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DIRECT PRODUCTS 
OF HOMOMORPHIC MAPPINGS II 

IVANCHAJDA, Pferov 

(Received May 17, 1973) 

In [4] it is proved that for direct products of so called pseudo-ordered algebras 
we can state the converse of the theorem on direct product of homomorphisms of 
the type "onto" (see [3] p. 127 or [4], Theorem 1). There exists very extensive class 
of algebras in which a more weak theorem than that holds. We can state also a similar 
assertion for homomorphic mapping of the type "into". These are the main golas 
of this paper. Apart from this, there is described one type of pseudo-ordered algebras 
(others are given in [4]) and there is given a characteristic of these algebras by means 
of a binary relation. 

This paper is a continuation of [4], all conceptions and notations are taken from 
there. 

1. 

In whole this paper denotes the symbol $1 a class of algebras with a zero element 0, 
binary operation © and a set of n-ary (n ^ 1) operations Q fulfilling identities: 

(i) a © 0 = 0 © a = a for each A e$l and an arbitrary element a e A. 

(ii) 00 ... Oca = 0 for each coeQ. 

An algebra A e 21 is said to be without zero-divisors iff there exists Q' c Q, 
Q' T-= 0 such that for each coeQ' there holds: 

(iii) arity of co is greater than 1 and ata2 . . . anco = 0 iff ax = 0 for at least one 
i e { l , . . . , « } . 
Operations from Q' are called regular. An algebra A e 21 is said to be pseudo-
ordered if A is without zero-divisors and there exists Q" s Qf, Q" ?-- 0 such 
that for each coeQ" the following identity is true: 

(iv) axa2 . . . anco = ata, where aa = a or a € Q and aa = 0 iff a = 0; 1 e { 1 , . . . , fl}. 
Then a is called the operation corresponding to coeQ". 

Let At e$l for T e T, A = J | Ax (the direct product of Ax). By the symbol Axo 

(resp. \\ At for T' c T) we denote a subalgebra of A fulfilling prX0AX0 = Axo, prtAX0 = 
t e r 

= 0 for T / T0 (resp. prt0( J ] Ax) = Axo for T0 € T and prxl( f j Ax) = 0 for xt e T -
teT" t e l " 



_ T'). An isomorphic mapping j of \[ At onto \[ At such that prtoO'(n Ax)) = 
T6T ' T6T ' T€T ' 

=-= FrTo(Il Ax) for each T0 G F' is called the natural isomorphism. The inverse mapping 
T6T ' 

of j is called the natural isomorphism, too. 

In [3] p. 127 the following theorem is stated: 

Theorem 1. Let S be a class of algebras, At, Bte -B and cpt be a homomorphic 
mapping of At onto (resp. into) Btfor xeT. Then cp = J ] <pT is a homomorphic mapping 

xeT 

ofA = Y[ At onto (resp. into) B = \[ Bt. 
xeT xeT 

Proof see [4], theorem 1. 
In [4] there is proved that for direct products of pseudoordered algebras and 

for surjective homomorphisms the converse of the theorem 1 is true. For N-algebras 
and arbitrary homomorphisms only a weaker statement can be proved: 

Theorem 2. Let At,Bae
 sll be algebras without zero-divisors, A = Y[ Ax> & = II ^ ' 

t e T aeS 

T, s be finite sets, cp be a homomorphic mapping of A onto B. Then there exists a set I 
of indices a, and injective mappings of I into T and of I into 2s assigning to each a el 
just one xae T and Sa c s that: 

(1) (J Sa = S, Sa, n Sa„ = 0 for a', a" e I, a' * a" 
a el 

(2) IfT* = {xa,oceI}, then <p(A*) = cp(A), where A* = X[Ata 
ael 

(3) q> I A* = J l f a , where fa is a homomorphic mapping of Ata onto f[ Ba. 

Proof. By the theorem 2 in [4], there exists just one xa e Tsuch that q>(dX(r) 2 Ba 

for each a e S. Let T* = {ta, a e I} be a set of all these indices xa without repetition 
(each xa is in T* only one times). Then cp(Y[ Ato) 2 J[ Ba = B = (p(A), thus <p(A*) = 

= (p(A). It is obvious that card I <£ card S. Denote Sa the set of all a e S for which 
xa is the same (i.e. a e Sa => Ba c cp(ltJ). Evidently (J Sa = S. From 2 in [4] we 

ae / 

obtain Sa' n Sa» = 0 . Let ia be a natural isomorphism of \[Ba onto Y[BC9ja be 

a natural isomorphism of Ata onto Attx, thenfa = ia. q>\ Atx .ja and (p \ A* = Yif*-
* ael 

Corollary 3. Let At, Bt be algebras without zero-divisors, T finite set A = Y[At, 
xe T 

B = \[Bt and cpbe a homomorphic mapping of A onto Bfor which <p(At) is an algebra 
xeT 

yvithout zero-divisors for each xeT. Then there exists a permutation n of the set T 
such that cp = J[ <PT> where cpt is a homomorphic maping of At onto Bn(x). 

xeT 

Proof. For each xeT, (p(At) is without zero-divisors, thus card Sa = 1 for each 



(xe I. From the condition \J Sa = S we obtain card I = card S, but S = T, thus 

T* = T and the assertion follows from the theorem 2. 

Corollary 4. Let Ax, Bx be rings without zero-divisors, A = \\AX, B = \\BX, T be 
T e T t e T 

a finite set and (p be a homomorphic mapping of A onto B for which (Ax n ker (p) be a 
prime-ideal in Ax for each T e T. Then q> = J\ (px, where (px is a homomorphic 

teT 

mapping of Ax onto Bn(x), n is a permutation of the index set T. 

Proof. Let At n ker (p be a prime-ideal in At, then (p induces a congruence (p on 
At and the factor-ring AJ0 is without zero-divisors (see [5]), (p(Ax) is isomorphic 
with AxjO. Then (p(Ax)is without zero-divisors, too. From corollary 3 we obtain the 
assertion. 

Corollary 5. Let At,Bxbesimple-rings (orfields)for TeT, (p be asurjective homomor­
phic mapping of the direct product A = \\ Ax onto direct product B = \\BX, T 

teT T e T 

finite. Then (p = Jl<pT, where (px is a surjective homomorphic mapping of Ax onto 
T 6 T 

Bn(t), n is a permutation of the index set T. 

Proof. The mapping (p | AT is a homomorphic mapping, ker (p\Ax = Axc\ her (p, 
but ker (p | At is an ideal in At. Fields and simple-rings have no proper ideals, then 
A T n ker (p is the zero 0 e At or whole At for each t e T, but they are primeideals. 

From the theorem 2 in [4] there follows an analog of the classical Krull-Remark-
Schmidt theorem (for rings see [5]): 

Corollary 6. Let AT, Ay be algebras without zero-divisors for xeT, yeT, and J~[ 
T E T 

At\\ Ay, be isomorphic algebras. 
y e T 

where A is an N-albegra. 
Then card T = card T and there exists a permutation n of the set T such that y e 

e T => Ay = An(x) for just one TeT; in other words, the direct decomposition of an 
algebra A in algebras without zero-divisors is uniquely determined up to order of 
direct factors. 

Proof. Let f| At, Y\ Ay, be isomorphic then there exists an isomorphic map-
T e T y e T 

ping (p of Y\AX onto f\ Ay and isomorphic mapping (p~l of f| Ay onto \\ Ax, 
xeT y e T y e T T e T 

(p(p~x = (p~l(p = idA. By the theorem 2 in [4] there exists just one Ax for each Ay 

such that (p(At) c Ay and just one Ay, for each At such that (p~1(Ar) ~2 Ax. Thus, 
Ay = (p(p~l(Ay,) 3 (p(Ax) ~l Ay, but Ay ~i Ay is impossible for y ?- y'. Then y = y' 
and Ay = Ay = (p(Ax). We obtain (p~1(Ay) = Ax analogously. 

From the corollary 6 we get a generalization of the first part of the theorem 4.1. 
in [1]. 



2. 

Lemma A. Let Ae<U,0Abea zero-element of A and (p be a homomorphic mapping 
of A into Jt?e9l. Then (p(0A) is a zero-element of (p(A) and we have no other zero-
elements in (p(A). 

Proof. Let b e (p(A), let a e A and (p(a) = b. Then b © q>(0A) = q>(a) © ^(0^) = 
= q>(a © 0^) = (p(a) = b, analogously (p(0A) © b = b. Let co be an arbitrary n-ary 
operation from Q, then cp(0A) (p(0A)... (p(0A) co = (p(0A0A ... 0A(o) = q>(0A), Thus, 
cp(0A) is a zero of (p(A). The unicity of the zero (p(0A) is evident. 

Lemma B. Let A e 91 be a pseudo-ordered algebra, q> be a homomorphic mapping 
of A into Be%l fulfilling (p(0A) = 0B. Then (p(A) is a pseudo-ordered algebra and 
(p(A)eW. 

Proof. Let bl9 . . . , bne q>(A), bx ^ 0B and let a,, . . . , ane A, c/>(#i) = bL and co 
be an arbitrary operation from Q". Then b. ... b„co = (p(ax)... (p(an) co = (p(ax ... 
... a„co) = </>(a.a) = (p(od a = hp for some / e {1, . . . , /i}. By the lemma A we have 
q>(0A) a = (p(0A). Let b} = 0B = (p(0A) for some f, then bx ... 0B ... bn(o = <p(a, . . . 
... 0A ... anco) = (p(0A) = 0B. Conversely, let bt ... b„co = 0B, then 0B = (p(a{ ... ana>) 
= (p(at) a = b.a, then bt = 0B for some / e { 1 , . . . , /?}. The assertion is evident. 

Lemma C. Let A e 91 be a pseudo-ordered algebra and a = /dA the corresponding 
operation for each coeQ". Let (p be a homomorphic mapping of A into Be 91. The/? 
cp(A) is a pseudo-ordered algebra with the same Q". 

Proof. Let bte(p(A), b( 7-= (p(0A) for / = 1, . . . , n. Analogously as in the proof 
of Lemma B we obtain bt ... bn(o = bt. Let b{ = c/>(0A), then bt ... b„co = cp(at . . . 
. . . 0X . . . a^co) = cp(O )̂. Conversely, let b{ ... bnco = q>(0A), then (p(0A) = </>(«! .. . 
. . . an(o) = c/>(aj) = b{ for some / e {\, ..., n}. The assertion is evident. 

Theorem 7. Let AT, Ba e9( be algebras without zero-divisors, T, S be finite sets, A = 
= | ^ Ax, B = J3 jBff, let (p be a homomorphic mapping of A into B and let at least 

xeT aeS 

one of the following conditions be true: 

(I) cp(0A) = 0B 

(II) At, Ba are pseudo-ordered and there exists co0 G Q" such that the corresponding 
operation a = id (for each x e T, a e S). 

Then for each a e S we have pra(p(A) = pra(p(0A) or there exists just one xae T such 
that pra(p(A) = pra(p(Ax<). 

Proof. The inclusion praq>(A) 2 pra(p(Ax) is evident for each re T and ae S. 



Let prao(p(A) / prao(p(0A) for <x0 e S and suppose that it does not exist T0 e T with 

prffo(p(^xo) ^ praoV^)- T h « n there exists a set T c T such that 

prao<p(Y\Ax) =>prao(p(A), 
xeT' 

because for T = Ti t is true. Accordingly, card T > 1. Let xl,x2e T, xt ^ T2 . 

(a) Let there exist ax e >Itl, a2 e AXl such that 

preo<p(ai) * prao(p(0A) ¥= prao(p(a2). 

If the condition (I) is fulfilled, then <p(ai<52 ••• o2co) = (p(0A) = 0B for an arbitrary 
n-ary co which is the direct product of regulary operations from Q\ but pra(p(a^) 
prao(p(a2) ... prao(p(a2) co # prao(p(0A) = pr,^ which is a contradiction. If the 
condition (II) is fulfilled, then (p(axa2 ... a2a>0) = ^(0^), but prff0^(a"i) prao(p(d2)... 
"•prao(p(a2) OJ0 = prao(p(di) ?- prao(p(0A) which is a contradiction again. 

(b) Let the assumption (a) be not true, then there exists x0eT such that praoap(Ax) = 
= prao(p(0A) for T # T 0 . Let 6ff0 eprao(p(A), bao # prao(p(0A). Let us choose arbitrary 
a G A fulfilling prao(p(a) = b<-0. By the lemma A we have a ^ 0A. We can write 
a = a(T0) © c, where prT0c = 0 (and prxa(x0) = 0 for x ?- T0). Then <p(c) = <p(0A) 
by the assumption (b), and: prao(p(a) = prao(p(a(x0) © c) = prao(p(a(x0)) © prao(p(0A), 

by the lemma A we obtain praoq)(a) = praoq>(a(x0)). From this it is obvious that 
prao(p(A) £ prao(p(AXo), contrary to the assumption of the proof. 

Corollary 8. Let Ax, Bae
<H be algebras without zero-divisors, T, S be finite sets, 

A = f\ Ax, B = Y\ &<*•> &e a homomorphic mapping of A into B and let at least one of 
T€T aeS 

the conditions (I), (II) of the theorem 1 be true. Let S' be the least subset of S such that 

b € (p(A) => pr„b = pra(p(0A) for oeS - S'. 

Let 5 ' 9- 0 . Then there exists a set F of indices y such that to each yeT corresponds 
just one xy e T and Sy c S fulfilling: . 

0 ) U Sy = S', Sr nSr=0 for y', y" e F, y' * y", and xr * xr 
y e T 

(2) T* = {Ty, yeT}, then q>(A) = (p(A*), where A* = n Axy 

(3) (p j A* = |~] (py, where (py is a homomorphic mapping of AXy onto BSy andBSt = 
yer 

= {be (p(A); prab = pra(p(0A) for o e S - Sy}. 

Proof. By the theorem 7, there exists just one xae T for each o e S such that 
pra(p(A) = pra(p(AXa). Let us denote by F* the set of all these pairwise different xa. 
For each T0 e T* we denote S0 a subset of all o, for which 

o e S0 => pra(p(A) = pra(p(AX0). 



Then (p(Ato) = BSo (by notation of the theorem 8). Let us denote F* = {iy, y e F}. 
Then by the theorem 7, to each iy e F* there corresponds just one Sy s s and Sy> n 
n Sr = 0 for / ?- y" and U Sy = *'• By t h e theorem 7 we obtain cp(A*) = <p(A). 

LetJSv be a natural isomorphism of BSy onto ]"] i?ff and iy be a natural isomorphism 
oeSy 

of -4Ty onto J*Tv, then cpy = f S y . cp | J"Ty . iy. It is evident that cp | A* = j~[ ^>y. 
yer 

This corollary is more weak than the converse of Theorem 1 for homomorphisms 
of the type "into" fulfilling (I) or (II). However, we can easy show an example when 
the converse of Theorem 1 for homomorphisms of the type "into" is not generally 
true (not even for pseudo-ordered algebras). 

From Lemmas B, C, Theorem 4 in [4] and Corollary 8 there follows directly: 

Corollary 9. Let Ax, Bx be completely ordered groups or chains with the maximal 
element or chains with the minimal element and cpbea supremum and infimum preserving 
homomorphic mapping of A = J ] AT into B = f ] Bx, where T is a finite index set. 

XBT T 6 T 

Then there exist a set T* s= T such that cp(A) = cp(A*), where A* = J ] A T and 
xeT* 

cp(A) = Y\ ^(V>> wnere ^ ( r ) 1S a completely ordered group or chain with the maxi-

mal element or chain with the minimal element for each y e F, respectively, and 
cp I A* = {"] cpy, where cpy is order preserving homomorphic mapping of AXy onto Ba). 

yeT 

3. 

In [13] it is proved that for direct products of pseudo-ordered algebras is true 
the converse of the theorem 1 for mappings of the type "onto". Let us introduce 
a new conception: 

Definition. Let A e^ be an algebra, let coeQ. The operation co is said to be weak-
commutative iff the following identity for each a, be A holds: ab ... bco = ba ... aco. 

It is clear that for binary operations the conceptions of weak-commutativity and 
commutativity are equivalent. 

Definition. A binary relation R on an algebra A e 21 is said to be weak-antisym-
metric iff (a, by e R and <b, a) e R imply a<x = ba, where ai — a or a e Q is a^unary 
operation for which aa = 0 iff a = 0. A binary relation R is called the pseudo-ordering 
on A iff it is reflexive, weak-antisymmetric and complete on A. 

Theorem 10. Let A e%l be a pseudo-ordered algebra and let there exist a weak-
commutative operation co e Q". Then there exists a pseudo-ordering on A. 

Proof. Let A e9l be a pseudo-ordered algebra and coeQ" be weak-commutative. 
Introduce the relation P: 

(a,b}eP iff ab... bco —ace. 



From aar... aco = aa we obtain a reflexivity of P. For each a, be A we have ab ... 
... bco = aa or ab ... bto = ba, thus, P is complete. If <a, b> e P and <b, a> eP , 
then ab ... bco = aa, ba ... aco = ba and from weak-commutativity we obtain aa = 
= ba; accordingly, P is a pseudo-ordering. 

Theorem 11. Let A be an algebra with a zero-element 0 and a set Q ofn-ary opera­
tions co fulfilling 00 ... Oco = 0 for each coeQ. Let an antisymmetrical pseudo-
ordering P be defined on A. Then A is the pseudo-ordered algebra with a commu­
tative binary operation co0e Q". 

Proof. Let us define operations © and co0 by the following way: a, be A, then 
<a, b>ePiffa©b = b©a = b and abco0 = baco0 = aa, where a is the identity 
on A. It implies 0 © 0 = 0, 00co0 = 0 and from completeness of P we obtain 
axa2to0 = a; for i = 1 or 2. Summary, co0 e Q" is commutative and A is a pseudo-
ordered algebra with 0, © and the set of operations Q u {co0}. 

It is clear that each homomorphism of an algebra A with pseudo-odering P preserv­
ing P preserves operations © and co0, too. 

Corollary 12. Let A be a completely ordered algebra with zero 0 and a set Q of 
operations fulfilling 00 ... Oco = 0/or each coeQ. Then A is a pseudo-ordered algebra. 

It follows directly from the theorem 11 because each complete ordering is a pseudo-
ordering. From the theorem 11 we obtain: 

Theorem 13. Let A, B algebras with a zero 0 and with the same set Q ofn-ary opera­
tions fulfilling 00 ... Oco = 0 /or each coeQ. Let P be a pseudo-ordering on A, Q 
pseudo-ordering on B and let cp be a homomorphic mapping of A into B fulfilling 
cp(0) = 0 and preserving pseudo-ordering (i.e. <a, b} eP=> (cp(a), cp(b)} e Q). Then 
cp(A) is a pseudo-ordered algebra and cp preserves © and co0 (introduced in the proof 
of the theorem 11). 

Corollary 14. Let AT, Bt be algebras of the same class of algebras with zero 0 and 
a set Q of operations fulfilling 00 ... Oco = 0/or each coeQ, let Pt (resp. Qt) be a pseudo-
ordering on At (resp. Bt) and R (resp. S) be a direct product ofPt (resp. Qt), i.e. <a, b> e 
eRiff <a(t), b(t)> e PT for each xeT, T finite and A = f\ At, B = f[ Bt. Let cp be 

xeT xeT 

a homomorphic mapping of A onto B preserving the boundary of R. Then cp — Y\cpt, 
xeT 

where cpt is a homomorphic mapping of At onto Bn^ preserves pseudo-ordering and 
n is a permutation of T. 

Remark. We say that cp preserves the boundary of the relation P = \\ Px if cp 
xeT 

preserves the direct product of the operations © and co0 introduced in the proof of 
the theorem 11. 
This corollary follows directly from the theorem 13 and the theorem 7 in [4]. 



Corollary 15. The converse of the theorem 1 for o-homomorphisms of the type 
"onto" is true for direct products of completely ordered algebras with 0 and a set Q 
ofn-ary operations fulfilling 00 ... 0a> = 0, if (p preserves supremum and infimum. 

Theorem 16. Each cyclically ordered set {see to [2]) is a pseudo-ordered algebra. 

Proof. Let A be a cyclically ordered set, fix a0eA. Then the set A — {a0} is 
completely ordered. This ordering S is induced by a cyclical ordering —see [2], 
and S is uniquely corresponding to cyclical ordering on A and conversely. Let us 
extend S to S' by the following way: S' = S on A — {a0}, <a0, a> e S' and <a, a0> <£ 
$ S' for each ae A — {a0}. Then S' is uniquely corresponding to S and to cyclical 
ordering on A, too. By the Theorem 4 in [4], A is a pseudo-ordered algebra. 

Let At be cyclically ordered set for each xeT. We can introduce so called partially 
cyclical ordering C on A = IQ AT by the rule: <a, b, c> eC iff <a(t), b(x), c(r)> e Ct, 

T G T 

where Ct is a cyclical ordering on AT. From the Theorem 16 and the Theorem 7 in 
[4] there follows: 

Corollary 17. Let Ar, Bx be cyclically ordered sets, T finite, A = ]JAX, B = ]\BX 
xeT T e T 

and S be a partial ordering which is the direct product of complete orderings Sx cor-
respoding to Cx by the proof of the Theorem 16. Let q> be a homomorphic mapping 
of A onto B preserving binary operations supremum and infimum of the partial or­
dering S. Then there exists a permutation n of the index set T that cp = f ] cpx, where 

T e T 

<px is a homomorphic mapping of Ax onto Bn(x) preserving the cyclical ordering. 
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