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LATTICE-ORDERED GROUPS WITH MINIMAL PRIME
SUBGROUPS SATISFYING A CERTAIN CONDITION
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(Received May 10, 1973)

In this paper one problem of P. Conrad’s book [2] is partially solved in connection
with one problem of F. Sik. There is proved (Theorem 1) that the set of all cardinal
summands of an l-group G is equal to the set of all polars of this group if and only
if G is projectable and satisfies a certain property. Further a connection between
minimal prime subgroups and cardinal summands and also a connection between
minimal prime subgroups and polars is shown here.

Let @ =[G, +, v] be an l-group. For x€ @ we shall denote |z | =2v—=z.
If |a| A |b]| =0, then elements a, be G will be called disjoint. If & + 4 =G,
then we denote A’ ={reG:|z| A |a| = 0 for each a € A}. Now 4 < G is called
polar if A" = A.(A” denotes (4’)".) Instead of {a}’, {a}" we write a’, a”, respectively.
It is known that any polar is a convex l-subgroup of G. The set of all polars of &
will be denoted by I' = I'(G). If B e I, then B, B’ are called complementary: polars.

The following theorem has been proved by F. Sik in [3] (Teorema 1):

Theorem A. (1) Polars of an l-group form a complete Boolean algebra I' (ordered:
by inclusion, an infimum is formed by an intersection).

(2) Polars that are l-ideals form a closed subalgebra I'y of I

(3) Cardinal summands of G form a subalgebra I'; of I'i (not always complete),
where a supremum is formed by a sum of summands.

It holds that for Be I3(Q) it is @ = B @ B’. An l-group @ is called an r-group
if it is isomorphic to a subdirect product of totally ordered groups. By [4], an I-group
is an r-group if and only if each its polar is an l-ideal. A convex l-subgroup P is called
prime if the following is satisfied:

(i) If x ¢ P, then ' < P.

(i) and the following conditions are equivalent:
(ii) P contains at least one of polars a”, a’' (a € G).
(iii) P contains at least one of complementary polars.

Any prime subgroup contains at least one minimal prime subgroup. In G # {0},
minimal prime subgroups are characterized among convex l-subgroups as: a ¢ P
iff a’ = P. A convex l-subgroup Z is a z-subgroup if from z € Z and y’ = z' it follows.
y € Z. It is known that every polar and every minimal prime subgroup is a z-sub-
group. An [-group is called projectable if G = g’ @ g" for each g € G. Clearly any pro-
jectable l-group is an r-group.

The following theorem is proved in [1] (Théoréme 3.1):

Theorem B. An l-group G is projectable if and only if any proper prime subgroup
contains exactly one prime z-subgroup.
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The problem how to characterize those I-groups for which I%(G) = I'(G) has
been given by P. Conrad in the book [2, p. 2.8]. Clearly any such Il-group will
be projectable.

Note. This problem has been solved by F. Sik in [3, p. 8] yet. He has proved
that for an Il-group the following are equivalent:

(1) An arbitrary polar is a direct summand.

(2) A sum of two arbitrary polars is also a polar.

(3) 4 sum of an arbitrary pair of complementary polars is also a polar.

(4) Any pair of complementary polars forms a direct decomposition of this l-group.

Another characterization is given in [4, Satz 13].

Further denote the following condition:

(») For each minimal prime subgroup A of an l-group G and for each polar K of
@G it is.satisfied: K < A iff K' $A.

F. Sik has proposed (in a letter) the problem how to characterize I-groups with
the property (x).

The following theorem shows a certain connection between both problems.

Theorem 1. For an l-group G # {0} it holds I'(G) = I'y(G) if and only if G is pro-
Jjectable and possesses the property (x).

Proof. a). Let I'(G) = I,(@) and let A be a minimal prime subgroup of G. Let
Kel'@),K,K' cA.Since KQDK' =G, A=A4+ A2K + K' =G If G + {0},
then by [5, Folgerung 7.3] A % @, a contradiction. But since 4 is a prime subgroup,
it contains K or K'. Thus G satisfies ().

b) Let G be projectable and have the property (x). Let K € I'(G) such that
K ® K' & G. Let P be a proper prime subgroup of @ such that K @ K’ < P.
Let us remind yet that the filet of an element x € G is £ = {y € G: y' = 2’} and the
set of all filets & (G) form a distributive lattice. Denote thus @ = {z : z ¢ P}. Evi-
dently @ is a filter ofgf&r(G) For each y e KU K’ it holds § ¢ @. (If, namely, y € K,
g€ D, theny” = a” for some a ¢ P thus y” ¢ P; but y” < K, and we have a contra-
diction. Similarly for z € K'.)

Now'if x€ KU K’, then denote a maximal filter of & (G) that contains @ and
does not £ by @=. It holds @ is a prime filter. Therefore Z% = {u € G: @ ¢ D7}
is a prime z-subgroup of G and clearly Z# < P. Since G is projectable, all
prime 2z-subgroups contained in P =G are ‘(by Theorem B) identical,
thus for each z,, 2, KU K' Z% = Z%. Further @% = @% iff {u:a¢ Pu} =
= {v : © ¢ @=} and this holds iff Z#1 = Z*. Thus for each z,, 2; € KU K' @1 = P
and therefore ¥ = N &% = @z for each x€ KU K’'. Hence ¥ is a prime filter

re K\ K’ .
of (@) and Z = {w : w ¢ ¥} is a prime z-subgroup of @ such that Z < P. Conse-
quently, by [1, Proposition 3.1 and its proof], Z = \J a'.

~

For each e KU K’ x ¢ Z, therefore K < Z, K’ C 'Z and this contradicts the
assumptlon that G’ satisfies (*).

‘Now, it is easy to prove the further

Theorem 2. For a projectable I-group G the following conditions are equivalent:

(1) Any polar of G is a cardinal summand of G. (Thus I'(G) = I'2(G).)
(2) G satisfies the property ().

*(8) The algebra Th(Q) is a \/ -closed subalgebra of I'(G).
(4) The algebra I'2(Q) is a A -closed subalgebra of I'(G).

o
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Proof. (3) = (1): Let Ke I'(G). Tt holds K = V,a” and a” € I%(G) implies

ae K
by (3), K € I')(@).
4) = (1) : If Ke I'(@), then K = Apb’. We have b’ € I';(G), thus by (4), K € I3(G).
be K’

If H is a prime subgroup of an l-group G, then we say H has the property (+x)
if it holds:

(»+) If Ke I'(GQ) then K < H iff K' ¢ H.

Further we say @ #+ 4 < G is dense in G if 4" = {0}.

We get

Theorem 3. A prime subgroup H of an l-group G is either a polar in G or it is dense
n G.

Proof. Let H not be dense. Then {0} + H’' ¢ H. Therefore H" < H i.e. H is a po-
lar.

The following theorem is a consequence of Theorems 3 and 1.

Theorem 4. If a projectable l-group G satisfies (x) then each minimal prime sub-
group of G is a cardinal summand or it is dense in G.

Denote now the set of all z-subgroups of an I-group G by Z(@). It is known (see
[1, Proposition 2.3)]Z(G) forms a complete distributive lattice. It holds I'(G) = Z(G)
but generally I'(G) need not be a sublattice of Z(@).

We get

Theorem 5. Let G be an l-group and I'(G) a closed sublattice of Z'(G). Then a proper
prime subgroup H of G has the property (x+) if and only if H is a polar.

Proof. If HeZ(G), then (by [1, Proposition 2.1)] H =Ua" = v ya". By the

aeH azH

assumption V ra” = V za” thus H is a polar. The converse is evident.
aeH acH

Therefore it holds also
~ Theorem 6. a) Let an l-group G satisfy (*) and let I'(G) be a closed sublattice of Z(G).
Then each minimal prime subgroup of G is a polar in G.

b) Let, in addition, G be projectable. Then each minimal prime subgroup is a cardinal
summand of G. ' »
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