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In [3] O. Frink defined an ideal of an ordered set. In [6] J. Mayer and M. Novotny
replaced the notion of an ideal by a more general notion of an m-ideal. The ideals of
Frink are precisely the No-ideals. The ideals of Frink on lattices (semilattices) are
identical with lattice- (semilattice-) ideals. Birkhoff and Frink proved in [2] that a
lattice L is isomorphic with the lattice of ideals of some lattice P and only if L is
complete, meet-continuous, the set of join-inaccessible elements is a sublattice of L
and every element of L is a join of this join-inaccessible elements. Nachbin proved
in [5] that a lattice L is isomorphic with the lattice of ideals of some up-semilattice if
and only if L is complete and compactly generated. It is known that the concept of
complete, meet-continuous lattice every element of which is a join of join-inaccessible
elements is equivalent with the concept of complete, compactly generated lattice.

This paper deals with the analogously characterization of the lattice of m-ideals
of an ordered set. This characterization will be deduced from one general theorem
given in [7] which characterizes an 9R-hull of an ordered set.

§ 1. BASIC CONCEPTS

By an ordered set we mean a partially ordered set. Put [x) = {t € P/t = x}, (x] =
= {t € P|t < x} for every element x of an ordered set P. Let m be a cardinal number.
An ordered set P is called m-up-directed if for every subset M of P such that
card M < m there exists € P with x =t for every t € M. The system A of subsets
of a set P is called a closure system if it contains the intersection of every of its
subsystem. Especially Pe U as P is the intersection of the empty subsystem.
Therefore A ordered by the set inclusion is a complete lattice. A closure system 2
defines a closure operator for P such that X = (| {Y € A/X < Y}. A closure system
is called m-inductive if it contains the union of every of its m-up-directed subsystem.

§2. m-JOIN-INACCESSIBLE AND in-COMPACT ELEMENTS

2.1. Definition: Let P be a complete lattice, m an infinite cardinal number. An element
x € P ts called m-join-inaccessible if for every non-empty m-up-directed subset M of P
such that x = sup M it holds x € M.

The set of m-join-inaccessible elements of P we shall denote by 13(m).

2.2. Definition: Let P be a complete lattice and m an infinite cardinal number. An
element x € P is called m-compact if for every non-empty subset. M of P such that x <
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= sup M there exists a subset N of M such that 0 < card N < m and x < sup N.

We define a complete lattice to be m-compactly generated when every element
of P is a join of m-compact elements of P.

No-join-inaccessible elements are usual join-inaccessible elements defined in [2].
No-compact elements are compact elements from [5]. We are going to study relation-
ships between m-join-inaccessible and m-compact elements. All results proved in this
section are given in [1] for the case m = .

2.3. Definition: Let m be a cardinal number. A complete lattice is said to be m-meet-
continuous if for every element x € P and every m-up-directed subset M < P x )\ Vit=
) teM
= V (z A t) holds.
teM
The No-meet-continuity is a usual meet-continuity.

2.4. Lemma: Let P be a complete lattice, i an infinite cardinal number. Then it holds:
(2) Every m-compact element of P is m-join-inaccessible.
(i2) Let P be m-meet-continuous and m regular. Then every m-join-inaccessible element
of P is m-compact.

Proof: (i) Let x € P be m-compact, M non-empty m-up-directed subset of P
and x = sup M. By the definition of compactness there exists a subset N of M such
that 0 < card N << m and « < sup N. Since M is in-up-directed, there exists y € M
with y = ¢ for every t € N. Hence y = z, i.e. x = y € M. Thereby x is m-join-inac-
cessible.

(ii) Let « € P be m-join-inaccessible, P m-meet-continuous and m regular. Let g ==
FMc P, x<supM. Let M'={supX/X < M, 0<cardX < m}. Clearly
sup M = sup M' and M’ is m-up-directed as m is regular. Thus x = z A sup M' =

Q<
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= VY (x A t) and it is easy to see that the set {x A ¢/t € M'} is m-up-directed. Then
teM’

there exists t € M’ such that x = 2 A ¢, i.e. x =< ¢. From the construction of M’ it
follows that z is m-compact.

The following example proves that m-meet-continuity is in the assertion (ii)
necessary.

2.5. Example: Let P be a complete lattice from the following figure, where {c;/i =
e}

=1,2,...} is a chain of the type w. P is not meet-continuous for V (b A ¢;) =
i=1

a+b=0b A Vci. The element b is join-inaccessible but it is not compact for
i=1

b < V¢ and a finite set F < {c;/i = 1,2, ...}, b < sup F does not exist.
i=1

2.6. Definition: Let P be a set, A a closure system on P. We define an element X € N
to be m-generated if there exists a subset M of P such that card M < m and X = .

2.7. Lemma: Let P be a set, m an infinite regular cardinal number. Let U be an
m-inductive closure system on P ordered by the set inclusion, X € . The following
conditions are equivalent:

(2) X is m-generated.
(23) X 28 m-join-inaccessible.
(13t) X is m-compact.

Proof: The m-inductivity of 9 implies that the complete lattice 2 is m-meet-con-
tinuous. From 2.4. it follows that the conditions (i) and (iii) are equivalent. We shall
prove that (i) is equivalent to (ii).

Let (i) hold. Let & =8B < UA be an m-up-directed subsystem, X = sup 8. Hence
X = | B. There exists M < P such that card M < m and X = M. It is easy to see
that there exists B e B such that M < B. Hence X = B, i.e. (ii) holds.

Let (ii) hold. Let B = {B/B < X, card B < m}. Evidently X = X = |J8B. We
shall prove that B is m-up-directed. Let € < B, card € << m. Let us choose 4 £ X
such that card 4 < m and Y= A4 for every Y € €. We obtain a system ¢’ of such
chosen 4's. It is € = |J €' € B as m is regular. Clearly C is an upper bound of €,
i.e. B is m-up-directed. Since X is m-join-inaccessible, it is X € B and (i) holds.

2.8. Lemma: Let m be an infinite cardinal number and P complete, m-meet-continuous

lattice. Then for every subset M < P(m), card M < m there exists suppu M and
suppum) M = supp M. -

Proof: Let O be the least element of P. Evidently OEf’(m),i.e. SUPpm & =
= 0 = supp 3.

Let M < P(m), O < card M < m, xz = supp M. It suffices to prove that z € 13(m).
Let &= X < P be an m-up-directed subset and © = supp X. Let te M. It is ¢t =
=1t A supp X = V (¢ A ¥). Since ¢ is m-join-inaccessible, there exists y; € X such

yeX

that t =t A y;, ie. t < y:. There exists y € X such that y = y; for every te M.
Thus y =t for every t € M. Therefore y = supp M = z, ie. x = ye X. We have
proved that x is m-join-inaccessible.
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2.9. Lemma: Any complete m-compactly generated lattice is m-meet-continuous.
Proof: Let xe P, M < P be an m-up-directed subset. Clearly = A sup M >

= \Ilu(:c A t). Let a € P be m-compact and a < x A sup M. We shall prove a <
te.

= V (x A t). From a < sup M it follows that there exists a subset N = M such
teM

that 0 < card N < m and a < sup N. Further, there exists ¢, € M such that ¢, = ¢

for every te N. Thus a < z, a < t, and therefore a < VY (z A ©).
teM
Since P is m-compactly generated, there exists a set 4 such that z A sup M =

= V¥ a,, where a, € P is m-compact for every «a € 4. Hence Va, < V (z A t) and
acd acd teM
thereby is the proof accomplished.

§3. THE LATTICE OF m-IDEALS

3.1. Definition: Let P be an ordered set, A < P. Put
A* = {te P|t = x for every x € A},
A+ ={te Pt < x for every z € A}.

Denote A*+ = (A*)*.
Itis g*=g@+=P.

3.2. Definition (see [6]): Let P be an ordered set, m an infinite cardinal number. A
subset J = P s called an m-ideal of P if for every subset M, o = M < J with
card M < m the inclusion M*+ < J holds.

The system of all m-ideals of P ordered by the set inclusion is denoted by Fmn(P).
It holds @ € Fu(P). An m-ideal J is called principal if J = (c] for some ce P.
A subset I of an ordered set P is called a semiideal if z € I, y < = implies y € 1.
Clearly every m-ideal is a semiideal.

3.3. Lemma: Let P be an ordered set, m an infinite cardinal number. Then it holds:
(2) Fu(P) ts an m-inductive closure system.
(v) Every principal ideal is m-join-inaccessible in§u(P).
(¢8) Fm(P) 18 m-meet-continuous.
(tv) If P is a complete laitice then m-ideals of P are precisely m-up-directed semi-
ideals of P.

Proof: The assertion (i) is evident. Since (¢] = {c}, (ii) follows from (i) and the
proof of 2.7. The assertion (iii) follows from (i). We shall prove (iv). @ is both on
m-ideal and an m-up-directed semiideal of P. Let I =+ & be an m-up-directed semiideal
of P, M ¢ I,0 <« card M < m. There exists x € I with x = ¢ for every ¢ € M. Hence
M*+ ¢ (x] € I and I is an m-ideal. Let P be a complete lattice, g == J an m-ideal
of PLet o =+ M < J,card M < m. It is J 2 M*+ = (sup M] and theréfore M

has an upper bound in J. Hence. J is an m-up-directed semiideal.

3.4. Definition (see [7]): Let P be an ordered set, M a system of subsets of P. An
element x € P 1s called N-primitive if N € N, x < sup N implies that there exists y € N
withz < y.

3.5. Lemma: Let P be a complete, m-meet-continuous lattice. Then (Fu(P)—{2})-
primitive elements of P are precisely m-join-inaccessible elements of P.
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Proof: Let z € P be (Fu(P) — {@})-primitive. Let M # @ be an m-up-directed
subset of P, x = sup M. Let M’ = {t € P/ there exists y € M with ¢t < y}. Clearly
xz =sup M’ and M’ is m-up-directed. By 3.3. (iv) M’ is an m-ideal. Then there
exists t € M’ with x < t. Hence x € M and we have proved that x is m-join-inac-
cessible.

Let z € P be m-join-inaccessible. Let @ == J € Fu(P), ¢ <supJ. By 3.3. (iv) J
is an m-up-directed set and therefore x = x A supJ = Y (x A f). Since x is

teJ

m-join-inaccesible, there exists ¢ € J with x < t. Thus z is (Fn(P) — {@})-primitive.

3.6. Definition: (see [7]): Let @ < P be ordered sets, M a system of semiideals of Q
ordered by the set inclusion. Denote w(x) = {t € @[t < x} for every x € P. The set P
18 called an M-hull of Q if w is an isomorphismus from P on IN.

8.7. Theorem (see [7]): Let Q < P be ordered sets, M a system of semiideals of Q. The
following conditions are equivalent: '

(¢) P is an M-hull of Q.

(%) a) w is @ mapping from P to M
b) Every element of P is a join of elements of @
¢) There exists supp M for every M € M
d) Every element of @ is M-primitive in P.

Now, we can prove the main theorem of this paper.

3.8. Theorem: Let m be an infinite cardinal number. A lattice L 1s isomorphic with the
lattice of m-ideals of some ordered set P if and only if L is complete, m-meet-continuous,
and every element of L is a join of m-join-inaccessible elements.

Proof: I. Since every m-ideal J # & is a join of principal ideals generated by its
elements, the necessity follows from 3.3.

II. Let L be a complete, m-meet-continuous lattice and every element of L be
a join of m-join-inaccessible elements. Let O be the least element of L. Denote
L(m) = L. We shall prove that L &~ §u(L) —{@}. According to 3.7. it suffices to
verify the condition (ii) of 3.7. for Q = L, P = L, M = Fu (L) — {2} Let z€ L,
M < w(x), 0 < card M < m. According to 2.8. there exists supz, M. Hence M*+ =
= (supz M] & w(z). Thus w(x) is an m-ideal of L. Since O € w(x), w is a mapping
from L to §n (L) —{@}. By the supposition the conditions b), ¢) are fulfilled. Let
zel,JeFn(L)—{2}, x <supJ. Let J' = {y € Ljthere exists t € J with y <t}.
Clearly J' € & (L) —{@}. According to 3.5. there exists y € J' with < y. Further,
there exists z € J such that y < 2. Thus z is (F (L) — {@})-primitive.

Since the mapping J —J — {0} defines an isomorphismus &n (L) —{o} =
~ Fau(L —{0}), the sufficiency is proved.

3.9. Corollary: Let m be an infinite regular cardinal number. A lattice L is tsomorphic
with the lattice of m-ideals of some ordered set P if and only if L is complete and
m-compactly generated.

Proof follows from 3.8., 2.4. and 2.9.

In [4] it is stated that a complete lattice L every element of which isa join ofa chain
of join-inaccessible elements is isomorphic with the lattice of ideals of some ordered
set. According to the example 2.5. it is necessary to add to this assertion the sup-
position that L is meet-continuous.
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