homomorphic mapping of A, onto B, ., preserving the cyclical ordering.
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