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A R C H . M A T H . 3, SCRIPTA F A C SCI. NAT. UJEP B R U H E N S I S , 
V I I I : 113-124 , 1972 *' . 

CONNECTION BETWEEN ASYMPTOTIC 
PROPERTIES AND ZEROS OF SOLUTIONS 

O F f = q(t)y 

MIROSLAV BARTU&EE: 

(Received June 28, 1971) 

1.1. Consider a differential equation 

(q) y" = q(t)y> qeC°[a,b), b £ oo, 

where Cn[a, b) (n being a non-negative integer) is the set of all continuous functions 
having continuous derivatives up to and including the order n on [a, b). Let y be 
a non-trivial solution of (q) vanishing at t e [a, b). If <p(t) is the first zero of y lying 
on the right of t, then <p is called the basic central dispersion of the 1 s t kind (briefly, 
dispersion). 

The properties of dispersions can be found in [1]. If (q) is an oscillatory (t —> bj) 
differential equation on [a, b) (i.e. every non-trivial solution has infinitely many zeros 
on every interval of the form [t0, b), t0e [a, b)), then the dispersion has these pro­
perties: 

1. <p(t)e&[a,b) 

2. <p'(t) > 0 on [a, b) 

(1) 3. <p(t) >t on [a, b) 

4. lim <p(t) = b. 
--*&- . , 

Let <pn be the n-th. iterate of the dispersion <p; then <pn has the same properties (1) 
and 
(2) y2((pn(t)) = cpn(t)y\t), te[a,b), 

(see [1], § 13). 
A solution y of (q) belongs to Lv[a, b) if 

b 

^\y(t)\v&t< oo, p>0. - • " •• 
a 

-1.2. We shall need another property of dispersions: 
Let <p be the dispersion of an oscillatory (t-^b_) differential equation (q), q e C°[a9 b). 

Then for t0 e [a, b), t ^ t0 there exist numbers n, # such that 

(3) t == <pn(x), xe[t0, <p(t0)). 

1.3. Results being derived in [2], [3] give us a certain review about the relation 
among the dispersion of (q) and the behaviour of solutions of (q) on [a, b). Some results 
from [2], [3], [4] are summed up in the following Theorem (see [2], Theorem 4, [3], 
Theorem 3, [5] p. 6). 
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Theorem 1. 1. Let (q), qeC°[af &), & __. oo &e an oscillatory (t -*&__) differential 
equation and let q>be its dispersion. Let t0 e [a, &). 

A. i / (i) <p'(t) ___ const < 1 on [t0f &), 

or (U) <p'(t) ___ 1 on p0,&), 

or (Hi) q>'(t) ___ const > 1 on [t0f &), 

then (i) & < oo and evert/ solution of (q) tends to zero for t -> &_, 

or (w) every solution of (q) is bounded on [t0f &), 

0f (Hi) b = oo and every non4rivial solution of (q) is unbounded on [t0f &), 
respectively. 

B. .Every solution of (q) is bounded on [t0i b) if and only if a constant N exists such 
that 

(4) <p'u(x)£N 

for x e [t0f q>(t0)) and all integers n. 
C. Every solution of (q) belongs to Lv[t0f &), p __: 1 if, and only if 

00 <p(U) 

(5) I / L>„(0],+|,'-<-*< oo. 

2. If oscillatory (t -> &_,) differential equations (q)f (q), qf qe C°[af b) have the same 
dispersion, then the, statement (iEvery solution is bounded for t -> &_" holds either for 
both (q) and (q) or for neither of them. 

Remark. The necessity of (5) was proved by the author of [3] in his Seminar in 
Matematick^ ustav CSAV Brno. See the remark in [3], too. 

2.1. Let (q) be an oscillatory (t ->&_.) differential equation. Let <pn be the n-th 
iterate of its dispersion <p and let y be a non-trivial solution of (q). Let t0 e [a, &) and 
I __: t0. According to (3) numbers nf x exist such that 

t = (pn(x), xe[t0f(p(t0)). 

Thus it follows from (2) that 

(6) y2(t) = 9n(x).y2(x). 

As y2 is a continuous function on [t0f <p(t0)] there exist a constant M > 0 and 
a number x0 such that 

0 _S _/2(#) _S M, «/2(*o) = itf, x0 e ft, y(fc)]. 

Finally according to (6) we have 

' 0 _S jfll) _S M<p'n(x) 

y2((fn(x0)) = Mq>'n(x0). 

We shall utilize these facts for the proof of the following 

Theorem 2. Lef q>bethe dispersion of an oscillatory (t —> &_.) differential equation 
(g), g € (70[a, &) and fo e [a, &). TAen 
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a) Every solution of (q) tends to zero for t -> 6. if, and only if 

(8) lim q,;{x) = 0 
n-*oo 

uniformly for xe[t0, <p(t0)). 
b) If the sequence {<pn(x)} is unbounded at least for two different values Xi,x2e [t0, f(t0)) 

then every non-trivial solution of (q) is unbounded. 
c) 2/ the sequence {<p'n(x)} does not tend to zero for n -> oo cU hast for two different 

values Xi,x2e [t0, <p(t0)) then no non-trivial solution of (q) tends to zero for t ->6_. 
Proof, a) Let every solution of (q) tends to zero for t -> b_. Let h,t2e (t0, <p(t0))t 

h < h and let y\, y2 be linearly independent solutions of (q) such that yi(h) = 0, 
y2(h) = 0. Then 

y\(x) ф 0 foг x є l^ү^-, 9>(«| 

yl(x) ф O foг xє ř0, ' . 

We have also 

(9) 

min y\(x) = Mx > 0 

min 2/|(a;) = M2 > 0 

-.[-*•-£-] 
I t follows from the assumptions that for arbitrary e > 0 there exists £3 < b such 
that 

yj(0 <e.M1, h^t<b. 
y\(t) <e.M2 

According to (1), (3) a constant N0 exists that for n > N0 and x e [t0t <p(t0)) we have 
<Pn(x) > h. But it follows from (6) that 

<Pn(x) = y\(<Pn(x))ly\(x) = Jf^/Jfx = e, xe | A ^ , ^ 

9 > » = yl(<Pn(x))ly2
2(x) ^ M2e\M2 = e, xeL, ^ ~ ^ j . 

We can see that for arbitrary e > 0 a constant N0(e) exists such that for n> N0, 
x € [t0, <p(t0)) we have <pn(x) < e and this is the condition (8). 

Let (8) be valid and let y be an arbitrary non-trivial solution of (q). Then for ar­
bitrary e > 0 an index N0(e) exists such that 

9n(x) <~W> xe[t0, <p(t0)), M = max y2(x) > 0, n> N0. 
M xe[to,<P<to)} 

Then according to (6) we have 

y*(t)ig~e
MM = e, t^(p'No+l(t0) 

and the theorem is valid in this case. 

115 



b) Let xi -7.= x2 and the sequences {(p'n(
xi)}> {<Pn(

x2)} a r e unbounded. Let y be an 
arbitrary solution of (q). Iiy(xi) 9-= 0, then by means of (6) the sequence {y(<pn(

xi))} is 
unbounded. If y(xx) = 0, then y(x2) -5-= 0 and by virtue of (6) the sequence {y(<pn(x2))} is 
unbounded and the theorem is proved in this case. 

c) This case can be proved by the same method as in b). 
The next Theorem follows from Theorem 2. 

Theorem 3. If oscillatory (t -> b_) differential equations (q), (q), q, qe C°[a, b), have 
the same dispersion then the statement 

"Every solution tends to zero for t -> b_" 
holds either for both (q) and (q) or for neither of them. 

2.2. Theorem 2 will be the starting point of our considerations. Further we shall 
examine a differential equation 

(q) y" = q(t)y, qeC°[a,co), 

(q) being an oscillatory (t —> 00) differential equation. 

2.3. The case if (q) is an oscillatory equation on [a, b),b < 00 can be reduced to the 
case 2.2. by means of the following transformations: 

(io, t = h-^' y{t) = Z{x)' 

v(x) = xZ(x). 

The equation (q) will be transformed into the equation 

° <•->- - ы н V = - —V, XЄ 
X4 

We can see form (10) that the oscillatory behaviour is invariant and the solution of 
(q)is 

y(t) = ф-t) •Ш-
3.L In this paragraph we shall study the behaviour of solutions of (q) when t -> 00.. 

First let us prove the following 

Lemma 1. Let (q), (q) be oscillatory (t -> 00) differential equations, q, q e C°[a, 00). 
Let <pn and <pn be the n-th iterate of dispersions of (q) and (q), respectively, t0,he [a, 00 )> 
to^hlf 

(11) <p{t) ^<p{t), te[h, 00), 

then there exist integers n, m such that 

(12) <Pn+k(t) > fm+k(t), te[t0, 00) 

for every non-negative integer h. 
Proof. According to (I) and (11) there exist integers n, m such that 

(13) <pn{t) > $m(t), <pm(t) > h, t£ [t0, 00). 

116 



We shall prove Lemma by induction. For k = 0 Lemma is valid according to (13). 
Let the statement be valid for k <S I. Then according to (11) and because <p, <p are 
increasing functions we have 

<Pn+l+\(t) — <pm+l+\ = <p(<pn+l(t)) — f(<pm+l(t)) _^ 

^ <p(<Pn+l(t)) — <p(<pm+l(t)) > 0 . 

Thus the statement is valid for k = I + 1 and Lemma is proved. 

Remark. If we assume that <p, <p e C°[a, oo), <p, <p > t, <p increasing instead of <p> <p 
to be dispersions, the Lemma is also valid. We utilized namely only these properties 
of <p. 

Lemma 2. Let <pn be the n-th iterate of the function <p, <pe Cl[a, oo) and let t0e [a, oo). 

&) If <p'(t) ^ 1 for t ^t0, 

then <pn(t) ^ t + n[<p(t) — t], te[t0, oo). 

b) If <p'(t) _5 1 for t ^t0, 

then <pn(t) 5^ t + n[<p(t) — t], t e [t0, oo). 

Proof. Let us define: 990(0 = t. 

a) We have 

<Pi(t) — <Pi-i(t) = <p'(£)[<Pi-i(t) — <pt-2(t)] ^ q>i-i{t) — q>i-i{t), 

<14) f e ( ^ _ 2 ( 0 , ?><-i(0)> * = 2,3, ... 

When we sum up the inequalities (14) for i = 2, 3, . . . , j , then 

<Pj(t) — <Pi(t) ^ <Pj-i(t) — <po(t) 

(15) <ps(t) — w_x(0 ^ Vl(«) — ^ ( 0 . 

Let us sum up (15) for j = 1, . . . , n. Then finally 

<Pn(t) — <po(t) ^ n[<px(t) — <p0(t)] 

and the statement of Lemma is proved. 
b) We can prove this case in the same way as a). 
3.2. Now some comparison theorems will be given. 

Theorem 4. Let (q), (q) be oscillatory (t -> 00) differential equations, q, qe C°[a, oo) 
and <p and <p dispersions of (q), (q), respectively. Let t0, h e [a, oo), t0 ^h. Let 

<p'(t)^<p'(t), te[t0, oo), 

<p(t) ^ <p(t), te[h,oo), 

and at least one of the functions <p', <pf be non-decreasing. If every solution of (q) tends 
to zero for t -> 00, then every solution of (q) tends to zero for t —> oo, too. 

Proof. From the assumptions of the theorem and according to Lemma 1 we 
have: There exist integers n0, m0 such that 

<Pno+k(x) > <fmo+k(x), xe[t0, 00), 

k = l , 2 , 3, .... 
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If <p' is a non-decreasing function, n > mo, then 

n—1 n—1 

¥n(x) = n <p(<Pi(x)) = n v'(?*(«)) = 
i = 0 i = 0 

m 0 — 1 n—m0+n 9—1 

= El 9?'(<M*)) • n ?'(?<(*)) = X(«) <Pn+n0-m0 (x), 
i—.0 t-=-n0 

where 
mo—1 

K(x)= [ ] ?'(?<(*))/¥>«•(*)><>. 
t-=0 

Similarly if 9 ' is a non-decreasing function, n > m0, then 

w—1 n—m0+w0—1 W?o—1 

<pn(x) = n <p'(̂ *(x)) = n ^ ' (^w) • n ?'(?*(*)) = 
1 = 0 i = «0 i = 0 

n—mo+Wo—1 

= f m 9 W • I I ^ ' ( 9 ^ ) ) = ^0*0 • 9n+»o-mo (*)• 
Let us put: c = max{99(^0), <p(fo)}-
Finally we can see that in both cases 

fn(x) <" Ki9?w+Wo_m0(^), xe[t0, c] 

(16) 0 < K i = max K(x) < 00 . 
* e [<o, d 

If every solution of (q) tends to zero for t -> 00, then according to (16) and Theorem 2 
every solution of (q) tends to zero for t -> oo. 

3.3. Theorem 5. -£e£ (g) 6e aw oscillatory (t —> 00) differential equation, qe C° [a, 00) 
and let 99 be its dispersion, t0 e [a, 00] . Let 

1 ^?/(*) r ^ W , *6[fe, 00), 

Y>(0 e C°[a, oo), lim y(0 = 1 
t->00 

and at least one of the functions 9/, ip be non-increasing. If the series 
oo 

(17) £{v(fo + *) —1}< oo, h=<p(t0) — to 
i=0 

lAew every solution of (q) is bounded on [t0i oo). 
Proof. Let X\ > #2; then 

<p(xi) — y(a&) = y'(f) (xx — x2)^xl — x2, £ e (a?2, *i)> 

(18) y(*i) — »i ^ y(a?2) — #2 

and from this 

(19) hx ss 9?(#) — # = 99(̂ 0) — t0 = h, xe[t0i <p(t0)). 

By Lemma 2 and (19) we have: 
a) If ip is a non-increasing function, then we have for xe[t0i <p(t0)): 
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9>» = nv'WiW) ^ Ti v(^(»» ^ n v(* + ihJ ^ 
i = 0 t'=0 i-=0 

^ n v(^o+•*)• 
i'=0 

b) If 99' is a non-increasing function, then we have for xe[t0, <p(t0)) : 

vnW = n ^(w(*» -̂  n ?>'(* + &) ^ fi ?(*<>+») 
i =0 i=-0 »=0 

^ ft y(*o + ih). 
*=o 

Thus we can see that 
00 

(20) <p'n(x) g f ] y>(t0 + ih), x e ft, y(W). 
2=0 

But it is known ([5], 0.255) that the continued product (20) converges if and only 
00 

if the infinite series £ {ip(to + ih) — 1} converges. From this and from the assump-
i =0 

tions the inequality 
<p'n(x) ^ K < oo, xe[t0, <p(t0)), 

s valid and the theorem follows from Theorem 1. 
Remark. The condition (11) from Theorem 5 is valid if 

n->oo ly>(t0 + h + nh) — 1 J 

This statement follows from Raabe's convergence test for the series (17). 
3.4. Now let us take notice of some particular functions. In Theorem 5 we can put: 

^ = 1 + 7 l W ' £ > 0 , c > 0 , *e [t0, oo), to > 0. 

Then 

(14 . x / * o + ^ + M £ — h l 

lim J ( A ± i ^ 
n̂ oo L\ t0 + nh / J „_„ J_ 

n2 

v n , Jto + nh + hV n%2 

= i ( 1 + S) [ t0 + nh J lk + nW={l+£) > X 

and we can see that the inequality (21) is valid. 

Theorem 6. Let (q),qe C°[a, oo) be an oscillatory (t —> oo) differential equation and <p 
its dispersion. Let t0 e [a, oo) and 

1 ^ <p'(t) < 1 + - ^ - , t e [t0, oo), *o > 0, e > 0, c ^ 0, 

c, e are arbitrary constants. Then every solution of (q) is bounded on [t0, oo). 
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Theorem 7. Let (q), q E C°[a, oo) be an oscillatory (t —> oo) differential equation and <p 
its dispersion. Let t0 e[a, oo) and 

C 
<p'(t) ^ 1 — — , t e [t09 oo), 0 < C < t0. 

Then every solution of (q) tends to zero for i - > o o . 
Proof. By the application of Lemma 2 we have 

n—1 ( n—1 "J 

lim (p'Jx) == lim f j (p'((pi(x)) = e x p h i m £ In (9/(9^)))} ^ 
n->oo n->oo i = 0 \n->oo t = 0 J 

^expllim Eln(l ^-—)[ ̂  expllim £ In (l G^A\ 
(n->oo t - O \ X + lh/j l«->eo »-=0 \ h + t h f ) 

where 
tx = <p(t0), h = max (<p(x) — x) > 0. 

*W-[«e,V>(tV>)) 

As 
00 00 

Sh(I-7,-^)sJ1"(1-7r^r)d' = — 
i=0 0 

we can see that (p'n(x) converges uniformly to zero for xe[t0, (p(t0)) and the theorem 
is also valid according to Theorem 2. 

4.1. This paragraph will deal with the relation between the dispersion of (q) 
and the property of every solution of (q) belonging to Lv[a, 00), p^l. The Theorem 
1 gives the necessary and sufficient condition for every solution to belong toI>[a, 00), 
p ^ 1. We can simplify the condition for the monotone functions. 

Theorem 8. Let (q) be an oscillatory (t —> 00) differential equation, q e C°[a, 00) 
t0 e [a, 00). Let (pn be the n-th iterate of the dispersion (p of (q) and let 9/ be a monotone 
function on [t0,00). Then every solution of (q) belongs to Lv[t0,00), p ^ 1 if, and only if 

(26) Z [ ^ o ) ] 1 + ^ < o o . 
n = 0 

Proof. Let 9/ be a non-decreasing function. Then for xe[t0, (p(t0)) we have: 
n—1 n—1 

(27) <p-n(x) = n v'itptix)) ^ n <p'(<Pi(<p(to))) = <p'n+i (hwwi 
i = 0 i = 0 

n—1 n—1 

(28) <p'„(x) = f l <P'(<Pi(*)) ^ ll <P'(<Pi(to)) = <Pn (to). 
i = 0 i = 0 

a) Let every solution belongs to Lv[t0,00), then the formula (5) is valid and accord­
ing to (28) we have 

p 

00 <p(ł0) i + JL °° ^ ) 14- — 

1 / IA)] 2 dř E / [<p'n(t)] 2"dí 
E r '/# \ i 1 + " T « = 0 t „ ^ n=0to . 

On(W] 2 = ~rr\ ; ^ -7f\ : < °o n=o WW—to <P\h) — h 

and we can see that the condition (26) is valid. 
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b) Let (26) be valid. According to (27) 
oo <p{t0) p , , v . 00 

Z / [*.<*)] + 2 & ^ J f - ^ Z [fi+,<«.)]»»." < OO-
n=0fo W Vfo)J *7 n«0 

Thus (5) from the Theorem 1 is valid and by means of Theorem 1 every solution of 
(q) belongs to Lv[t0, oo). 

If <p' is a non-increasing function then the proof is similar. 
4.2. Now some kind of comparison theorems will be given. 

Theorem 9. Let (q), (q) be oscillatory (t -> oo) differential equations, q, q e Gc[a, oo), 
t0 G [a, oo). Let <p and <p be dispersions of (q) and (q)t respectively. 
Let 

<p'(t)^<p(t), <p(t)^<p(t), te[t0i oo) 

and at least one of the functions <p', cp' be non-decreasing. If every solution of (q) belongs 
to Lv[t0i oo), p ^ 1, then every solution of (q) belongs to Lv[t0, oo), p ^ 1. 

Proof. I t follows from the assumptions of the theorem that the following formula 
is valid (by induction): 

<Pn(t) > Wn{t), t^>t0. 

Let <p' be a non-decreasing function on [t0, oo). Then 

oo y(t*0) oo (f,(to) n—1 

Z / Wn(t)\l+*12 d« = Z / [ Li 9'(<pm)]l+*l2 d* <. 
n « = l to W = l to *-=0 

oo y( t 0 ) n — 1 oo y( t 0 ) n 

< z / [n^(^t))] i + i , / 2d«<z / t n <p'mto))]i+pi2At 

n = l t0 i = 0 % n = l t0 i=-l 

• <p(to)-to f [(p'(to)]y+Pi2. 

~ [<P'(k)]1+P'2 nW™ °" 

Hence the following formula is valid: 

00 y(. 0 ) °° 

(29) Z / [rW]1+J"2d«^^iZ[9''»(<o)[1+^2. 
n=-Ot0 »-»0 

0 < Ki < oo. 

Let <p' be a non-decreasing function on [t0, oo). We have similarly: 
oo oo [ n—1 "|1 Z[^o)?+^2<z n^w) 

n=l » = l L i = 0 J 

, oo <p(t0)n—1 - oo <p(to) 

< ,,» , IT / n [y'(yiW)]1+y/2dt< , M , Z f[<Pn(mi+»l2<H-
<p(t0) — 1 0 n=*lt0 i=0 WO) — t0 ns=it0 

Thus we can see that 
oo oo <p(t0) 

(30) Z Wn(toW+»>2 < K2 • Z / t^MF*" 2 d«, 
n=0 n=0 t0 

0 < K2 < 00. 
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Let <p' be non-decreasing. Let every solution of (q) belong to Lv[t09 oo). Then it 
follows from Theorem 8 that the right side of (29) converges and, according to 
Theorem 1, the statement is valid. 

If <p' is non-decreasing then the situation is analogous if we use the inequality (30). 

Theorem 10. Let <p be the dispersion of an oscillatory (t -> oo) differential equation 
(q),qe C°[a, oo), <p'(t) ^ 1. Then there exists a solution of (q), not belonging to Lv[a, oo), 
p ^ l . 

Proof. 

oo <p(t0) co <p(t0) n—1 oo 

I / [<p«m+pl2 « -*£=! I [U <p'(<Pi(t))]1+pl2<u ^ 2 LV(« - to]i+*"2 = oo 
n=*0f0 n = l t0 i=0 n = l 

and the theorem is valid according to Theorem 1. 

Remark. Theorems 1 and 10 solve cases when <p' ^ 1 or <p' ^ const < 1. The 
following theorem can be applicable to the case when <p' ^ 1 and gives us some 
sufficient condition for every solution to belong to L*[a, oo), p ^ ,1. 

Theorem 11. Let (q) be an oscillatory (t ~> oo) differential equation, q e C°[a, oo), 
t0e[a, oo) and let <p be its dispersion. Let 

<p'(t)^y>(t), te[t0, oo), 

y) e Cx[a, co), lim y>(t) = 1, 

tp non-decreasing. If 

lim n2y'(t0 + h + nh) *> e > 0, h = <p(t0) — t0, 

then every solution of (q) belongs to Lv[t0, oo) for p > 2/(e . h) — 2, p ^ 1. 
Proof. Let h > fa. Then 

(31) 
<p(h) — <p(h) =- <p'(S) (h — h)^h — h,£e (fa, fa), 

<p(h) — fa ^ <p(h) — fa. 

By the application of Lemma 2 and (31) we have 

oo <p(t0) oo <p(t0) n 

I / lv'n(t)Y+pi*at£ I ' / n [ytofo))]14*"* ^ 
n = l to n = l to - = 1 

oo <p(t0) n oo n 

^ I / [ El fVo + <»)]-+»'- d. = (y(«o) — <0) E [ I I y>(t0 + *)]!+»'- < oo 
n = l to » = 1 »=-l *=1 

for 

limтг 
П->oo 

IlvCo + **) \1+2?/2 

2~i 
n+l 

fl V>(to + ih), 

= lim 
Л->00 

[y(fa + * + ^ ) ] 1 + í > / 2 

ï 
71 

= lim 
П->00 

^ V ( * 0 + Ä + WÄ) . Ä(l + I>/2) 
[̂ (ío + Д + nh)]2+P'2 ^ e . h(l + pß) > 1 

122 



and according to Raabe's convergence test the infinite series converges and the 
theorem follows from Theorem 1. 

4.3. Now let us notice some particular functions which could be utilized in the 
comparison theorems. 

a) Let 

V(t) = l — j°—, e e ( 0 , l ) , c > 0 , 

then 

lim n2 — — g — — = oo , h = <p(to) — ł0 

[t0 + h + nh]2'6 П->00 

and we can see that xp fulfils all conditions in Theorem 11. Hence we have the follow­
ing 

Theorem 12. Let (q) be an oscillatory (t -> oo) differential equation, q e C°[a, oo), 
t0 e [«, oo) and let 

<p'(t) ^ 1 — - ^ - , C > 0 , £6(0,1), t^t0,t^>C 
tl fc 

where C> e are arbitrary constants. Then every solution of (q) belongs to Lv[t0, co),p jg: 1. 
b) Let 

V(t) = 1—?-. O>0. 
t 

Then 

lim n* Ş- — = Clh* > 0 
n^-ao 

and according to Theorem 11 we have: 

Theorem 13. Let the dispersion cp of an oscillatory (t —> oo) differential equation (q)r 

q 6 C°[a, oo) fulfil the condition 

C 
<p'(t) ^ 1 , te [t0, oo), t0^a, t0 > C > 0, 

t 

where C > 0 is an arbitrary constant. Then every solution of (q) belongs to Lv[t0, oo) 

forp>l,p>2.*^=±-2. 
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