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INTRODUCTION |

Let us suppose that a mapping u: 2P—-2F is given such that the image of the
empty set is the empty set, M < uM for each M = P and uM, = uM, for each
M, c M, c P. Then the pair (P, u) is called a topological space (Cech [1]).
Let J (P) be the set of all topologies in P. The set J (P) is partially ordered in a
natural way (cf. section 2.1.). If u, v €7 (P), let us take (uv) M = u(vM)for M < P .
Then uv e .7 (P) and with regard to the partial ordering and the multiplication
introduced in this way .7 (P) is a partially ordered semigroup with the identity.

In [2], for each u € 7 (P) two new topologies s,, g, € 7 (P) are constructed, which
are called the first and the second constellations belonging to the topology . The
topologies s,, o, were investigated in the paper [2] of Koutsky and Sekanina.

Let us suppose that « is a fixed element of the set.7 (P). In this paper we investigate
the relations between the topologies %, s,, 0, with regard to the ordering. Further
we investigate the conditions for the validity of the equations r =s and r.s = ¢
where {r, s, t} is an arbitrary subset of the set {u, s,, 0,,}. One of the considered
relations (the equality o, = u) was examined in the paper [2].

§1. BASIC NOTIONS

In this paragraph we shall introduce some definitions and lemmas which can be
found in the paper [2] and which we shall need.

1.1 By a topological space a topological space in Cech’s sense from the year
1937 is meant, i.e. such a space (P, u), in which following axioms for the topology
u are satisfied:

(1) ud = 4.
2 McP=MculM.

B McMycP=uM,cuM,.
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1.2. A set 0 c P is said to be a neighborhood of a set M < P, if M () w(P — 0) =
= @. For every neighborhood O of the set M it is M < 0. By a neighborhood of
a point x a neighborhood of the set (z) is meant.

If a topological space (P, ») is given, we shall denote the system of all neighbor-
hoods of a point # and of the set M in (P, u) as D,(x) and D,(M), respectively.

Following theorem is valid:
z e uM if and only if M () 0 £ 0 for each 0 € Dy(z) (xe P, M < P).

Proof. Let x¢ uM. Then P—M e D, (x) and M () (P — M) = 0. Let there
exists 0 € D,(z) such that M () 0 = 0. Then 0 « P — M, hence P — M € D,(x),
iex¢uM.

1.3. We can introduce a topology  into a set P by assigning to each z € P such
a system 2 (x) of subsets of P that following axioms are satisfied:

(1) zeP = D(x) # 9, (2) zeP, 0eD(zx) = z€0.
The closures we define then as follows:
z euM < M) 0+ @ for every set 0 € D(x).

1.4, If a topological space (P, u) is given, the intersection of all neighborhoods
of M in (P, u) is said to be the first constellation of M in (P, ) and is dznoted by s, M
The first constellation of a set (z) is also called the first constellation of a point .

Following theorems for the first constellation are valid:

(1) 8.9 =9,

2 McP=>Mc s,M,

(3) M; « Pforeveryiel = UsuM; = s,,(U M),
(4) ifxeP, M c P, ‘chenxes,,M@Mnu x);éﬂ

From the conditions (1) — (3) it follows that (P, s,) is a topological space. The
condition (4) implies for example: z € s;; (y) <> y € u(z) (x, y € P).

1.5. The intersection of the closures of all neighborhoods of M in (P, ) is called
the second constellation of M in (P, u) and is denoted as ¢, M. Instead of a second
constellation of a set (x) we speak about a second constellation of the point z.

Following theorems are valid (cf. [2]):

(1) 0.0 =0,

2) M <« P=>uM < o,M,

B Mic M, P=o,M c g, M,,

4 if zeP, M c P, then x€ o, M <> M [} u0 # 9 for every 0 € Z,().

From the conditions (1) — (3) it follows that (P, ;) is a topological space.
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§2. THE PARTIAL ORDERING AND THE EQUALITIES r =s.

We shall introduce a partial ordering into the set J (P) of all topologies in P.
Afterwards we shall investigate the relations between the topologies u, 8,, a,, for a
fixed topology u, in the partially ordered set.7 (P) and the conditions for the topology
« under which these relations between u, s,, ¢, hold.

2.1. Into the set 7 (P) of all topologies in P one can introduce the partial ordering
as follows:

if u, v are topologies in P, we put v < v iff uM < vM for each set M < P.

2.2. It holds:

(1) u = 0w, (2) 8u = Ous

(3) for the topologies u, s, either s, < w or s, || w takes place.

Proof. From the property (2) of the topology g, (cf. teztion 1.5.) v < ¢, follows.
The inequality s, < ¢, is evident. Let us suppose that s, > u, i. e. $, M > uM for
each set M < P but there exists a set M, so that s, M; 2 uM,. Then there exists

%y € 8y M1 — uM;. Since x; € s, M; = |J s,(m), there exists m; € M, so that z; € s,(m,).
me M,

From z, € uM, we have z, ¢ u (m;). Hence z, € s,(m;) — u(m;). According to 1.4.

m; € u(x;) — Sy(z1), which is a contradiction.

2.3. For the topologies u, s, there holds: s, = w iff u(x) < s,(x) for each x € P.

Proof. Let s, < u. Let us take 0 €2, (). It is necessary to prove that u(z) < 0.
For each y € P and M < P there holds that if y ¢ uM, then y ¢ s, M, hence if there
exists a neighborhood U of the point y so that U () M = @, then M () u(y) = 9.
Letusput y=2, M = P—0. It is 0 (P — 0) = @, hence (P —0) N u(x) = 0.
From this we get u(z) < 0.

Let conversely be u(z) = s,(x) for each x € P. Let us take ye P, M < P and let
y ¢ uM, hence there exists a neighborhood U of yso that U} M =@. Since u(y) = U.
wehavealsou(y) | M = 0,ie.y ¢ s, M.

From 2.3. we get as a consequence:

2.4. For the topologies u, s, the following conditions are equivalent:

1) su=u,
(2) su(x) = u(x) for each z € P,

(3) for each z € P the intersection of all neighborhoods of the point x is u(x).

2.5. A topology u, for which s,(z) = w(x) holds for each = € P, is called in the paper
[2] B*-topology.
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It is easy to verify that the following conditions are equivalent (cf. [2]):
(1) u is a B*-topology,

(2) ¥ € su(@) <> 2 € 8,(y),

(3) v € ulx) <> x € u(y).
From 2.4. we get as a further consequence:

2.6. It holds: % || s, <> u is not a B*-topology.

2.7 The equality s, — w is valid if and only if u is a B*-topology and u (UJMi) =
rel
= UuM; (M; = P).

ie]

Proof. Let s, = u. Then by 2.4. we obtain that u is a B*-topology. The inclusiont
UuMi < u(|JM;) evidently holds. Let conversely = € u (|JM;). Then x € s,( UM¢
iel , iel
and from there z € s,(m) for some m e UM;. From the relation x € s, (m) we get
x € u(m) = uM; for some 1 e I. .

Let conversely w be a B*-topology so that w({JMi) = UuM;. Then for each

. i 4
x € P it is s,(x) = u(x). Let M (< P) contain more than one element. Then s, M =

= Usu m) = Uu(m) = uM.

We are going to prove a lemma:

2.8. For the toj)ology u the following conditions are equivalent:

(1) Each z € P has the least neighborhood U <« (P, u).
(2) For each system {Mi}; <, of subsets of P u (UMy) = JuM; holds.

Proof. Let the condition (1) be valid. Evidently for each system {M;}; c ; of subsets
of P it is UuM ¢ < u( UM i). Let conversely z € u UM 1). Then the neighborhood U,

contains some me M i (teI). But then all nelghborhoods of x contain m, hence
x € uM;. Let the condition (2) be valid. Let us take x € P. Tt is sufficient fo prove
that s,(z) is a neighborhood of z, ie. x ¢ u(P — s,(x)). Since u(P,—'s,(x)) =
= u(z), it is sufficient to prove that = ¢ u(z) for each ze P — s,(x). Hence let
z2€ P-gy(z)

z ¢ sy(x). Then evidently x ¢ u(z).

In view of the preceding lemma we obtain the following statement:

2.9. The equality s, = u is valid iff for each x € P u(x) is the least neighborhood
of z.
In the pa,per [2] the notion of the R- topologv is defined.
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2.10. The topology u in P is called an R-topology, if for each point x € P and
for every neighborhood 0 of x in (P, u) there exists a nelghborhood 01 of z in (P, u)
such that %0, < 0.

In the paper [2] also the following statement is proved:

2.11. The topology = is an R-topology if and only if M < P = uM = o,M, i.e.
U = Oy. ’

2.12. If u is an R-topology, then w is a B*-topology.

Proof. On account of 2.5. it is sufficient to show that y € s,(x) implies x € s,(¥) .
Let y € su(z) and let us suppose that x ¢ s,(y). Then there exists 0 € 2,(y) so that
x ¢ 0. Since u is an R-topology, there exists 0; € Z,(y) so that u0; = 0. Then = ¢ u0,
from where we obtain that P — 0, € 9, (x). From 0, € 2, (y) we have y ¢ u (P —0).
Hence y ¢ P — 0, which is a contradiction.

From the last statement we obtain:

2.13. If u = oy, then s, < u.

2.1%. The following conditions are equivalent:

(

( ) 8y = 0y = u,

(3) u is an R-topology and u(UMl UuMi (M; = P).
(

4) For each x € P there exists the least nmqhborhood U, and for this neighborhood it
tsuU, = U,.

Proof. Since ¢, = u, from s, = ¢, we obtain s, = o, = wu, hence the conditions
(1), (2) are equivalent. From (2) we get (3) immediately. If the condition (3) is
valid, then » is a B*-topology, hence s, = u = 0. The equivalence of the conditions
(3), (4) is evident.

$3. EQUALITIES r.s = t.

We are going to introduce an operation of multiplication into the set .7 (P) of all
topologies in P and we shall show that with regard to this operation and the partial
ordering above introduced, 7 (P) is a partially ordered monoid. Then we shall in-
vestigate the conditions on the given topology u for the validity of an arbitrary from
the equalities r . s = ¢, where 7, s, t € {u, s,, 0,}. For a given topology u let us denote
Sy = Uy, U = Uy, 0, = u3. First of all we shall investigate the equalities u; . Ug =
(i, j, k e {1, 2, 3}) for k¥ = max {3, j} in the following sequence: The set {(i, j, k): 4,
Jke{l, 2,3}, k = max {z j}} we order lex1cographlcaly from the left. Then if (3, j,
k) < (41, 41, k), the equality u; . u; = ux we examine before the equality u;, . u;, =
= uy, with the exception of u; . u; = u; (i.e. 8, .8, = w)anduy . 4 = wy (i.e.uw . u =
= u). Then we shall show that the equalities u; . u; = wu;, max {¢,j} > l and u, . u; =
= u; are equivalent. At the end the equalities u; . u; = u,, max {7, j} > 2 remain
unsolved. Those we shall divide into two groups. First we shall indicate that the
equalities where min {7, j} = 2 are equivalent. At the end the equalities where min
{i,j} <2 (i.e. 8 . 0, = U, 0, .8, = u) we investigate one by one.
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3.1 Let v, 8 be arbitrary topologies in P. Let us define r. s as follows: (r.8) M =
= r(sM), M < P. With regard to the operation defined in this way and to the partial
ordering introduced above, the set T (P) of all topologies tn P is a partially ordered
monoid.

Proof. r. s is evidently a topology, the multiplication is associative. The identity
in the set 7 (P) is the topology uo such that oM = M for each set M = P. At the
end if , 5, te T (P), r < s, then evidently r .t <s.t, t.r <t.s.

3.2, The equality s, . 8, = s, is valid if and only if the relation R defined as follows :

aRb <> a € u(b)
18 transitive.

Proof. Let s, . 8, = sy, a € u(b), b eu(c). Then by 1.4. ¢ € s,(b), b € s,(a), from
where we obtain ¢ € s,(s,(a)) = su(a), i. e. a € u(c). Let conversely R be a transitive
relation, let x € s,(s,M). Then there exists z € s, M so that x € s,(z). Further there
exists m € M so that z € s,(m). Hence it holds m € u(z), z € u(x), from where we get
m € u(z). Then z € s,(m) = s, M.

From this statement we obtain the consequences:
3.3. Ifu . u = u, thens, . s,=s,.

3.4 If u i3 an R-topology, then s, . s, = s,.

Proof. Let a € u(b), b € u(c) and let us suppose that a ¢ u(c). Then there exists
0 € D, (a) so that ¢ ¢ 0. Further there exists 0, € 9,(a) so that 40, = 0, hence ¢ ¢ u0,,
from where we get P — 0, €9,(c). It is b € u(c) = s,(c), hence b € P — 0, which
is a contradiction to the assumption b € s,(a).

3.5 The relation R defined in 3.2. is an equivalence iff w is a B*-topology and
Sy . 8y = 8,.

Proof. The relation R is reflexive. The relativon R is symmetric if and only if u is
a B*.topology (cf. 2.5.) and transitive if and only if s, . s, = s,.
Now two lemmas follow:

3.6. Ifxe P, M c P, then x ¢ o, M if and only if x, M have disjoint neighborhoods.

Proof. Let 2 ¢ 0, M. Then by 1.5. there exists 0 €Z,(x) so that M [ u0 = @.
From this it follows that P — 0 is a neighborhood of M, for which O () (P — 0) = 0.
Conversely, let us suppose that there exists 0 € 9, (z), U e D,(M)so that 0 | U = 0.
Then 0 ¢ P— U, hence u0 < w(P — U). Since M () w(P—U) =9, it is also
M ) «0 = 0 and from there we get x ¢ o, M.

3.7. The following conditions are equivalent :

(1) ou(UM:) = Uoudy for each system {M;}icx of subsets of P.
1€l 1el
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(2) 0, M = Jou(m) for each set M = P.
meM

(8) For each x € P there exists 0, € Dulx) so that for each O € Dy (x) u0, = u0 holds.
(4) For each = € P there exists 0, € Dulx) so that o,(x) = u0;.

Proof. Evidently the conditions (1), (2) are equivalent and also the conditions (3),
(4) are equivalent. It is sufficient to prove that (2), (3) are equivalent. Let the condi-
tion (2) be valid. Let us take € P, M = |J(P —u0) =P — () 0. If me M,

0€ Dy(x) 0€Dyfx)
then there exists 0, € D,(x)so that m ¢ u0,,. Hence x ¢ |J ou(m) = 0, M. Then
meM
there exists 0, € @,(x) so that u 0, () (P— (u0) = 0, hence u0; = (u0. Let the
0eDy(z) OeDy(z)
condition (3) be valid and let x ¢ |J 6,(m). Then for each m € M there exists 0,, € D, ()
meM
so that m ¢ u0,,. Let us take 0, from (3). It holds M () %0, = @, hence = ¢ o, M

3.8. By 2.8. and 3.7. we obtain immediately:
If for each system {M;}i1 of subsets of P u(l{JM;)= |JuM; holds, then it is
i

AU M) =\ .M. '

3.9. The following conditions are equivalent :
(1) sy .8, = oy
(2) (a € 0,(b) <> there exists c € u(a) sothat b € u(c)) and a,( U M) = U o My (M; < P).
(3) (a, b have disjoint meighborhoods <> b ¢ |J u(c)) and for each xeP there exists

ceu(a)

0, € 9,(x) so that for each 0 € D,(x) it is u0; < u0.

Proof. The conditions (2), (3) are evidently equivalent. Let (1) hold. It is a €
€ 0,(b) <> a € 8,(54(b)) <> there exists c € su(b) so that a € s,(c) < there exists ¢ € u(a)
so that beul(c). Let z ¢ O'u(U My) =s,(sy ( UM¢ Then it is x e s,(y), ¥y € su(m)

for some m EU M;. From there we obtain m € u(y), y € u(zx) and with regard to what
we have proved already it is z eg,(m) < o, M < U o,M;. Let the condition (2)

hold. Then ¥y € s,(s,(x)) <> there exists z € s,(z) so that Y € 8,(z) <> there exists
zeu(y) so that x e wu(z) <>y € o,(x). Further it holds: y e s,(s,M) <> there exists
me M and z € s,(m) so that y € s,(z) <> there exists me M and zeu(y) so that
m € u(z) <> thore exists m € M so that y € g,(m) <>y e | ou(m) = 0, M.
meM )

3.10. The following conditions are equivalent :
(1) sy .u=u.
(2) For each xe P and M c P x ¢ uM implies u(z) () uM = 0.
(8) For each z € P 01is a neighborhood of  implies 0 is a neighborhood of u(x).

23



Proof. Since it is s, . v = u, the condition (1) is equivalent with the condition:
for each M < P itis s,(uM) < uMi.e. foreach M = P x ¢ uM implies x ¢ s,(uM).
The last relation is equivalent with the equality uM () u(x) = 0. Hence (1) is
equivalent with (2). Let the condition (2) hold, let us take x € P, 0 € 9,(x). Then
itis x ¢ u(P — 0), from where by (2) we have u(z) [} u(P — 0) = @. The last equality
says that O is a neighborhood of u(z). Let (3) hold, let us take x € P, M < P, let
x¢ uM. Then P— M e 9D,(x), hence P — M € D,(u(x)). From there it follows
w(x) ) uM = 0.

According to the last theorem we have:

3.1, If u ts a B*-topology and u . u = u, then s, .u = u.

Proof. Let xe P, M c P, x ¢ uM. Then P — uM is a neighborhood of x and
since s,(x) = u(x), it is w(r) € P — uM, hence u(z) [} uM = 0.
We are going to introduce a definition:

3.12. Let (P, u) be a topological space. Let us denote A and U the following
properties of the topology wu:

Myc P, M,cP=uM JM)=uM, JuM, and
M < P = u(uM) = ulM respectively.

If u has the property 4, U, or the both properties, we shall call the topology u
an A-topology, U-topology, or AU-topology and (P, u) we shall call an A4-(topologi-
cal) space, U- or AU-(topological) space, respectively. Evidently AU-topological
space is the topological space in the usual meaning.

3.13. If (P, u) is an AU-space, then s, . u = u holds if and only if every open set
ts a union of some closed sets.

Proof. Let s, . u = u, let A be an open set. For each x € A 4 is a neighborhood

of z, hence for each x € 4 it is u(x) = A4, from where we have 4 = |Ju(x). Conversely,
: zed
let each open set be a union of some closed sets. Let z € P, 0 € &,(x). There exists

an open neighborhood 0, of « such that 0, = 0. By the assumption it is 0, = |J F;.
Aed

where Fj; are closed sets. Then x € F; for some A €4, hence u(zx) < F; < 0, < 0,
from where we get that O is a neighborhood of u(x).

3.1%. The equality s, . w = o, s valid if and only if for each x € P U is a neighbor-
hood of u(x) iff there exists 0 € D,(x) so that P — 0 is a neighborhood of P — U ~

Proof. Let s, . v = ¢,. Let us take z € P. Then U is a neighborhood of u(x) <>
< u@z) ) WP —U) =0 < z¢s,(u(P —U)) = g,(P — U) <> there exists 0 € D, (x)
80 that (P — U) (u0 = ¥ <> there exists 0 € ,(x) so that P — 0 is a neighborhood
of P— U. Conversely, let U be a neighborhood of u(z) iff there exists 0 € 2,(x)
so that P — 0 is a neighborhood of P — U It holds: z € s,(uM) <> uM [} u(x) # 0 <>
<> P — M is not a neighborhood of u(x) <> for each 0 € Z,(x) P — 0 is not a neigh-
borhood of M <> for each 0€ D,(x) it is M | u0 # O<>2z € g, M.
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' 3.15. If (P, u) is an AU-space, then the following conditions are equivalent: ’
(1) 8 . u = a,. '

(2) For each z € P U is a neighborhood of u(x) iff there exists a closed set B so that
x¢ B, U > P— B° (B° is the interior of B).

(3) For each x € P U is a neighborhood of u(x) if and only if there exists an open
set 4 so that xe 4, U o ud.

(4) For each z € P U is a neighborhood of u(x) if and only if there exists 0 € &, (x)
so that U o «0. ‘

This statement is evident.

3.16. The equality s, . 0, = o, ts valid if and only if for each x€ P and M < P
it holds:

(*) if ©¢, M have disjoint neighborhoods, then for each y € u(x) y, M have disjoint
netghborhood:s.

Proof. Let s, . 0, = 0, and let , M have disjoint neighborhoods. Then z ¢ o, M
and from there z ¢ s,(0,, ). From the latest relation it follows that ¢, M ) u(zx) = 0,
hence if y € u(z), then y ¢ o, M, ie. y, M have disjoint neighborhoods. Conversely,
let (*) hold for each z € P and M < P. Evidently o, M < s,(0,M). Now,let z ¢ ¢,M.
Then x, M have disjoint neighborhoods, hence for each y € u(x) y, M have disjoint
neighborhoods, i.e. ¥ ¢ o, M. Then u(z) () 0,M = 0, from where we have x ¢ s,(c,M).

From this statement we obtain the following consequence:

3.7, If u is a B*-topology and U-topology (cf. 3.12), then s, .0, = a,.

Proof. Let x ¢ 0, M. Then there exists U € (M) so that z ¢ uU. Since u . u =
= u, P — uU is a neighborhood of z. Tt holds (P — «U) (] «U = @ and from there
we get (P —uU) ) o,M = 9. Since s,(x) = u(x), it holds u(r) =« P —uU, from
where we obtain u(x) [} o, M =0, ie. x ¢ s,(0,M).

3.18. The equality w . s, = u is valid iff for each x € P and 0 € D, (x) there exists
0, € Z,(x) so that for each z € 0y it is u(z) < 0.

Proof. Let u.s, = u, xe P, 0 € Y, (x). Then z ¢ u(P —0), from where we get
x ¢ u(s,(P—0)). Let us take P—s, (P —0) = 0,. Evidently 0,¢€ Z,(x). Let
z2€05. Then z ¢ s,(P — 0), hence (P — 0) ) u(z) = 0, from where we have u(z) < 0.
Conversely, let for each z € P and 0 € &,(x) there exist 0; with the desired property.
Let x ¢ uM, we are going to prove that x ¢ u(s,M). If x ¢ wM, then P — M is a neigh-
borhood of z. There exists 0, so that for each z € 0y itisu(z) ¢ P — Mi.e. u(z) | M =
= @. Then z ¢ s, M, hence 0; () s,M = 0. From the latest equality we obtain 0, =
< P—s,M, hence P — s, M € 9,(x), from where we have x ¢ u(s, M).

3.19. Evidently if  is an R-topology, it holds u .s, = u.

3.20. If w is a B*-topology and U-topology, then u . s, = u.
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Proof. Let z€ P, 0€ D,(z). Let us denote 0; = {z € 0: 0 € D,(2)}. Evidently
z€0;, 0; = 0 holds. From there we have (P —0) ¢ u(P — 0,). We shall show,
that the inverse inclusion holds, too. It is P — 0; < u(P — 0) for if y ¢ u(P —0),
then 0 is a neighborhood of ¥, hence y € 0,. Since . u = u, it is u(P — 0;) < u(P—0).
Hence the equality u(P — 0,) = w(P — 0) is valid. Since z ¢ u(P —0), it is z ¢
¢ u(P — 0,), hence 0, is a neighborhood of z. Let us take z € 0,. Then 0 € 2,(z) and
since 8,(z) = u(z), it is u(2) = 0.

3.21. The equality u . s, = o, is valid iff for each x € P and 0 € D ,(x) there exists
0, € D ,(x) such that u0; = |J u(2).

zel0

Proof. Let u.s, =0y, z€P, 0€ D,(x). Let us put M = P — |Ju(z). For
ze0

each z € 0 it is M ) u(z) = @, hence for every z € 0 it is z ¢ s, M. From there we have

0N suM = 0. Thenz ¢ u(s, M) = o, M,i.e. thereexistsOxe@ W )sotha’oMn u0, =

= 0. From the latest equality we have 0, < |J u(z). We shall prove the inverse
zel

implication. Let x € u(s,M) and let us take 0 € .@u(x). Then there exists z € 0 so that

ze s, M, ie. M) u(z) #0. It holds M () w0 > M () u(z), hence M [} u0 5 0.

From it we have z € o, M. Let x ¢ u(s,M). Then there exists 0, 2,(z) so that

0: N 8,M = @, hence for every z€ 0, it is 2 ¢ s, M. Then M Uu(z) = 0. By the

assumption there exists 0, € ,(x) so that ©0, = |J u(z). We obta,m M N u0, =0,

ze 0,
hence x ¢ o, M

3.22, Remark. From the proof of the last theorem one can see that it holdsu . s, <
< oy, for an arbitrary topology u. There need not be s, . u < g, (cf. example in te
section 4.10.).

3.23. The equality w . w = o, holds true iff for each x€ P and M < P z, M have
disjoint neighborkood if and only if there exists 0 € D, (x) so that O [} uM = 0.

Proof. Let the equality » . = o, be valid, ze P, M < P. x, M have disjoint
neighborhoods if and only if « ¢ 0, M, this is equivalent to x ¢ u(uM), the last relation
is equivalent to the following: there exists 0 € &,(x) so that 0 () uM = 9. We are
going to prove the inverse implication. It is x ¢ w(ulM) iff there exists 0 € @, () such
that 0 () M = @. According to the assumption the last predicate is equivalent with
the statement: x, M have disjoint neighborhoods, i.e. x ¢ g, M.

3.2%4. The equality u . ¢, = g, is valid if and only if the following holds: =, M
have disjoint neighborhoods (x € P, M < P) iff there exists 0 € &,(x) so that for
every y €0 y, M have disjoint neighborhoods.

This statement is evident.

3.25. For a U-topology w u . 0, = o, holds.

Proof. Let x ¢ 0,M. Then there exists U € Z,(M) so that « ¢ uU. Then P — «U
is a neighborhoods of z, which is disjoint with ¢, M. Hence x ¢ u(s, M) holds. The
inclusion ¢, M < u(o,M) is evident.
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3.26. The equality o, . s, = g, holds true if and only if the following is valid :
if z, M have disjoint neighborhoods (z € P, M < P), then there exists 0 € Z (z) so

that M N Uou(y) = 0.

Yeu
This statement is evident.

3.27. If u s a U-topology, then o, . s, = o,.
Proof. First of all it is |J u(y) = u0. Let z(e P), M(< P) have disjoint neighbor-

€ ul

Y
hoods 0, U. Then obviously M () 40 = @ for P — 0 is a neighborhood of M.

3.28. The equality o, . w = o, is valid if and only if the following holds : If z, M
have disjoint neighborhoods (x € P, M < P), then z, M have disjoint neighborhoods.

The predicate ‘@, uM have disjoint neighborhoods’ is equivalent with the predicate
‘there exists 0 € Z,(x) so that u0N uM = @’

This statement is evident.

3.29. Let u be an AU-topology. The equality ¢, . u = o, ts valid if and only if an
arbitrary reqularly closed set and a point out of it can be separated by open sets.

Proof. Let o,.u == 0, and let 4 be a regularly closed set, i.e. such a set that
A = ud® (A° is the interior of 4), x ¢ A. A°, x have disjoint neighborhoods, hence
also u4° = 4, z have disjoint neighborhoods. Further we shall prove the opposite
implication. Let x, M have disjoint neighborhoods. Let 0 and U be an open neigh-
borhood of « and M, respectively, where 0N U == @. Let us take 4 = uU. 4 is
a regularly closed set, x ¢ A, hence by the assumption there exist disjoint open sets
0;,U;s0 that z € 0,, A = U;. They are the desired disjoint neighborhoods of x and uM .

3.30. The equality o, . 0, = g, is valid if and only if the following holds: if z, M
have disjoint neighborhoods (x € P, M < P), then there exists 0 € &,(z) so that if
y € u0, then y, M have disjoint neighborhoods. ‘

This statement is evident.

3.31. If for a topology u the equality o, . 6, = o, is valid, then the relation R defined
as follows:
aRb<>a € o,(b)
s an equivalence.

Proof. The relation R is always reflexive, symmetric and if o, . 0, = o, holds,
also transitive.

3.32. If for a topology w o, .o, = o, is valid, then s, .06, = 0,.8, =1u.0, =
= 0, . U = 0,

Proof. If the equality o, . 0, = o, is valid, then, since it is ¢, = 8, . 6,, g, . S,
.0y, 0,.U = 0,.0,, the assertion of the theorem holds.

3.33. The following conditions are equivalent:

(1) s,.u=s,

27



(2) 8.8, =u -0 7
(3) 8!; . Gu = sI.Lv
“4) u.s, =s,
(5) u.u=s,
6y u.o,=s:s
(7) 0,.8, =38
8) o, . u=s,
9) o,.0,=8,

(10) 8, =u=1u.u

(1) s, =0, =u -~ u.u

(12) 8, = 0, = u.

Proof. First of all we a,rebgoing to show that the conditions (10), (11), (12) are
equivalent. (11) follows from the condition (10): Let x € P, 0 € & ,(x). Since s, = u,
x has the least neighborhood u(x) and for it u[(u(x)] = u(x) < 0 holds. Hence u is
an R-topology, i.e. ¥ = ¢,. From (11) the condition (12) follows immediately. From
(12) follows (10). Namely for an R-topology the equality u . s, = w holds (cf. 3.19.)
and furthermore, if s, = u, we have u . v = u. Evidently, the conditions (1) — (9)
follow from (11). We are going to verify that from each of the conditions (1) — (9)
(10) and (12) follow, respectively. If (1), (4) or (5) holds, then, since s, .%, u.s,,
w.u = u and the inequality s, > » cannot be valid, it is s, = » and evidently
w.u = wu. If (3), (6), (7), (8) or (9) holds, then, since s, .0,, u.0,, Oy.58, 0, .u
o, .0, = o, and always s, < ¢, it is ¢, = s,. Then accordmg to the statement
in the section 2.14. it holds (12). Finally, let the equality s, . s, = « be valid. Tt is

sufficient to prove that s, = u. Sinces, .s,=u = s,, uisa B*-topology and accord-
ing to the statement in the section 2.7. it is sufficient to prove that u U M) U uM;

(Myc P). Let zeu UM; = 8,[8.( UMi] Then there exists yes“ UMi) 80
that « € s,(y). Further thu‘e exists m e U M; so that y € s,(m). Then xz € s“[i,‘(m)] ==
u(m), from which we have x e uM; c U M.
Further conditions equivalent to (1) —.L(l2) are introduced in the section 2.14.
3.34. The following conditions are equivalent: X
(1) u.o,=u
(2) g, .u = u
3) o0,.0,=u
4) o,=u=u.u
(5) I}oroeach ze P and 0e D) there exists 0, € D, () so that 0 is a neighborhood
of u0,.
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Proof. First of all we shall prove the equivalence of (4) and (5). Let (4) be valid,
let us take x € P, 0 € (). Since x ¢ u(P — 0) = u[u(P — 0)], there exists 0' € Z,(z)
such that 0'N u(P —0) = 0. u is an R-topology, hence there exists 0, € Z,(x)
so that 0, < 0'. Then «0, N w(P — 0) = B, from where we have 0 e Z,(u0;). In
contrary, let the condition (5) hold. Then evidently u is an R-topology. It remains
to prove the equality » .4 = u. Let M =« P, x ¢ uM. Then P — M € & ,(x) and by
the assumption there exists 0, € Z,(z) so that «0, N\ uM = @. Then 0; N uM = ¢,
from where we have x ¢ w(uM). Evidently the condition (4) implies (1), (2), (3). We
are going to prove that cach of the conditions (1), (2), (3) implies (4)., It holds: u . o
o, - U, 0, .0, = 0, and since ¢, = u, it must be g, = u. C

u =

3.35. The equality o, . s, = u s valid if and only if u is an R- topology

Proof. Let o, . s, = u. Then, since ¢, . s, = 0,, it is w = ¢,. In contrary, let u
be an R-topology. Then o, .s, = u . s, and according to the statement in 3.19. it
isu.s, =u. , o

" 3.36. The equality s, . o, = u is valid if and only if it is fulfiled one of the following
equivalent conditions : . :

1) o,=u=1s,.u

(2) u is such an R-topology that for each x € P every neighborhood of x vs.a neighborhood
of the set u(x).

Proof. The equivalence of (1), (2) is evident (cf. section 3.10.). Let s, .0, = u.
Then, since s, . ¢, = ad,, it is ¢, = w. Then s, . u = s, . 0, = u. Let (1) hold. Then
Sy -Gy = 8, . U == U. ' ‘

§4. THE SEMIGROUP GENERATED BY , s, 0,

P

In this paragraph we shall show what is the subsemigroup Z(P) of the semigroup
T (P) of all topologies defined in the set P generated by the topologies ,s,, g, for
some special topologies u. This problem fails to be completely solved In the text
the most topical questions are posed.

4.1, Ifuis a topology with the property s, = u = g, then the subsemigroup % (P)
contains the element u only.

This statement is evident (cf. 3.33.).

An example of a such topology for P = {a, b, ¢} is given by this table:

o | @ B g @b feg (b P
uM ‘ @b  {ab g @by P P P

4.2. Let u be a topology with the property s, = u < 0, t.e. each point x € P has
the least neighborhood u(x) and u is not an R- topology Then the subsemigroup P(P)
consists of all natural powers of u, i.e. P(P) ={ur:nnelN} - .
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Proof. Let z€ P, 0 € D,(x). It is u(u(z)) = u0 = J u(z) hence according to the
ze(
statement in the section 3.21. it holds % .s, = ¢,. Then it is 4 .u = g,

Besides it can happen that for each natural it is w#+1 > w». This shows the follow-
ing example.

4.3. Let P be an arbitrary partially ordered set, o (= 1) a cardinal number. For

M < P let us put uM = |J I, where I; is an arbitrary interval any end point of
Aed

which belongs to M and such that card I; < e.
Then evidently (P, u) is a topological space for which it is s, = ». If P is the set
of all integers, « = 2, then for each natural number » it is un+1 > yn,

IfP={1, 2,4.‘., n+1}, o =2, then u <u?2 < ud < ... < ut = untl.

4.4. Let u be a toppology with the property s, < w = a,, i.e. u i8 an R-topology and
there exists x € P so that x has not the least neighborhood. Then the subsemigroup P{P)
consists of the tolopologies s, . ut, where & €{0, 1}, n runs over the set of all nonnegative

integers, under the exception ¢ = n = 0. (sO means the identity of the monoid J (P))-

Proof. According to the statement in the section 3.4. and 3.19. it holds s, . s, = s,
and u . s, = u, respectively.

4.5. For the topology u mentioned in 4.4. the subsemigroup & (P) is a chain in
the partially ordered monoid J (P).

u

Proof. Tt holds: s, <u <s, . u Sw <s, WS uwd < ...
4.6. In the paper [2] there is given an example of a topology u with s, < u = g,

For this topology itis s, <u =s,. u <u?=s, W< W =3, . W <u* =3, . u* < ...
(for each natural = it is u® < un+l, un = g, . un).

Problem 1. To find the topologies (if they exist), for which it holds :

) s, <u=0,<8 . u<<Ws,. . w<uw ...
b)s,<u=o0,<8, . u<w<...<ut(=s,. . u") =urtl n =2

) 8, <U=0,<8, . Uu<<UL...<8, . ut=untl n =>1.
If P = {a, b, ¢}, then one can easily verify that the topology u given by the table:
¥ | @ B g ey {sg (g P
uM {a} {6} {c} P {a, ¢} {b, ¢} P

is a topology with s, < u = g, (= s, . ) = 2.

4.7 Let u be a U-topology with the property s, < u < o,, i.e. wis a U-, B*-topology
and no R-topology and there exists x € P so that x has not the least neighborhood. Then
the subsemigroup & (P) contains s,, a%(n = 1), o . u(n = 0).
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Proof. (P) contains topologies v = vy . v; ... v, 1 €{s,, %, 0,}. Now the state-
ment can be proved by induction on % using the statements in the sections 3.3.,
3.11,, 3.17,, 3.20., 3.25., 3.27., with the aid of which one can compound the table :

Su u Oy
Sy Sy u o,
u u u o,
o, O, o, -U o, . O,

4.8. For the topology u mentioned in 4.7. the subsemigroup P(P) is a chain in the
partially ordered monoid I (P).

Proof It holds s, <u <o, <o, . v < oi<ol.uzol < ..

4.9. Example of the topology mentioned in 4.7.:
Let P be the set of all real numbers. Let us define 4@ = 0, u(x) = (x) (x € P),

(—0,0> if M) (0, 0) =0 and M(c P) contains more than
uM = <0,00) ifMf) (— o0, 0) = 0} one element.
P if M0, 00)#£#0& M) (— ©,0) #0

One can easily verify that s, is the least topology in P, i.e. the identity of the monoid
J (P) and o, is a such topology that
o0 =20,if 0e M, then ¢, M = P,

(—0,0> if M =(—o0,0),
if0 ¢ M,theno M ={ <0, ) if M <(0, ),
P if M ()(—o0,0) %0 & M[) (0, ) 0.

Then evidently s, < u < 0,, 4 . = u hold. Since ¢, (%(0, ©)) = ¢, <0, ©) = P*
0,0, 0) = <0, c0), it is o, . © > o,. Further we have o, . © < o3, 62 is the greatest
topology in P, i.e. 03M = P(@ = M < P).

Problem 2. To find the topologies (if they exist), for which it holds:

8) s, <u=w<o, <0, . u<od<ot.u<aol<...

b)s,<u=w<o, <o, u<di<o.u<..<oY=o).u)=
=gl n =3.

o) sy <u=ut<o, <0 .u<oi<a}.u<.. . <0, u=o0""l,n=1

4.10. In this section we are going to introduce an example of a such topology u,
for which it is s, || %, » < o, and we shall show what is the subsemigroup & (P)
for this topology u. .

Let P be the set of all ordinal numbers which are greater than 0 and less or equal
to w. Let ud =0, uM = M J{n, w} if M is a nonempty subset of P such that
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ngM, n<m<w=>meM, uM =M J{w} if M +# 0 and for each number n
such that n ¢ M there exists a number m such that n < m < w, m ¢ M.

It is easy to verify that u is a topology. A set 0 is a neighborhood of w if and only
if 0 = P. Let  # w. Then 0 is a neighborhood of z if and only if 2 € 0 and there
exists y € 0— {w} such that y > 2. From this we obtam that the topologies s, and
o, can be described as follows:

8,9 =0, o, 0=40
| P ifoeM
| Mifwe¢ M

P ifwoeM

s, M = (ﬂqéMcP)a,‘M:{‘uMifw¢M 8+ M c P)

The multipli'(:ation in £(P) is given by the table :

. Sy u Oy
s, v v
| Oy u? U . Oy
Oy | g v v

The letter » denotes the greatest topology in P, i.e. such a topology that v0 = 0,
vM = Pif@ = M < P. From this it is evident that Z(P) consists of u¥ (k is natural),
8., 4! . o, (lis a nonnegative integer) and v. The subsemigroup & (P) can be illustrated
by the following diagram :

We shall prove the last statement:
First of all it is w*+1 > u* for each k natural because u*+1 < k + 2, w)= <1,

0o>=P2<2,0>=u<k-+2 0).
Further it is s, < g, for 8,(z) = {z} & {=, w}__ a.( (xeP z # w):
For I = 0 it holds u! . o, <w!*l. g, because u'tl[o, < !+ 3, w)] = w2 <1 +
+3w)=<l,o>=PR<2,0>=utl<l+ 3, 0) =u[o,<l+ 3 0]
u || 8,: 8y(w) = P {w} = u(w),
8l (@) = {z} ¢ {=, w}-_—u(z) (z # w, z € P).
u< a_:u(w)={w}§P——=b’,,(w).
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Fork = 2itisuk || s,, 0, v .0, (I Sk —2):
ko) = {0} & P = s,(0) = 0,(0) — wlo o))
W<k +rlw)=<l,o>=P7 s, <k+1lw=<k+1,w),
o, <k+lw=u<k+low)=<kw>,
wlo, <k 4+ 1, 0)] =wt <k -1, w)=
= <k—1I w>.

ut < uk g, wk (o) = {w}g P = w1 [o,(w)]
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