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ON STRONG HOMOMORPHISMS OF FINITELY 
SEMIGENERATED LANGUAGES 

JiH Baldridn, Hodonin 

(Received February 5, 1973) 

O. I N T R O D U C T I O N 

M. Novotny [3] proved that finitely characterizable languages are preserved under 
strong homomorphisms. Finitely characterizable languages have been de&ned by 
the use of configurations. Taking semiconfigurations instead of configurations we 
can define similarly finitely semigenerated languages. The problem is, whether these 
languages are preserved under strong homomorphisms. In this paper the positive 
answer to the question mentioned above is given. 

1. S O M E D E F I N I T I O N S 

Let V be a set. We denote V* the free monoid over V, i.e. the set of all finite se­
quences of elements of the set V including the empty sequence A. We identify one -
-member sequences with elements of the set V; it follows V cz V*. If x e V*, x = 
= Xi ... xn, where Xi e V(i = 1, ..., n) and n is a natural number, we put | x \ = n; 
further, we define | A \ = 0. 

Let V, U be sets, / a surjection of V onto U. Then there exists the only homo-
morphism of V* onto U*. This homomorphism (denoted as/*) is defined as follows: 
for every x e V*, x = Xtx2 ... xn, where n is a natural number and Xi e V(i = 1,2, ..., 
..., n), we put f*(x) =f(xl)f(x2) . . . / (%); further, we define f+(A) = A. 

Let us assume that x e V*, f*(x) = yiy2 ... ym, where m is a natural number and 
i/i G U*(i = 1, 2, ..., m). I t follows that there exist elements x\, x2, ..., xm of the 
set V* such that x = xxx2 ... xm and f^(x{) = yi for i = 1, 2, ..., m. I t is obvious 
that \x\ = \f*(x) | for every xe V*. 

2. LANGUAGES AND G E N E R A L I Z E D GRAMMARS 

2.1. Definition. Let V be a set, L a subset of the set V*. The ordered pair (V, L) 
is called a language. The elements of the set V are called ivord-forms, the elements of 
the set V* are called strings, the elements of the set L are called marked strings. 
The set V is called a vocabulary of the language (V, L). The ordered pair (V, L) ia 
called the language over the vocabulary V. 

2.2. Definition. Let V, R be sets with the property R c V* x V*. For x, y e V* 
we put x -> y(R) if (x, y) e R. Further, for x, y e V* we put x => y(R) if there exist 
elements u, v, t, ze V* such that x = utv, y = uzv, t —> z(R). For x, y e V* we put 
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x -^ y(R) if there exists an integer number p ^ 0 and elements t0, tt, ...%tDe V* 
such that x = t0, tp = y and t\_\ => t\(R) for i = 1, 2, ..., p . The sequence of strings 
(fi)1}̂ © is called an x-derivation of y of the length p in R. An x-derivation of length 0 
is called a trivial derivation of x. 

2.3. Definition. Let V, VT, S, R be sets such that VT s= V,S c V*,# c V* x V*. 
Then the quadruple £ = <V, VT, S, R> is called a generalized grammar. 

2.4. Definition. Let G = <V, VT, #, i£> be a generalized grammar. We put 
^f(G) = {x; xe VT and there exists some se S such that s % x(R)}. The language 
(VT, &(G)) is called the language generated by the generalized grammar G. 

2.5. Definition. A generalized grammar G = < V, VT, S, R> is called a generalized 
special grammar if V = VT- In this case we write <V, S, R> instead of <V, V, S,R>. 

2.6. Definition, A generalized grammar G = <V, VT, S, R> is called a grammar 
if the sets V, S, i? are finite. 

2.7. Definition. A grammar G = <V, VT, S, R> is called a special grammar if 
F == VT, in this case we write <V, #, R> instead of <V, V, S, R>. 

3. S E M I C O N F I G U R A T I O N S A N D S T R O N G 
H O M O M O R P H I S M S 

3.1. Definition. Let (V, L), (U, M) be languages, / be a surjection of V onto U. 
The surjection / is called a weak homomorphism of the language (V, Z) onto (U, M) 
iff+(L) = M. The surjection / is called a strong homomorphism of the language (V, L) 
onto (U, M) ifft1(M) = L. 

3.2. Remark. It is obvious that each strong homomorphism is at the same time a weak 
homomorphism and a bijective weak homomorphism is strong. 

3.3. Definition. A bijective strong homomorphism of (V, L) onto (U, M) is called 
an isomorphism. 

3.4. Definition. Let G = <V, VT, S, B>9 H = <U,UT, P, Q> be generalized 
grammars,/a surjection of V onto U. The surjection / is called a strong homomor­
phism of G onto H if following conditions are satisfied: 

(A) For every xe V, the condition xe VT is equivalent to f(x) e UT. 
(B) For every x e V*, the condition x e S is equivalent to/„.(#) e P. 
(C) For every x, y e V*, the condition (x, y) e R is equivalent to (f*(x), f*(y)) e Q. 
3.5. Definition. A bijective strong homomorphism of G onto H is called an 

somorphism. 

3.6. Theorem. Let G = <V, VT, S, R>, H = <U, UT, P, Q> be generalized gram­
mars, f a strong homomorphism of G onto H. Then the following assertions hold true: 

(I) For t' e U*, s e V*, (x', y') e Q the following conditions are equivalent: 
(A)*' =>h(s)({(x',y')}). 
(B) there exist tefel(t'), xefcx(x'), yef+Hy') such that t => s({(x,y)}). 
(II) For t' e U*, seV* the condition t' =>/*(s) (Q) is equivalent to the existence 

°f t €f*\t') such that t => s(R). 
(III) For t' e U*y se V* the condition t' => f*(8) (Q) is equivalent to the existence 

°f * e / J - V ) such that t -> s(R). 
(IV) For xeV* the condition x e <e\G) is equivalent to f^x) e &(H). 
0 0 f\VT is the strong homomorphism (VT, &(G)) onh (VT, &(H)). 
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Proof. t' => f+(s) ({(x', y')}) means, in other words, that there exist elements' 
u', v' e U* such that t' = u'x'v', f^(s) = u'y'v'. I t means that there exist elements 
uef*l(u'), xe/**(#'), vef*l(v') such that s = uyv, uxv => s({(x, y)}).Thus, assertion 
(I) is proved. 

It is obvious that assertion (II) follows from (I). The assertion t' Z, f+(s) (Q) is 
equivalent with the existence of an integer p _: 0 and strings t' = t'0, t\, ...,t'p = 
= f*(s) in U* such that t'^ => t[ (Q) for i = 1, 2, ...,p. According to (II) there is-
possible to prove by induction that the existence of such a t[ is equivalent with the 
existence of elemensts tt e V*(i = 0, 1, ..., p— 1) such that ti ef*l(t[), h-\ => h(R) 
for i = 1, 2, ..., p — 1, £p_i => s(R). This is equivalent with the existence of tef*l(t') 
such that t 4- s(R). So the assertion (III) is proved. 

Now, the following conditions are equivalent for x e V*: (1) f+(x) e U*T and there 
exists s' eP such that s' r> f*(x) (Q)\ (2) xeV% and there exists s ef*l(s') c S such 
that s _> x(R). From it follows the proof of the assertion (IV). 

Assertion (V) follows obviously from (IV) and from 3.1. 
3.7. Definition. Let (V, L) be a language. The element xe V* is called necessary 

in the language (V, L) (which we symbolize by xv(V, L)) if there exist elements 
u, v e V* such that uxv e L. 

3.8. Definition. Let (V, L) be a language. For elements x, y e V* we put x > 
> y(V, L) (x can be substituted by y in the language (V, L)), if u, v e V*, uxv e L 
imply uyv e L. 

3.9. Lemma. Let (V, L), (U, M) be languages, f a strong homomorphism of the 
language (V, L) onto (U, M). Then following assertions hold: 

(A) For every xe V* the condition x v (V, L) is equivalent tof+(x) v (U, M). 
(B) FOr every x, yeV* the condition x > y(V, L) is equivalent to f*(x) > f*(y)> 

(U,M). 
This lemma can be found in [3] as the lemma 1. 
3.10. Definition. Let (V, L) be a language, x, ye V*. We say that # is a semiconfi-

guration in the language (V, L) with the resultant y if following conditions are 
satisfied: 

(i) yv(V,L) 
(2) y > x(V,L),y^x,\y\ £\x\. 
We denote by K(V, L) the set of all pairs (y, x), where x is a semiconfiguration of 

the language (V, L) with the resultant y. 
3.11. Definition. We put R(V, L) = {(y, x); y v (V, L), y > x(V, L),\y\ <\ \x\}. 
3.12. Remark. From the definitions of the sets E(V, L) and R(V, L) it follows that 

E(V, L) _z R(V, L) and also, for every s, te V*, the condition s => t(E(V, L)) implies 
s => t(R(V, L)) and for every s, te V*, s ^ t, the condition s => t(R(V, L)) implies 
s => t(E(V,L)). 

3.13. Lemma. Let bes,te V*. Then s 4 t(E(V, L)) iff s i t(R(V, L)). 
Proof. I. Let us have s, teV*, s ^. t(E(V, L)). Then, by 3.12, s J> t(R(V, L)} 

holds. 
II. If s, t e V*, s r> t(R(V, L)), then there exist elements t0, h, ...,tpe V* such 

that s = t0, tp = t and h„\ => h(R(V9 L)) for i = 1, 2, ..., p. If U_\ # h is valid for 
i = 1,2, ...,p, then a by 3.12, the condition h-\ => h(E(V,L)) is satisfied for 
i= 1, 2, ...,p and so s ^ t(E(V,L)). 

III . Suppose s, te V*. Let (ti)%0 be an ^-derivation of t of length p inR(V, L} 
and k an integer kG{l, 2, ...,P} such that tk_t = tk. If we cancel the string tk in 
(**)?-o we obtain an ^-derivation of t of the length p — 1 in R(V, L). Repeating this 
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procedure we obtain an s-derivation of t of length I ^ p in B( V, L) such that £<_i # h 
for i = 1,2, ..., 1. By II, this B-derivation is an ^-derivation of t in E(V, L), and so 
* ^t(E(V,L)). 

3.14. Definition. Let (V, L) be a language. For xeL we put xeBE(V, L) iff, 
for every i e L , the condition £ 4> #(-®AV> I')) implies \t\ = \x\. 

For xeL we put zeJS/KV, L) iff for every teL, the condition t 1, x(B(V, L)) 
implies 11 \ = \ x \. 

3.15. Theorem. Let (V, L) be a language. Then BE(V, L) = BR(V, L). 
Proof. If x e L, xe BE(V, L),teL,t 4 x(B(V, L)), then, by 3.13, it holds true 

that t 4- x(E(V, L)) and according to the definition of BE(V, L), we have \t\ = \x\. 
Thus, xeBR(V,L). 

If xeL, xeBR(V,L), teL, t 4 z(K(V,Z)), then, by 3.13, it holds true that 
/ 4 x(B(V, £)) and so |« | = | a? |. It follows that xe BE(V, L). 

3.16. Lemma. Let (V, L) be a language. Then the following assertions hold: 
(A) For every xeL there exists seBE(V, L) such that s ^> x(E(V, L)). 
(B) For every xeL there exists seBR(V, L) such that s -4. x(B(V, L)). 

Proof. There exists at least one element s e L such that s -^ x(E(V, L)). One can 
consider for example the trivial B-derivation in E(V, L). If the element of minimum 
length from those mentioned above is chosen, there is evident that this element be­
longs to BE(V,L). 

That is the proof of assertion (A). 
Assertion (B) follows from 3.15, 3.13 and (A). 
3.17. Definition. Two definitions are condensed in 3.17; the first is obtained when 

reading the conditions denoted by 1 ° the second is obtained when reading the condi­
tions denoted by 2°. 3.23 must be interpreted similarly. 
Let (V, L) be a language. If s, te V* are the strings such that 1° s => t(E(V, L)), 
2° s => t(B(V, L)), we put 1° | (*, t) \E = min{| q\; (p, q) e E(V, L), s ^> t({(p, q)})}, 
2° | (s, t) \R = min{| q |; (p, q) e B(V, L), s => t({(p, q)})}. 

If s, t e V* are strings and (fc)f_0 is an ^-derivation of tin 1 ° E( V, L), 2° B(V, L), 
p > 0,then we put 1°| | (h)U ||tf = max{| (*,_,., fc)|*; i=\,2, ...,p},2° \\ ft)f_0 11* = 
= max{| (ti_t, U) IR; • = 1, 2, ...,p}. The number 1° || (tt)U WE, 2° || (t()^0 \\R is 
called the norm of the ^-derivation (Uf^0 oft in 1° E(V, L), 2° B(V, L). The norm of 
•a trivial s-derivation in 1° E(V, L), 2° B(V, L) is defined to be zero. 

If s, te V* are the strings suoh that 1° s ^ t(E(V,L)), 2°s ^ t(B(V, L)), we 
define the norm 1° || (s, t) \\E, 2° || (s, t) \\R of the ordered pair (s, t) to be the mini­
mum of norms of all ^-derivations of t in 1° E(V,L), 2° B(V, L). If teL, we put 
1° || t \\E = min{|| (s, t) \\E;seBE(V, L),s ± t(E(V,L))},2° || t \\R = min{\\(s, t)\\R; 
* e BR(V, L), s 4 t(B(V, £))}. The number 1° || t \\E, 2° || t \\R is called the norm of t 
in 1° E(V,L), 2° B(V,L). 

3.18. Lemma. Suppose s, t e V*. If | (s, t) \E, exists, then | (s, t) \R eodsts and it holds 
that | (s, t)\E=\ (s, t)\R. Further, for teV*,t^> t(B(V, L)) it holds evidently that 
I (t, t) \R = 0. 

Proof. The proof follows from 3.12, and 3.17. 
3.19. Lemma. Suppose s, te V*, let (f<)f,0 be an s-derivation of t in E(V, L). Then 

{h)Pi=o i* a^so an s-derivation oft in B(V, L) and the equation || (^)f.0 \\B = II (^)?«o IIR 
holds. On the contrary, if s, te V*, and if (h)f=0 is an s-derivation of t in B(V, L) 
such that ti_i *£ U for i = 1,2, ..., p, then (h)^0 is an s-derivation in E(V, L) and 
the equation || (*<)?.0 ||* = |l (k)%0 \\R holds. 

Proof. The proof follows from 3.18 and 3.17. 
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3.20. Remark. Suppose s, t e V*. If (h)^Q is an s-derivation of t in B(V, L), then 
it is obvious from 3.18 and 3.17 thai the elements h of the s-derivation of t, such that 
h-i — h have no influence on the value of \\ (£<)?= o IIR* 

3.21. Lemma. If s, te V*, s ^ t(E(V, L)), then || (s, t) \\E = || (s, t)\\R. 
Proof. The proof follows from 3.17, 3.19 and 3.20. 
3.22. Theorem. If teL, then || t \\E = || t \\R. 
Proof. Assume t e L. Then, by 3.15 and 313, for every s e BE(V, L), the condi­

tion s 4 t(E(V, L)) implies seBR(V, L), s ^ t(B(V, L)). Further, by 3.21 it holds 
that || (s, t) \\E = || (s, t) \\R, thus, according to the definition of \\ t \\E and \\t \\R 

it holds that || t \\E _\ \\ t \\R. Similarly, it is possible to prove that \\t \\E _\ \\ t \\R; 
thus | | * | l * = II MIR-

3.23. Lemma. Let (V, L) be a language. Then, for every teL, there exists a string 
1° seBE(V, L), 2° seBR(V, L) and an s-derivation of t in 1° E(V, L), 2° B(V, L) 
such that the norm of this s-derivation is equal to 1° \\t \\E,2° \\ t \\R. 

Proof. According to 3.17, there exists an element s e BE( V, L) such that 11 (s, t) \\E= 
= 1111 \E . I t means that there exists such an s-derivation of t in E( V, L) that its norm 
is equal to || t \\E. 

Similar proof takes place in the case of B(V, L). 
3.24. Definition. Let (V, L) be a language. Then we put XE(V,L) = {(y, x); 

(y,x)eE(V,L),\x\ > \\ t \\E for every teL}, XR(V, L) = {(y, x); (y, x) e B(V, L), 
\x\>\\t\\R for every teL}, ZE(V, L) = E(V, L) — XE(V, L), ZR(V, L) = 
= B(V,L) — XR(V,L): 

3.25. Lemma. It holds that XE £ XR, ZE £ ZR. 
Proof. The proof follows from 3.11 and 3.24. 
3.26. Lemma. Let bes,te V*. Then s ^ t(ZE(V, L)) iff s^ t(ZR(V, L)). 
Proof. I. Assume s, t e V*, s 4 t(ZE(V, L)). Then it follows, by 3. 25, that s ^ 

^t(ZR(V,L)). 
II . Suppose s, te V*, s ^ t(ZR(V, L)). Then there exists an s-derivation (h)^Q 

oitinZR(V, L). Iih-i ¥= h(i — 1, 2, ...,p), then this is an s-derivation of t'mZE(V, L). 
If h_\ = h for some i e {1, 2, ..., p}, then it is possible to omit these h and to obtain 
again an s-derivation of t in ZR( V, L) which is at the same time the s-derivation of t 
in ZE(V,L). 

3.27. Theorem. Let (V, L) be a language. Then the following assertions hold: 
(A) For every teL there exists at least one element seBE(V, L) such that s ^. t 

(ZE(V,L)). 
(B) For every teL there exists at least one element s e BR( V, L) such that s -^ t 

(ZR(V,L)). 
Proof. I. According to 3.23 for every teL there exists a string s e BE(V, L) and 

an s-derivation (h)?_0 of t in E(V, L) such that || (h)V_0 \\E = || t \\E. I t follows that 
I (h-i, h) Is .5 II * WE for i = 1, 2, ...,p by 3.17. Further, for every i = 1, 2, ...,p 
there exists an element (pt, qt) e E(V, L) such that h_\ => h ({(pi, qt)}) and | qt | = 
= I (h-\,h) \E S \\t\\B- Thus,(pi,qi)eZE(V,L)ior i = 1, 2, ...,p and consequently 
s±t(ZE(V,L)). 

That is the proof of assertion (A). 
The proof of assertion (B) follows from (A), 3.15 and 3.26. 
3.28. Definition. Let (V,L) be a language. We put KE(V, L) = <V, BE(V,L), 

ZE(V,L)),KR(V,L)=<V,BR(V,L),ZR(V,L)y. KE(V,L), respectively KR(V,L) 
is a generalized special grammar called further a generalized semiconfigurational 
respectively B-semiconfigurational grammar. 
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3.29. Theorem. Let (V, L) be a language. Then^(KE(V, L)) = £(KR(V, L)) = L. 
Proof. I. According to 3.27 we have L c £e(KE(V, L)). 
II . Let V(n) be the following assertion: if t e3f(KE(V, L)) and if there exists an 

element seBE(V, L) and an s-derivation of t of length n in ZE(V, L), then t e L, 
If J e Se(KE( V, L)) and if there exists an element s e BE( V, L) and a trivial s-deriva-

tion of t in ZE(V, L), then t = s eBE(V, L) c 1,. Thus, V(0) is valid. 
Let be now m ^ 0 and assume that V(m) holds. Suppose further that 

t eSe(KE(V, L)), seBE(V, L) and that (h)f?0
l is an s-derivation of length m + 1 

inZE(V, L). Then, according to V(m), it holds that tmeL. Further, tm=>t(ZE(V,L)). 
It means that there exist elements x, y, u, ve V* such that tm = uxv, t = uyv, 
(x, y) e ZE(V, L) £ K(V, L). I t follows that x > y(V, L) which implies t e L. Thus 
V(m + 1) holds. Hence V(m) holds for m = 0 ,1 , .... It means that Se(KE( V,L)) c E. 

The assertion Se(KE(V, L)) = L has been proved. 
I I I . Suppose teSe(KE(V,L)) and s e ^ ( F 5 1 > ) , B ^ i(Z^(V,L)), Then, by 3A5, 

it holds that seBR(V, L) and, by 3.26, it holds that s 1, t(ZR(V,L)). Thus, te 
€<e(KR(V, L)) and we have &(KE(V9 L)) c J§?(K*(V, L)). 

Assume *eJ2?(JTa(F-Z)) and BeH*(V,L), s S>t(ZR(V,L)). Then, by 315, it 
holds that seBE(V, L) and by 3.26, it holds that s ^ t(ZE(V,L)). It means that 
teSe(KE(V, L)) and we have &(KR(V9 L)) c &(KS(V, L)). 

Thus, the assertion £(KE(V, L)) = Se(KR(V, L)) has been proved. 
3.30 Lemma. Let (V, L), (U, M) be languages, f a strong homomorphism of (V, L) 

onto (U, M). Let us have t' e U*9 s e V*. Then the following assertions hold: 

(A) If t' => f*(s) (B(U, M)), then there exists t ef*x(t') such that t => s(B(V, L)) and 
\(t,8)\R£ \(t\U(s))\R. 

(A') If there exists t efcl(t') such that t => s(B(V9 L))9 then t' => f*(s) (B(U, M)) and 
\(t',U(s))\Ri \(t98)\R. t 

(B) If (Q^o is a tf-derivation of the string f*(s) in B(U, M), then there exist h ef* 1(ti) 
for i = 0, 1, ..., p, tp — s such that (h)?.^ is t0-derivation of the string s in B( V, L) 
such that \\(ti)U\\R^ l l t t o l l i - -

(B') Iftef*l(t') and if (h)^0 is a t-derivation of the string s in B(V, L), then (/*(W)if--o 
is a tf-derivation of the stringf*(s) in B(U,M) such that || (/*(^))?=0IIR = II ( '̂)?-ollR-

(C) If tf => f*(s) (B(U, M)), then there exists t ef*l(t') such that t ^ s(B(V, L)) and 
| | ( M ) | | R ^ II (*',/*(*)) II*-

(C) If t efcl(t') and t ± s(B(V, £)), then t' 4 /*(*) (B(U, M)) and \\ (t',f*(s)) \\R S 
S \\(t98)\\R. 

Proof, O. If / is a strong homomorphism of the language (V, L) onto (U, M), 
then it is also a strong homomorphism of the generalized grammar < V, V, L, B( V, £)>• 
onto <U, U, M, B(U, M)>. I t follows from 3.30. 

1. Assume (*', yf) e B(U, M), V => /„(*) ({(x'9 y
f)}) and | (t'J^s)) | * = | y' |. 

According to 3.6 there exist tefci(f)f xef*l(x'), yef+Hy') that t => s({(x, y)}). 
It follows | (t, s) \R ^ | y | = | yf \ = | (t',f+(s)) \R and (A) holds. 

1'. Assume (x, y) e B(V, L), t => s({(x, y)}) and | (t, s)\R= \y\. According to 3.6 
there is tf ^ /*(*) ({(/*(*), /*(*/))}) and, further, | (*',/„(*)) |u ^ \f*(y) | = | y | = 
= | (t, s) \R and (A') holds. 

2. We put t9 = s. Then || (tt)^p ||* = 0 = || (tj)f ||*. Suppose 0 < k ^ p 
and assume that we have such Usf^x(t\) for i = k, h + 1, ..., p that (tt)^k is a 
^-derivation of the string s in B(V, L) with the property || (h)^k \\R S II (K)^ IIR. 
Then tk_t => /*(£&) (B(U, M)). According to (A) there exists k_, e /* %_i) such that 

94 



.*_i => tk(R(V, L)) and | (.*_,,**) \R S I (<*-i, t.) |fi- I t follows || (*.)?.._._, | | j . =- max 
{I (<*_,, .*) IA, II («.)?_» ||R} g max{| (^_1( t'„) la, || (*.)?_* ||a} = II ('.)?-_-, lis. Asser­
tion (B) could be proved by induction. 

2'. There is || (/,(«j)?_0 ||« = 0 = || (*.).-0 \\R. Suppose 0 < fc < p and assume 
ll(/*(~.))*-oll---- ll(*.).-oll-.- T h e r e e x i s t s the string <*_/»1(-_) such that .fe => 
=>tk+1(R(V,L)). Then /*(._)->/»(._+_) (i.(U, Jf)) and | (/*(<*),/*(**+,)) |« _J 
_J I (.*, fc+d la according to (A'). I t follows || (/*(<<))i»o ||__ = max {|| (/,(«.)?_„ | | a , 
I (/*(**),/*(«*+-)) I_B ^ max {|| («,)*_„ \\R, | (fe, i»+1) IJ,} = || (<,)*_. | |«. Assertion (B') 
could be proved by induction. 

3. Let be (.,')f=0 a ^'-derivation of the string /#(s) in R(U, M) such that 
II (*',/*(«)) IIA = II (*.)?-o I IK- According to (B) there exist t, e /T 1 (t-)iori = 0 , 1 , ...,_o, 
tv — s such that (#<)?_0 is a {^-derivation of the string a in R(V, L) with the property 
II ft)?-olli.-a 11(0.-0 ll-i- F o r * = *o> it follows that || (t, s) | |B __ ||(«.)f_0l|i. and 
this is the proof of the assertion (C). 

3'. Let (v«)f,0 be a ^-derivation of the string s in R(V, L) such that || (t, S)\\R = 
= II (hfi=0\\R- According to (B'), (/*(*.))f_0 is » ."-derivation of the string/*(«) in 
R(U, M) such that I! (U(h))lo Hi. -s II (*i).-o II--- Ifc follows that || (f,/ ,(-)) lis __ 
-̂  II (/*(*.))?-o lis -a II (*.)f-o Hi- = II C s) II* a n d t h i s i s t h e P r o o f o f t h e assertion 
(C). 

3.32 Lemma. Lel (V, ___•), (U, M) be languages, f a strong homomorphism of (V, L) 
onto (U, M). Then BR(V, L) = f*x(BR (U, M)) and || z ||A (F,L) = || /*(*) \\R{U,M) 

for every zeL. 
Proof. 1. It holds that BR(V, L) _= f*l(BR(U, M)). Indeed, suppose z e-BR(V> £). 

Then we have zeL and consequently f+(z)eM. Suppose s'e M and s' 4 /*(z) 
(R(U,M)). According to 3.31 (C) there exists sef*l(s') such that s _̂  z(-»(F, L)). 
We have sGJ. and it follows | s \ = | z |. Further, it implies | *' | = |/*(«) I = 
___. | s | = | z | = |/„.(z) |. It follows U(z)eBR(U, M) and, thus, zef*l(BR(U, M)). 
This proves immediatly the assertion. 

2. It holds t h a t / ^ H / ^ U , M)) ___ £/_(V,£). Indeed, suppose zef*x(BR(U,M)). 
Then we have 2e/*!(_3_f) = L. Suppose seL, s 4 z(R(V, L)). According to (C), 
it holds that f+(8) ^ /^(z) (R(U, M)) and fm(s) e Jf ,/*(«) e £/_(U, Jf). Thus, | /„(«) | = 
= \f+(z) | and it follows | s \ = !/„(*) | = |/*(«) \ = | z |. Therefore ze_B/j(V,X). 

3 . Assertions 1 and 2 imply that BR(V, L) = f*l(BR(U, M)). 
4. For every zeL, the condition || z \\R(V,L) _g ||/*(z) WR(U,M) holds. Indeed if 

2GL then f+(z) G M and there exists 5' GB^tf, M) such that 5' 4. f+(z) (R(U, M)) 
and || (s',/*(*)) ||i_(r/.M) = ||/*(«) IIR(tl.M). According to 3.31 (C) there exists se 
ef*l(s') such that s^z(R(V,L)) and || (s, z) \\R{V,L) _S || («',/*(«)) IIRdt.M)•= 
= ll/*(*) IIR(CI,M)- Now, we have sef*l(BR(U, M)) = -B#(V, £) according to 3 and 
therefore || z ||_-»<jrfi,) _̂  II (*, z) IIR(FM-) -̂  I!/•(*) \\R(U,M)-

5. For every zeL the condition ||/*(z) IIR(U,M) _S II z ||u(r.2_) holds. Indeed 
there exists s eBR(V, £) such that «? _̂  «(.B(F, £)) and || (s, z) \\R(v,L) = || z IIR(F,J_)-
According to 3.31 (C), we have/„.(*) ^ /*(«) (R(U, M)) and || (/*(*),/»(«)) | | w , M) _S 
_g II (s, z) \\R{V,D = \\Z\\R{V,L). Now, we have /*(*) G /*(-Bi.(V, £)) =___ 
= U(Ul(BR(U,M))) = BR(U,M) according to 3 and therefore \\f*(z)\\RiUtM) g 
-̂  II (/*(*),/*(«)) Ili-(cr.-if) ^ ll«||.B(r,«-

6. It follows from 4 and 5 that ||/*(z) IIR(c/,M) = II « IIR(F,L) for every Z G L . 
3.33. Lemma. _Lê  (V, _L), (U, M) be languages, fa strong homomorphism (V, L) 

onto (U, M). Then, for every x, ye V*, the following assertions hold: 
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(A) (y9 x) e XR(V, L) iff (f*(y),/*(*)) e XR(U9 M). 
(B) (y9 x) e ZR(V, L) iff (f*(y),f*(x)) e ZR(U, M). 

Proof. Suppose x, ye V*, (y9x)eXR(V, L). Then, by 3.24, we have (y, x) e 
e R(V, L) and t e L implies \x\ > \\t \\R(V,L) • By 3.30, the condition (/*(y), /*(#)) e 
ER(U, M) holds. Now suppose zeM. I t follows from the definition of a strong 
homomorphism that there exists a string z' e L such that/*(z') = z. For this string, 
the condition \x\ > \\ z' \\R(V,D holds. By 3.32, we have || z' \\R(V,D = ||/*(z')l!R(U.M) 
= \\z \\R(U,M) • Thus, it holds that | f+(x) | > || z \\R(U,M) for every z e M. It means 
that (f+(y)9 U(x))eXR(U9M). Now, suppose x9 y e V*, (f+(y), f+(x))eXR(U, M). 
Then (f+(y), /*(*)) eR(U, M) and, by 3.30, it follows (y, x) eR(V, L). IfteL then 
/ • W e Jf and \f+(x) | > ||/*W ||*<I7.M>. By 3.32, | !/*(*) | | ^ , I D = II * \\R(V,D and 
therefore | x | > || £ | |#(F,L) for every £ e L. I t means that (y, x) e Ki?(V, L). 

This is'the proof of the assertion (A). 
The assertion (B) follows from (A) and 3.30. 
3.84. Theorem. Let (V, L), (U, M) be languages, fa strong homomorphism (V,L) 

onto (U, M). Then f is a strong homomorphism KR(V9 L) onto KR(U9 M). 
Proof. The proof follows from 3.32 and 3.33. 
3.35. Theorem. Let (V, L), (U, M) be languages. 

(A) / / / i s a strong homomorphism of KE(V, L) onto KE(U9 M), then f is also the strong 
homomorphism of the language (V, L) onto (U9 M). 

(B) / / / i s a strong homomorphism of KR(V, L) onto KR(U9 M), then f is also the strong 
homomorphism of the language (V, L) onto (U9 M). 

Proof. The proof follows from 3.6 and 3.29. 

3.36. Theorem. Let (V, L)9 (U9 M) be languages, f a surjection V onto U. Then f 
is a strong homomorphism of the language (V, L) onto (U, M) iff f is the strong homo­
morphism of KR(V, L) onto KR(U, M). 

Proof. The proof follows immediately by 3.34 and 3.35. 

4. F I N I T E L Y S E M I G E N E R A T E D L A N G U A G E S 

4.1. Definition. A language (V, L) is called finitely semigenerated if the sets V, 
BE(V9 L), ZB(V9 L) are finite. 

A language (V, L) is called finitely R-semigenerated if the sets V, BR( V, L)9 ZR( V, L) 
are finite. 

4.2. Theorem. Let (V, L) be a language. Then 
(A) (V, L) is finitely semigenerated iff the following two conditions are satisfied: 

(a) The sets V, BE(V,^ L) are finite. 
(b) There exists a number N such that \\z\\E ^ N for every ze L. 

(B) (V, L) is finitely R-semigenerated iff the following two conditions are satisfied: 
(a) The sets V, BR(V, L) are finite. 
(b) There exists a number N such that || z \\R ^ N for every zeL. 

Proof. 1. If the language (V, L) is finitely semigenerated, the sets V, BE(V, L), 
ZE( V, L) are finite. We put N = max {| q |; (p, q) e ZE( V, L)}. Let us have an arbitrary 
zeL. By 3.27, there exists seBE(V, L) such that s ^ z(ZE(V9 L)). Let (s«)?=o b e a n 

s-derivation of z in ZE(V, L). 
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Then | (*«_i, *<) \B £ N for i = 1, 2, ..., n. If follows || («,)».0 \\E £ N and that 
implies || (*, z) \\B ^ N and finally || z \\E <; N. 

2. Let V, 2?£(V, _£) be finite and suppose the existence of a number N such that 
|| z \\E S N for every zeL. Let us have an arbitrary (p9 q) 6 ZB{V, L). Then there 
exists zeL such that \p\ <; \q\ ^ || z \\B < N. I t follows that the set ZB(V9 L\ 
is finite. 

That is the proof of the assertion (A). 
The assertion (B) could be proved in a similar way. 
4.3. Theorem. Let (V, L) be a language. Then (V, L) is finitely semigenerated iff it is-

finitely R-semigenerated. 
Proof. The proof follows from 3.15, 3.22 and 4.2. 
4.4. Theorem. Let (V, L), (U, M) be languages, f a strong homomorphism of (V, L)> 

onto (U, M). 
(A) If (V, L) is finitely R-semigenerated, then (U, M) is also finitely R-semigenerated. 
(B) If V is a finite set and (U, M) a finitely R-semigenerated language, then (V, L) 

is also finitely R-semigenerated. 
Proof. The proof follows from 3.32 and 4.2. 
4.5. Corollary. Let (V, L), (U, M) be languages, f a strong homomorphism of (V, L) 

onto (U, M). 
(A) If (V, L) is finitely semigenerated, then (U, M) is also finitely semigenerated. 
(B) If V is a finite set and (U, M) a finitely semigenerated language, then (V, L) is also* 

finitely semigenerated. 
It follows by 4.3 and 4.4. 
I should like to express my indebtness to Professor M. Novotny for all his attention, 

valuable remarks and advices guiding my work. 
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