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ON A CHARACTERIZATION OF THE LATTICE 
OF m-IDEALS OF AN ORDERED SET 

JiM R O S I C K ^ , BRNO 

(Received February 1, 1972) 

In [3] O. Frink defined an ideal of an ordered set. In [6] J. Mayer and M. Novotny 
replaced the notion of an ideal by a more general notion of an m-ideal. The ideals of 
Frink are precisely the $0-ideals. The ideals of Frink on lattices (semilattices) are 
identical with lattice- (semilattice-) ideals. Birkhoff and Frink proved in [2] that a 
lattice L is isomorphic with the lattice of ideals of some lattice P and only if L is 
complete, meet-continuous, the set of join-inaccessible elements is a sublattice of L 
and every element of L is a join of this join-inaccessible elements. Nachbin proved 
in [5] that a lattice L is isomorphic with the lattice of ideals of some up-semilattice if 
and only if L is complete and compactly generated. It is known that the concept of 
complete, meet-continuous lattice every element of which is a join of join-inaccessible 
elements is equivalent with the concept of complete, compactly generated lattice. 

This paper deals with the analogously characterization of the lattice of m-ideals 
of an ordered set. This characterization will be deduced from one general theorem 
given in [7] which characterizes an 9Jt-hull of an ordered set. 

§ 1. B A S I C C O N C E P T S 

By an ordered set we mean a partially ordered set. Put [x) = {t e Pjt ^ x}, (x] ==-
= {t e Pjt 5j x} for every element x of an ordered set P. Let m be a cardinal number. 
An ordered set P is called m-up-directed if for every subset M of P such that 
card M < m there exists x e P with x ^ t for every t e M. The system 91 of subsets 
of a set P is called a closure system if it contains the intersection of every of its 
subsystem. Especially P e 91 as P is the intersection of the empty subsystem. 
Therefore 91 ordered by the set inclusion is a complete lattice. A closure system 91 
defines a closure operator for P such that X = f| {Y e 91/K s Y}. A closure system 
is called m-inductive if it contains the union of every of its m-up-directed subsystem. 

§ 2 . m - J O I N - I N A C C E S S I B L E A N D t n - C O M P A C T E L E M E N T S 

2.1. Definition: Let Pbea complete lattice, m an infinite cardinal number. An element 
xe P is called m-join-inaccessible if for every non-empty m-up-directed subset M of P 
such that x = sup M it holds xe M. 

The set of m-join-inaccessible elements of P we shall denote by P(m). 
2.2. Definition: Let P be a complete lattice and m an infinite cardinal number. An 

element xe P is called m-compact if for every non-empty subset M of P such that x rgj 
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^ sup M there exists a subset N of M such that 0 < card N < m and x 5g sup N. 
We define a complete lattice to be m-compactly generated when every element 

of P is a join of m-compact elements of P . 
So-join-inaccessible elements are usual join-inaccessible elements defined in [2]. 

Ko-eompact elements are compact elements from [5]. We are going to study relation
ships between m-join-inaccessible and m-compact elements. All results proved in this 
section are given in [1] for the case m = Ko-

2.3. Definition: Let m be a cardinal number. A complete lattice is said to be m-meet-
continuous if for every element x e P and every m-up-directed subset M £ P x /\ y t = 

teM 

= V (# A 0 holds. 
teM 

The Xo-raeet-continuity is a usual meet-continuity. 

2.4. Lemma: Let Pbea complete lattice, m an infinite cardinal number. Then it holds: 
(i) Every m-compact element of P is m-join-inaccessible. 

(ii) Let P be m-meet-continuous and m regular. Then every m-join-inaccessible element 
of P is m-compact. 

Proof: (i) Let x e P be m-compact, M non-empty m-up-directed subset of P 
and x = sup M. By the definition of compactness there exists a subset N of M such 
that 0 < card N < m and x g sup N. Since M is m-up-directed, there exists y e M 
with y ^ t for every t e N. Hence y ^ x, i.e. x = y e M. Thereby x is m-join-inac
cessible. 
(ii) Let x e P be m-join-inaccessible, P m-meet-continuous and m regular. Let 0 =j= 
4= M £ P, x ^ sup M. Let M' = {sup X/X g M, 0 < card X < m}. Clearly 
sup M = sup M' and M' is m-up-directed as m is regular. Thus x = x f\ sup M' = 
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= V (x A 0 a n d it is easy to see that the set {x /\ tjt e M'} is m-up-directed. Then 
teM' 

there exists teM' such that x = x f\ t, i.e. .rg^. From the construction of M' it 
follows that # is m-compact. 

The following example proves that m-meet-continuity is in the assertion (ii) 
necessary. 

2.5. Example: Let P be a complete lattice from the following figure, where {c%\i = 
oo 

= 1, 2, ...} is a chain of the type co. P is not meet-continuous for V (° A Ci) = 
i = i 

00 

a 4= b = b /\ V ci••- The element b is join-inaccessible but it is not compact for 
i=i 

00 

b ^ V ci a n d a n n i te set F e {c /̂i = 1, 2, . . . } , b <̂  sup K does not exist. 

2.6. Definition: Let P be a set, 91 a closure system on P. We define an element X e 91 
to be m-generated if there exists a subset M of P such that card M < m and X = M. 

2.7. Lemma: Let P be a set, m an infinite regular cardinal number. Let 91 be an 
m-inductive closure system on P ordered by the set inclusion, X e 91. The following 
conditions are equivalent: 

(i) X is m-generated. 
(ii) X is m-join-inaccessible. 
(Hi) X is m-compact. 

Proof: The rrt-inductivity of 91 implies that the complete lattice 9t is m-meet-con-
tinuous. From 2.4. it follows that the conditions (i) and (iii) are equivalent. We shall 
prove that (i) is equivalent to (ii). 

Let (i) hold. Let 0 4= 93 £ 91 be an m-up-directed subsystem, X = sup 93. Hence 
X = U ©. There exists M Q P such that card M < m and X = M. I t is easy to see 
that there exists B e 93 such that M £ B. Hence X = B, i.e. (ii) holds. 

Let (ii) hold. Let 93 = {B/B £ X, card B < m}. Evidently X = X = \J 93. We 
shall prove that © is m-up-directed. Let (£ £ 93, card (E < m. Let us choose A £ K 
such that card 4̂ < m and Y = A for every Y e (£. We obtain a system CT of such 
chosen A's. I t is C = \J (£' e 93 as m is regular. Clearly C is an upper bound of G, 
i.e. © is m-up-directed. Since K is m-join-inaccessible, it is X e © and (i) holds. 

2.8. Lemma: Let m be an infinite cardinal number and P complete, m-meet-continuous 
lattice. Then for every subset M g P(m), card M < m there exists supp(m) M and 
supp(m) M = supp M. 

Proof: Let 0 be the least element of P. Evidently 0 e P(m), i.e. supp<m) 0 = 
— 0 — supp 0 . 

Let M £ P(m), 0 < card M < m, x = supp M. It suffices to prove that x e P(m). 
Let 0 4= X s P be an m-up-directed subset and x = suppX. Let teM. I t is £ = 
= t A supp X = \f (t f\ y). Since £ is m-join-inaccessible, there exists yteX such 

2/eX 

that t = t A 2/t> i-e- t ^Vt- There exists y e X such that y ^ yt for every teM. 
Thus y ^ t for every £ e M. Therefore ^ ^ supp Jf = a?, i.e. x = y e X. We have 
proved that x is m-join-inaccessible. 
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2.9. Lemma: Any complete m-compactly generated lattice is m-meet-continuous. 
Proof: Let xeP, M g P be an m-up-directed subset. Clearly x /\ sup M >̂ 

s§ V (x A *)• Let a 6 P be m-compact and a 5g x /\ sup M. We shall prove a ^ 

iS V (^ A 0- From a S sup M it follows that there exists a subset N £ Jf such 

that 0 < card N < m and a ^ sup N. Further, there exists t0e M such that t0 I> t 
for every t e N. Thus a ^ x, a ^ t0 and therefore a ^ V (# A 0-

teM 

Since P is m-compactly generated, there exists a set A such that x A sup M = 
= Vaa> where aa e P is m-compact for every a e i . Hence V a a ^ V (# A 0 and 

ae.4 ae.4 teM 

thereby is the proof accomplished. 

§3. THE LATTICE OF m-IDEALS 

3.1. Definition: Let P be an ordered set, A g P . Put 

A* = {te P\t ^ # for every x e A}, 

_4+ = {t e P\t ^ x for every a; e A}. 

Denote A*+ = (^4*)+. 
It is 0 * = 0 + = P. 

3.2. Definition (see [6]): Let P be an ordered set, m an infinite cardinal number. A 
subset J £ P is called an m-ideal of P if for every subset M, 0 =f= M g J with 
card M < m ^e inclusion M*+ £ J jkofofo. 

The system of all m-ideals of P ordered by the set inclusion is denoted by 5mC-°)-
I t holds 0 e 5m(--D)- An m-ideal J is called principal if J = (c] for some ceP. 
A subset I of an ordered set P is called a semiideal if x e I, y < x implies y e I. 
Clearly every m-ideal is a semiideal. 

3.3. Lemma: Let P be an ordered set, m an infinite cardinal number. Then it holds: 
(i) 3m(P) is an m-inductive closure system. 

(ii) Every principal ideal is m-join-inaccessible in3fm(P). 
(Hi) 3m(P) is m-meet-continuous. 
(iv) If P is a complete lattice then m-ideals of P are precisely m-up-directed semi-

ideals of P. 
Proof: The assertion (i) is evident. Since (e] = {c}, (ii) follows from (i) and the 

proof of 2.7. The assertion (iii) follows from (i). We shall prove (iv).* 0 is both on 
m-ideal and an m-up-directed semiideal of P . Let / =f= 0 be an m-up-directed semiideal 
of P, M £ I, 0 < card M < m. There exists xel with x j> t for every teM. Hence 
M*+ g (x] g i" and I is an m-ideal. Let P be a complete lattice, 0 4= J a n m-ideal 
of P . Let 0 4= M g J, card M < m. It is J 2 M*+ == (sup M] and therefore M 
has an upper bound in J. Hence, J is an m-up-directed semiideal. 

3.4. Definition (see [7]): Let P be an ordered set, 91 a system of subsets of P. An 
element xeP is called9l-primitive if Ne91, x g supN implies that there exists y e N 
with x ^ y. 

3.5. Lemma: Let P be a complete, m-meet-continuous lattice. Then (8fm(-H —{&})" 
primitive elements of P are precisely m-join-inaccessible elements of P. 
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Proof: Let x e P be (8fm(-P) — {0})-primitive. Let M ^ 0 be an m-up-direeted 
subset of P, x = sup if. Let M' = {te PI there exists y e M with t <L y}. Clearly 
x = sup M' and M' is m-up-direeted. By 3.3. (iv) M' is an m-ideal. Then there 
exists t e M' with x <L t. Hence xeM and we have proved that x is m-join-inae-
cessible. 

Let x e P be m-join-inaccessible. Let 0 =j=Je 5m(-f>)?
 x ^ SUP «̂ - By 3.3. (iv) J 

is an m-up-directed set and therefore x = x f\ sup J = V (x A 0- Since # is 
tej 

m-join-inaccesible, there exists t e J with x <* t. Thus x is (5m(-^) —{0})-primitive. 
3.6. Definition: (see [7]): Let Q £ P be ordered sets,ffl a system of semiideals of Q 

ordered by the set inclusion. Denote co(x) = {t e Q/t <i x} for every x e P. The set P 
is called an ffl-hull of Q if co is an isomorphismus from P on ffl. 

3.7. Theorem (see [7]): Let Q g Pbe ordered sets, ffl a system of semiideals ofQ. The 
following conditions are equivalent: 

(i) P is an ffl-hull of Q. 
(ii) a) co is a mapping from P to ffl 

b) Every element of P is a join of elements of Q 
c) There exists supp M for every M e ffl 
d) Every element of Q is ffl-primitive in P. 

Now, we can prove the main theorem of this paper. 

3.8. Theorem: Let m be an infinite cardinal number. A lattice L is isomorphic with the 
lattice of m-ideals of some ordered set P if and only if L is complete, m-meet-continuous, 
and every element of L is a join of m-join-inaccessible elements. 

Proof: I. Since every m-ideal J -7-= 0 is a join of principal ideals generated by its 
elements, the necessity follows from 3.3. 

II . Let L be a complete, m-meet-continuous lattice and every element of L be 
a join of m-join-inaccessible elements. Let 0 be the least element of L. Denote 
L(m) = L. We shall prove that L £ 3fm(-k) —{0}- According to 3.7. it suffices to 
verify the condition (ii) of 3.7. for Q = L, P = L, ffl = gm(£) —{0} . Let xeL, 
M £j co(x), 0 < card M < m. According to 2.8. there exists sup£ M. Hence M*+ = 
= (sup£ M] g co(x). Thus co(x) is an m-ideal of L. Since 0 e co(x), co is a mapping 
from L to i$m(L) — { 0 } . By the supposition the conditions b), c) are fulfilled. Let 
x e L, J e 5m {L) — {0}, x <l sup J. Let J' = {y e .L/there exists teJ with y fg t}. 
Clearly J' e ^m(L) —{0} . According to 3.5. there exists ye J' with x <ly. Further, 
there exists zeJ such that y <L z. Thus x is (%m(L) —{0})-primitive. 

Since the mapping J —> J — {0} defines an isomorphismus %m (L)—{0} ~ 
£ 5m (L — {0}), the sufficiency is proved. 

3.9. Corollary: Let m be an infinite regular cardinal number. A lattice L is isomorphic 
with the lattice of m-ideals of some ordered set P if and only if L is complete and 
m-compactly generated. 
Proof follows from 3.8., 2.4. and 2.9. 

In [4] it is stated that a complete lattice L every element of which is a join of a chain 
of join-inaccessible elements is isomorphic with the lattice of ideals of some ordered 
set. According to the example 2.5. it is necessary to add to this assertion the sup
position that L is meet-continuous. 
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