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ARCH. MATH. 4, SCRIPTA FAC SCI NAT. UJEP BRUNENSIS, 
IX: 171-182, 1973 

SYSTEMS OF EQUATIONS OVER FINITE 
BOOLEAN ALGEBRAS 

IVAN CHAJDA, Pferov 

(Received February 22, 1973) 

It is possible to construct the theory of systems of Boolean equations on the base 
of a general theory of systems of equations given in [1] by J. Slominski. The general 
theory is raised on principle of a homomorphic mapping corresponding to the given 
system. The investigation of homomorhic mappings can be carried out by means 
of the so called matrix representaion in finite Boolean algebras (see [6]). The problem 
of solving the Boolean systems can be easy transformed to problem of extension of 
a given mapping to the homomorphism. This problem was solved for finite Boolean 
algebras in [7]. 

The presented theory solves the problem of existence and number of solutions • 
of Boolean systems and gives a simple algorithm for solving these systems. 

This paper is a continuation of papers [6] and [7], the main conceptions and nota­
tions are given there. 

1. 

Definition 1. Let m9 n be positive integers and X — {xl9 ...9xn} A = {al9 ...9 am} 
be sets. The free Boolean algebra freely generated by the set X u A is denoted by 
Ba x. Each element of Bax is called a B-polynom. The elements xt e X resp. a} e A 
are called var iab les resp. coefficients . 

The Boolean operation join is denoted by + , meet by . and the complement of an 
element be Ba x is denoted by 5. 

Every transformation of a given B-polynom by the Boolean operations and identi­
ties is called an e l emen ta ry t r a n s f o r m a t i o n . On the Ba x there is given the relation 
of equivalence. The B-polynom $ is equal to the B-polynom \j/ if and only if there 
exists a finite sequence of elementary transformations which performs # onto xj/. 
This relation of equivalence is denoted by = . 

The algebra Ba x has just 2m+n elements because it has just 2m+rt atoms, i.e. 
elementary conjuctive forms 

*i . x2 xn.di am9 

where xt = x{ or xi9 dj = aj or a-. 
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Definition 2. Let E0 be the Cartesian product Ba x X Ba x. Each subset E ^ E0 

is called the system of Boolean equations (or simply Boolean system or 
B-system) with parameters al9..., am. The elements of X are called unknowns 
of the B-system E. Each pair <#, {j/}eE will be called a B-equation. 

A subalgebra of Bax generated by the set A is denoted by Ba. The Boolean algebra 
Ba has 22m elements. 

Definition 3. The B-system Et c Ba X 2?a is called a compatible system if 
and only if the relation <#, ifr} e Ex implies the equivalence <P = \\i. 

Definition 4. A mapping h is said to be a characteristic mapping of a system E 
provided that: 

(a) h is a homomorphic mapping of Ba x into Ba. 
(b) <#, iA> e F implies A(<£) = h(^). 
(c) A | Ba is a homomorphic mapping of Ba onto h(Ba x). A characteristic mapping 

A of a system F is called proper if instead of (c) the following condition holds: 
(d) h | Ba is an identical isomorphic mapping of Ba onto Ba. 
It is obvious that (d) implies (c). 

Definition 5. The congruence relation ~h induced by the characteristic mapping h 
of E (obviously holding <£ ~h ^ for each <<P, i//} eE) is called the regularizer of 
the system E. 

Definition 6. Each set {Fl9...9Fn} of B-polynoms Fte Ba is called a solution 
of the B-system E if the substitution of Ft instead of x{ in all places in 4>, \jr implies 

* (F , , . . . , Fn, a j , ..., am) ~ h iA(F,,..., Fn, a t , ..., am) 

for each <0, ^> eE9 where ^^ is a regularizer of the B-system E. If ~k is equal 
to =, the solution is called proper. 

Accordingly, the solution is proper iff the characteristic mapping corresponding 
to the regularizer ~h is proper. It is a solution by a classical definition. 

Definition 7. Let ~l9 ~2 be two congruences on Ba9x. We define the ordering: 
~i ^ ~2 iff for arbitrary elements a9 be Bax the implication a ~ { b => a ~2b 
holds. 

A regularizer of E which is minimal with respect to the ordering <̂  on the set 
of all regularizers of is is called a minimal regularizer of E (see [1]). 

Definition 8. The B-systems E £ E09E' e E0 are equivalent iff they have identical 
set of solutions. 

Theorem 1. Let E = {(<Pl9 ̂ i>, . . . , (<Pk9 t^>} be a B-system of Ba x; n be 
a permutation ot the set {1, ..., k}9 / b e a B-polynom of k variables and E* be a 
compatible B-system of Ba. Then the system E is equivalent with systems E' = 
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= {<*„ ( ! ) , fc,(1)>, ...<4>n(k), <K(k)>}, E" = E\JE\ E"' = Eu {<f($i9 . . . , *fc) 

fo/f*,...,^}-

Proof. The equivalence of F, E' is obvious. Equivalence of E9 E
m follows from 

the fact that the regularizer is a congruence. Equivalence of E9 E" follows from the 
relation = g ~h. 

Theorem 2. Each characteristic mapping h of B-system E induces a solution of the 
B-system E. 

Proof. Let h be a characteristic mapping of E and ~h be the regularizer induced 
by /?. Denote h(xt) = Cte Ba. By the definition 4 (c) or (d) each element of h(Bax) 
has a preimage in Ba. Let Ff be an element from Ba fulfilling h(Ft) = Gi9 thus xf ~ n 

~h F( e Ba. From h(0) = h(^) and xf ~h F( it follows 

4>(F,, . . . , Fn, ax,..., am) ~ n \^(Fl, . . . , Fn, ax,..., am) 

for each <<£, î > e E. Thus {Fj, . . . , Fn} is a solution of F. 

Theorem 3. Let hx be a characteristic mapping of the B-system F and ~ t be a 
corresponding regularizer. Let h2 be a homomorphic mapping of Ba x into Ba and 
corresponding congruence relation ~ 2 fulfil ~ t = ~ 2. Then h2 is a characteristic 
mapping of E and the set Rj of all solutions of E induced by hx is a subset of the set 
R2 of all solutions of E induced by h2. 

Proof. Relation ~ x ^ ~2 implies the condition (b) of definition 4, validity 
of (a), (c) is evident, thus h2 is a characteristic mapping of E. Relation {Fv,..., F„} e 
G Rx holds iff for each <#, i/̂ > e F there holds ^(Fx 9 ...9 Fn9 al9 ...9 am) ~ t ^ (F x , . . . , 
...., Fn, a!,..., O - This relation and ~t ^ ~2 imply 

<P(Fl9...9Fn9 al9...9am) ~ 2^(Fl9 ...9Fn9ai9 ...9am) 

for each <#, ^> e £ Accordingly {Fi9..., F„} 6 Rl9 i.e. /?! = i?2. 

Theorems 2 and 3 give a method for the finding of solutions of the B-system E 
by means of characteristic mappings of this system. The B-system E is solved if we 
find all characteristic mappings ht of E whose regularizers are minimal. Then a set of 
solutions of E is the set of all {Fi9 ...9Fn}9 where Fj€h~ih(xj)9 Fje Ba and h is 
arbitrary homomorphism whose congruence ~h fulfils ~h = ~hi (we can write 
h ^ hi'iff ~h ^ ~hl). If ~hi is equal to = , the solution of E induced by ht is proper. 

Investigations of solutions of B-systems we shall deal by means of an isomorphic 
representation of Ba x. Each Boolean algebra having 2m elements is isomorphic 
with the direct power {0, l}m of two-elements Boolean algebra {0, 1} by BirkhofTs 
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theorem. Let us denote {0, l}2w+rt by SRfl,* and {0, l}2m by Wla. Elements of Wlax 

(resp. Wfla) are called 2w + w-dimensional (resp. 2m-dimensional) B-vectors*). The 
Boolean algebra Bax is isomorphic with $Ra>JC, Ba with $)la. Let us fix the isomorphism 
/ of Bax onto 9Mfl x such that it holds: 

i(Xj) = (11 . . . 100 . . .O i l . . . 100 . . . 0 . . . 11. . .100. . .0) 

forf = 1, . . . , n9 where each group of 1 or 0 has 2J~l elements and 

i(ak) = (11.. .100. . .011. . .100. . .0 . . . 11 . . .100.. .0) 

for k = 1, . . . , m, where each group of 1 or 0 has 2n+k~l elements. 

For Ba9 50la we fix the isomorphism j of Ba onto 9Q?a for which j(ak) = 
= (11 . . .100 . . .011 . . .100 . . .0 . . . 11 . . .100. ..0) for k = l , . . . w , where each 
group of 1 or 0 has 2k~x elements. 

Obviously /(0) = (00.. .0), f(0) = (00.. .0). They are called the zero-vectors of 
Wla x or 3Ka respectively; /(J) = ( 1 1 . . . l),f(J) = ( 1 1 . . . 1), they are called the unit-
vectors of aBfljJC or SRfl respectively. The element of sMa x isomorphic to B-polynom 
<P e BatX(by i) will be denoted by <P again. 

We shall consider now a finite B-system E of Ba x given by relations: 

4>i(xl9...9xn9al9 . . . ,am) = \jji(xl9...9xn9al9...am) 

(E) i= \9...9k 

We shall determine a characteristic mapping of (E) in "B-vectors representation", 
i.e. a homomorphic mapping h of $Ra x into S0lfl fulfilling h(0t) = h(i/>f) for / = 
= 1, . . . , k and hy(SJlax) = h(9l), where 91 is a subalgebra of 9Wa x generated by B-
vectors {al9...9am} of 5Wa>x. This mapping corresponding to the characteristic 
mapping of (E) in the given isomorphic representation. 

We shall not differ between the characteristic mapping of (E) and this mapping 
h of 9Rax into Wda corresponding to the characteristic mapping in given representation. 
By the theorem 2 in [6] there exists just one B-matrix of the type 2m+nj2m representing 
the characteristic mapping. 

Theorem 4. Let C be a B-matrix representing a characteristic mapping of B-
system E. Letfj0 (resp. g{p) be thef-th coordinate of B-vector # f (resp. \l/t). If there 
exists an index ie { 1 , . . . , k} such thatf-0 # g{p9 then all elements in thef-th row 
of C are equal to zero (so called "zero row"). 

'*) See [6]; 901^x is $Rm+n, 2Ra is $Rm from this paper and conception of B-vector is identical. 

174 



Proof. Let for example fji} = 1, g^ = 0 and cjs = 1 for an index s e {1,..., 2m}, 
where cjs is the element of B-matrix C in thef-th row and the s-th column. Then: 

h($i) = (tl9 . . . , r S _ 1 , 1, tJ+1,..'.,t2m), 

K&d = (̂ i> •••> ̂ s-i> 0, v5+1,..., t;2m) because C has at most one unity in each 
column by the theorem 1 in [6]. Accordingly h($i) # h(\j/i) which is a contradiction. 

Let us denote by the r-th section a sequence 

/ f(i) Hi) f(i) \ 
\J r . 2 M + l > J r . 2 " + 2> •••> Jr.2n + 2n/ 

of coordinates of B-vector <Pt or & sequence 

\ C r . 2 " + l > C r . 2 » + 2> •••> Cr.2n + 2n/ 

of rows of B-matrix C, where r = 0, 1, ..., 2m — 1. 

Theorem 5. Let C be a B-matrix representing a characteristic mapping of B-
system E. There are not two different non-zero rows in an arbitrary section of C. 

Proof. Let there be a unity in the r-th section of C in the r-th row and v-th column 
and in the s-th row and w-th column, t ?- s. By the theorem 1 in [6] we have v =£ w 
because h is a homomorphic mapping. Then an image of B-vector (00.. .010.. .0) e 

M zero-elements 
e l M is equal to b = (bi9 ...,bt>_1, 1, bv+i9 ..., bw_l9 0, bw+1, ...,b2m). But an 
image of each B-vector of 91 which has unity in the r-th section has the v-th and 
w-th coordinates equal to 1 and an image of each B-vector of 5ft which has not unity 
in the r-th section has the v-th and w-th coordinates equal to 0. Accordingly, there 
does not exist a B-vector of 91 whose image is equal to fc, i.e. h(9Rax) ^ h(9l) which 
is a contradiction with the definition 4 (c). 

Theorem 6. A B-matrix C of the type 2m+w/2m, having at most one unity in each 
column, represents a characteristic mapping of B-system E if and only if it holds: 

(a) if there exists an index ie {I, . . . , k] such thatfj0 ?- gf\ then C has in the 
f-th row only 0. 

(b) C has not two different non-zero rows in an arbitrary section of C. 

Proof. Necessity follows from the theorems 4 and 5. Sufficiency: Let C fulfil 
assumptions of the theorem 6. Then C represents a homomorphic mapping of 9Ra x 

into 9)la. (a) implies /?(<£,) = htyd for i = 1, 2, ..., k, (b) implies h(9Jlax) = h(9l). 
q.e.d. 

Let us consider the case when h is a proper characteristic mapping of E. Then 
h(di) = a(. The B-matrix C representing a proper characteristic maping of E is 
quasidiagonal (see Fig. 1), i.e. all elements out of frames are equal to 0 and in frame 
there is a section of column. 
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0 0 
0 0 

ò 0 
0 0 
0 0 

ó 0 
0 0 
0 0 

ò 0 

0 0 
0 0 

0 
0 

0 
0 
0 

0 
0 
0 

0 0 

Fig. 1 

In this case we must fill in each column just one "diagonal" element. These 
elements must fulfil the assumptions of theorem 6. We can fill 0 in these sections by 
theorem 4 comparing coordinates in all pairs <4>f, ^f> of B-vectors corresponding 
to equations of E. 

If h is not a proper characteristic mapping, we can not assume h(af) = at. We 
can only fill in B-matrix C zero rows by theorem 4. Other elements are equal to 
1 or 0 but they must fulfill assumption of the theorem 6. 

Let us fill in B-matrix C zero row iff/0 ?- gf for at least one index / and unit 
row if fjl) = gf for all / = 1 , . . . , k. The matrix constructed by this way is called 
the mat r ix of so lu t ions of B-system E. 

Definition 9. By a sect ion decompos i t i on of matrix of solutions C we under­
stand the set {C!,..., Cs} of all B-matrices of the type identical with the type of C 
such that: 

(a) each C{ has in each section at most one unit row 

(b) if C has in the p-th row only zero elements, each Ct has i n the p-th row only 
zero elements 

(c) each Ct has only zero rows and unit rows 

(d) Cj + C2 + ... + Cs = C (the sum of B-matrices is defined in [6]). 

It is easy to show that all B-matrices representing all characteristic mappings of E 
which regularizers are minimal are included in decompositions (defined in [6]) of 
B-matrices C1? . . . , Cs forming a section decomposition of matrix of solutions of E. 
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Moreover, each B-matrix from decompositions of a section decomposition of matrix 
of solutions represents a characteristic mapping of E. All other characteristic map­
pings of E are represented by matrices which are obtained from matrices of de­
compositions of section decomposition of matrix of solutions by substitution 0 
instead 1 respectively in all unit elements. 

Theorem 7. The B-system E has a proper solution if and only if the matrix of 
solutions of E has at least one unit row in each section. 

Proof. If E has a proper solution, then there exists a quasidiagonal matrix C with 
non-zero columns, i.e. decompositions of section decomposition of matrix of solu­
tions have in each section non-zero elements and the statement of the theorem holds. 
Conversely, if matrix of solutions fulfils assumption of the theorem., decompositions 
of a section decomposition of this matrix contain a quasidiagonal matrix of desirable 
property. 

It is easy to show the following. 

Theorem 8. Let the matrix of solutions of given B-system E has in thef-th section 
just kj unit rows. Then the B-system E has just s — kt . k2 ... k2 different proper 
solutions. 

Theorem 9. Let the matrix C of solutions of B-system E have in the >th section 
2m 

just kj unit rows, pj — max (kj9 1), r} = min (ky, 1) q = 2m . min (1, ]£ rt). Then 
1 = 1 

the B-system E has just 
2m 

s — Pi • Pi Pi^ • ( Ya ri)2m. (2* — 1) + 1 solutions. 
i = l 

Proof. The section decomposition of matrix of solutions C contains only matrices 
C!,..., Cs, where s = px . p2 ... p2m (by theorem 8). Each Ci9 i = 1 , . . . , s, contains 

2m 

just £ ri unities in each column (it has 2m columns), thus (see to [6]) their decomposi­
te I 2™ 

tions contain pj . . .p2 m • ( £ rd2m matrices. Each matrix of decompositions of section 
i = 1 

decomposition of C contains q unities, i.e. we receive 2q B-matrices replacing 1 by 0. 
Disregarding the zero matrix, we receive 2q — 1 matrices. 

2m 

Accordingly, we receive at allpj . . . p2w ( £ rt)
2m . (2q — 1) + 1 B-matrices re-

r = l 

presenting all characteristic mappings of E by the theorem 6. 

Theorem 10. Each B-system E has at least one solution. 

Proof. The zero matrix (it contains only zero elements) fulfils assumptions of the 
theorem 6, thus the zero-homomorphism h0 with h0(^a,x) = {0} is a characteristic 

m 



mapping of E (o is the zero-vector). Then the corresponding regularizer is induced by 
the ideal I = Wlax (or I = Ba x) and the set {Ft,..., Fn}, where F, is an arbitrary 
B-polynom of Ba, is a solution of E. 

These theorems form a complete theory of solution of Boolean equations over 
finite Boolean algebras. We can state when the given B-system has proper solutions 
and enumerate the number of them, we can enumerate number of all solutions and 
by a simple algorithm (constructing a matrix of solutions, section decomposition, 
decompositions and substitution 1 by 0) construct matrices representing all character­
istic mappings. If A is a characteristic mapping of E, we can determine a solution from 
relations h(xt) = A(F;), F, e Ba. Corresponding regularizer, i.e. congruence relation 
replacing the equivalence, is induced by an ideal I (i.e. the set of all B-vectors of 5Ra x 

fulfilling A(I) =.o). Finally, each B-system has a solution. 
The solving of a given B-system can demonstrated by an example. 

Example. Consider the B-system 

(x! + x2)ãxaг + xix2aia2 = xix2 

xix2ai = (xi + x2) äxäг 

ai(xi*2 + xix2) = ai 

(£ ') 

We can write vertically the B-vectors ^ t , \l/lt <P2, \j/2, <P3, \p3, corresponding to 
equations of E' and by theorems 4 and 6 construct the matrix of solutions C o f f . 

/(JC.) = (1010101010101010) 

i(x2) = (1100110011001100) 

i(a.) = (1111000011110000) 

i(a2) = (1111111100000000) 

7(a.) = (1010) y(«2)--(1100) 

Ф l ^ i Фг ^ 2 Фy 'Fз 

0 0 0 0 0 1 
1 1 0 0 1 1 
0 0 0 0 1 1 
0 0 0 0 0 1 
I ö ì ö ó ò 
1 1 0 0 0 0 
1 0 0 0 0 0 
0 0 0 0 0 0 
0 ö ö õ ö""' " т 0 1 0 0 1 1 
0 0 0 0 1 1 
0 0 0 0 0 1 

*0 ö "T ~ г ö" ó 
0 1 0 0 0 0 
0 0 0 1 0 0 
0 0 0 1 0 0 

l I-st .section 

2-nd section 

3-rd section 

4-th section 

C== 

0 0 0 0 
1 1 1 1 
1 1 1 1 
0 0 Ò 

0 
0 

0 0 
Ò 
0 0 

1 1 1 1 
0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 

1 
0 0 

1 
0 
1 1 1 

0 0 0 0 
0 0 0 0 
0 0 0 0 
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From this kx = 2, k2 = 2, k3 = 1, kA = 1 

Pi = 2, p2 = 2, p3 = 1, p4 = 1 

rx = 1, r2 = 1, r3 = 1, r4 = 1 

From theorem 8 it follows that the B-system E' has just 4 proper solutions. Corres­
ponding B-matrices C[, C2 ,C^Ci form a decomposition of the quasidiagonal 
matrix C (derived from C): 

C = 

1 
0 
0 
0 J 

i.e. c; = 

гo 
1 
0 
0 

C; = 
o 
o 
i 
o 

i 
o 
o 
o j 

cá = 

~o 
0 
1 • 
0 

0 
0 
1 
0 

C; = 

1 
0 
0 
0 J 

We can determine solutions. From C[: 

xx -» (0 0 1 1), fl2"*(0 0 1 1) from this xx = a2 

x2 -• (1 1 0 1), ax + a2 -> (1 1 0 1) x2 = ax + a2 

is the 1-st solution. Other proper solutions are obtained from C2, C3, C4 analo­
gously: 

xt = a* xt = ax + õ2 

x2 = axs2 + äxä2 x2 = ax 

xx = a2 

x2 = äxä2 
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Further we can construct a section decomposition of C (4 matrices form it). Let 
us choose from this section decomposition for example this matrix: 

C, = 

0 0 0 0 
0 0 0 0 
1 1 1 1 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 1 1 1 
0 0 0 0 
1 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

22 

The decomposition of Ct is formed by ( £ r^)22 = 44 = 256 B-matrices. Let us 
i=í 

choose from them for example the following one: 

c„ = 

0 0 0 0 
0 0 0 0 
1 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
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This matrix Cx { represents a characteristic mapping h of £" with 

h(x1) = (i 1 1 1 ) h(D = o 1 1 1 ) ) v . 
> Xt ~h J, x2 ~u ata2 

h(x2) = ( 0 0 1 0 ) h(aYa2) = (0 0 1 1) J 

We can determine the ideal corresponding to congruence ~h. But for the investigation 
of solutions it is only intersection of this ideal with Ba necessary. The intersection 
is equal to {0, axa2}. We can say that xx = J, x2 — axa2 is a conditional" solution 
of E' iff the condition axa2 = 0 holds. 

If we replace for example the unity in the first column by 0, we obtain the solution 
xi ~w (ax + a2), x2 ~h, aia2 and ~w on Ba is given by the ideal {0, dta2}. 

All other solutions of E' can be determined analogously. 
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