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ASYMPTOTIC EXPANSIONS OF SOLUTIONS -
OF THE EQUATION -

[Px)y] —qx)y=0
WITH COMPLEX-VALUED COEFFICIENTS

MiLoS RAB, BRNO

(Received September 27, 1971)

In this paper conditions are derived under which the solutions of the equation:
2)y''—q(x)y =0 with complex-valued coefficients can be approximated
with the solutions of the equation [p(z) 2] = 0.

INTRODUCTION

Consider a differential equation
(1) [p@y)—g@y=0

where p (%), q (x) are continuous complex-valued functions on an z-interval J =
= [a, o), p (x) # 0. ‘Solution’ will mean ‘complex-valued, non-trivial solution’ defined
on J. The problem of the asymptotic integration’ of (1) is based on the finding of
a differential equation of the same type with wellknown solutions approximating in
a certain sense the solutions of (1) or, more generally, on the finding of a transfor-
mation of (1) on an equation which can be approximated in a suitable manner.

In our case, the object of interest will be asymptotic expansions of solutions of (1)

when this equation can be considered as a perturbation of [p () 2'] = 0 with the
general solution

: dt
2) — i J
(2) () a+ﬁfp(t),ée

If &, n are real numbers, a < ¢, 77 < o0, then a function y(z) is a solution of (1)
)y’ =

satisfying conditions y(&) = 7, B if and only if y(x) is a solution of the
integral equation

zr
3 e — f ) _
) : J o0) y(s) ds dt = 2(z).



Define

U°z(x) = z(z), Unrz(z) = ff p(?) Un-12(s) ds dt.

It is easy to verify that the series
(4) y(z) = %: Unz(z)

is a formal solution of (1) with the formal derivative

(8) )y’ (x) = B + 2 J q(t) Un—12(t) dt.

If the series (4) and (5) 'are uniformly convergent on some subinterval I < J, the
first of them represents a solution of (1) with the derivative defined by (5) on I. We
shall prove in Lemma 1 that both mentioned series converge uniformly on any
finite subinterval I =J choosing &, 7, { to be in J. In Lemmas 2, 3 and 5 the uniform
convergence of these series is considered on the whole interval J if

o ¢ o ¢
q(t) f J I q(s)
6 .—— dsdt < o or ——idsdt < o©
© f f 2(3) p(t)
a a a a
holds. Both conditions are fulfilled if there is
- [}
(7 f—~d‘~<oo f|q<t)|dt<oo-
| p() | ’ ’
a a
but the former assumption in (6) is comparable with the following one
[ a
8 2L w0,
® f O]
a
and the latter with
(9) f () |dt = o.

Under some combinations of conditions (6), (7), (8), (9) a detailed discussion of the
asymptotlc properties of solutions of (1) with real-valued coefficients can be found
in a recent paper by U. Richard [1]. Unfortunately, in the case when one of the
conditions (8), (9) holds, the uniform convergence of some expansions is proved
only on a finite interval so that the kP approximations

(10) z—ZU"z:v) pz—ﬂ—}-qut)U" 1z(t) dt

n=1n9

do not expresse the asymptotic nature of solutions for # — oo. This suggested me
an idea to consider the uniform convergence of (4) and (5) on the whole interval J
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and for equations with complex-valued coefficients. In addition, it will be shown
that combining this method with a transformation of (1), one can describe asympto-
tic nature of solutions of (1) if the absolute convergence of integrals in (6) is replaced
by the conditional one. '

Note that the first approximation of solutions of (1) forms the function (2) as it
can be seen from (10) for k = 0.

The first approximations of solutions of (1) were derived by P. Hartman [2,]
p- 375 under the assumptions (19) and in the case when these conditions were weake-
ned as follows

] P

Z—0 t<s

x -
dt
lim —— exists, t) | su
o JRECIE:
a

2. DEFINITIONS AND FUNDAMENTAL PROPERTIES OF THE
OPERATORS U}, Vi,

Let p, ¢, w be continuous complex-valued functions on J, p(x) s£ 0. Define linear
operators U} , Vi on the space C°(J) by putting

U, w= wg), U, w=

—1
P n w(s)dsdt n=1,2,

and

V;‘n w=wk), Vi w= [f (t) Vn"1 w(s)dsdt,n =1, 2,.

The symbols U?:') (), V:;,n (x) will be used instead of Ug'” w(x), V?,r] w(x), respec-
tively, for w(z) = 1.

The folloving relations between the operators Ug_ 0’ V?,,, can be easily verified
and will be often used in the following:

Ug’q (x) = U1§1’—m U?" (), (a:) - Vn—-m Vm x),
p | z ¢ .
U?,n (@) = j n—1f , V?.n (x) = f U:;El_[ p(:) g(rt) dt
¢ 3 -
) z & z ) 4@ ) z _ » ]
Uf,ﬂ o(t) = f V,,,g (t) _—p(t) ) VE,'I fq(t) dt JU§: . (t) q(t) dt
§ £ 4

Here m, n are non-negative integers, m < n. Next, denote



"

(1) 0sn @ _«H’f q(s ;9 t; . (x.):' If q(t) ]dtl
‘ ‘ &g
and if w(z) is bounded on J pUt C . ) \
' wle) [, sup fa@) |, we) |y = sup | w) |.
IR N zed: t=>2z PR

On interchanging the order of integration in (11) we see that

ot

(12) D (@) =T 6, 5 (@), Teal(@) =0, ()

holds.

3. THE UNIFORM CONVERGENCE OF THE SERIES
0 @
% un  w(@), %:V?,” w(z)

In the follovmg Lfgmmas it will be supposed that p, ¢, w are contmuous COmplex
valued functions on the investigated interval; further, let p(x) s 0 and w(x) be

bounded.

Lemma 1. Theseries /'

(13) Zc:o U;"a w(x), i V:’aw(x)
0 o 0

converge uniformly on’ any finite interval I = [xo, X] and it holds on I
K

. ; l(gi U; aw(@) ] < w(t) _0'&}:/(:&) exp{o’a,a(x)\ Yoo
o @ |

IZ Vi aule) | < (o) I — 7 eXP{Taale)
Sfor any k. L
Proof. First, it will be proved by lnductlon that X
by ™ (2)
(15) Wi U;‘,’u‘w(r) I = w@)r ~—n~,———
For n = 0 we have [ uY w(x) | =|wx)| < |w)i.If (15) holds_, it follows

Un+1w[_‘ff 20) w(s) ds dt <|wx)|1ff‘ j; n'a,) dsdt <



x t z

CfTa ) j g 8) ral (E) u+l(x)
— a,a -
<l h [ S L s = oy [P ()dt,: ) T
a a :
and the induction is complete. Consequently, o
3 Un < 3 Un o a,a( )
12 UR w@) | =Y | UR w(z) 2y - I
n=Kk n=k n=k
<1, ‘Tla{,a(x) k(; "l . O'a‘u(‘ Y

w(@) It~ exp{ 0ua (X)},

© o .
so that ) Ut , w(=) is uniformly convergent on / and the first inequality in (14)
0 i o \

holds.
In the same manner it is shown .

K ) o
' | Vo oaw(x) | = w(x) I1 _'Uj~_£f) N :
a2 e n ' ’ 1

0 .
the uniform convérgence of Vo w(z) and’the latter estimate in (14).
e ,

The proof is complete.

Lemma 2. Suppose that ' [ o

;oo ) w0 o .
o | 10 | gy i
(16) . fvt!dt«;oo.ff IO | gyt <ot
|20 |
¢ L N IO ST
Then the series ). U .0 W(T) converges um'fornley on.J and it holds: for a’ngj k
< ' a5, @)
(an |2 U w@) | = Tw®) |y 5 exp{amtx)}
.0 4
Proof. First of all it can be seen from (16) that in o;,, (¥) defined by (11) it can
be taken &, n = co. It will be proved by induction that = |
o, @
(18) | o 12

v n!

Tt is clear that (18) holds for n — 0. If (18) ‘h’oldS'for an n, it follows

j UL w(s) ds dtl_ Ilw ddt<




q(8) ( )

SlW(t)lef

n+l( )

(t) o0 dsdt = t)‘xf'—aeow(t)

_lw()lX(+l),‘

Hence, the series ), U2 _ w is uniformly convergent on J and it holds (17). This
completes the proof. )
In the same manner, it can be proved the following

Lemma 3. Suppose that

@ @ o

| a(t)
(19) Ip(t)l < °°’f I ‘ )

a ¢

dsdt < 0.

o0
Then the series ), V2  w(x) converges uniformly on J and it holds for any k

0
k

o -
(20) 1578 wlo) | S 1) |~ o5 (o ()}
n=

. O, (@) 1 To, (@)
Note. If k is so large that Il <5 [ k+1

2] the estimate (17)
[(20)] can be sharpened as follows

3 n Uk (x) O, (I) 030 s (x) ]
R T [” k+1 @D k19 =
oow() - O'no,uo(x) n o];,w(x) 1
: k1
a‘:o’w(x)

=2 |w)lx

© k
yn < 2w |, Tom® ]
C [.);k 5,0 0@ | S 2100 | o

Lemma 4. Suppose that

q(t)
21 D lgsdt < 1.
& . ! f ‘ ) |©
Then the series
22) Sur w@, NV, we
] 0



converge uniformly on J and for any k it holds

15U wia) |

n= 61;) © (@)
(23) ‘ < ) o =2

DRARTOY o

n—k

Proof. Suppose that we have for some n the estimates
24) U2 w(@)| < |wl)], 0t (@), | V2 w@)| <l w) ol , @ -

These are certainly true for n = 0. Then we get
xz T ©

n+1 | [ 2) o J‘ l q(8)

Uil v U f p) me O BULE ] [ 0
o) 1y oo )
oot ]2

o t

|Vg°f;w(x)1 = Uf Z((‘:) Ve o ws)dsdt| = J‘f

@ a

<\w)l, o2, ()“lzg’) ds dt = | w(t) la 0", (“)f”p(s)

< | wlt) s 02F ] (a) .

| on o w(s) |dsdt <

dsdt < |w(t) la 0Bt 2 (@),

q(t)
p(8)

|V1;°'aw(s)ldsdt <

So the estimates are true for all n.

Consequently, the series Z | w(0) a 0%, (@) = < | z(i) la

ol
(22), so that both series (22) are umformly convergent on J and it holds (23). The
Lemma is proved.

is a majorant for

Lemma 5. Suppose that

o ¢

e

a a

dsdt < 1.

Then the series ). O w(z),wz Va., w(z) converge uniformly on J and for any k
o ™ o

it holds



n=k 5 (a)

. < w) o2
IZ V;‘m w(z
n=k ’

The proof of this assertion is analogous to the proof of the preceding Lemma and
will be omitted here.

1 — Ty (@)

Lemma 6. If y(2) = i u? [d + ﬂf—(-ii—l, then it is formaly p(x)y'(x) =
A | J o).

I
=8

vroLB+alqd.
n

[ @ d[
T 1 . .
Proof. Itisy =a + « EU UZ“L,, () + B Eo Ulé‘l,n fp o so that |

§

w d z dt ' - X
= ;a— x)—}—ﬁZ——U“ p(t),py=azovzj,§fq(t)dt+
13 Y
+ B Z Ve, Z Ve B+« J. q(t) df] as was to be proved.

Y

4. ASYMPTOTIC EXPANSIONS

In this paragraph conditions are derived guaranteing the uniform convergence
of the series (4) and (5) on the whole interval J.

Theorem 1. Suppose that p(z), q(x) € C°(J), p(x) # 0 and

@

dt
P | p(®) ]

Then the geneml solutwn of (1) and its derivative can be expressed as umformly con-
vergent series on J

@) flq(t)ldt<oo, <.

n dt z) — 3 po
(26) y(a) = ; U [cx + B f 7 m] » plaly@) = 3 V,,,,w [B+ a f q(t) dt ]
with the following estimates for the kb apﬁroximﬂtions
- k=1 ra f ds | % (@
N w(z) —S Un L li<iaars 2] Zo= ™
COIEORD) m,m[”ﬁfp(t)]!S|“+ﬂfp(8)x ¥

exp{ 0w, (%) }.



(28) ¢ ok

. k—1 (z) i )
.p(x)y’(z)—Zo: 143 [ﬂ+an(t)dt]l = 1ﬂ+af (s)ds| -———*eXP{rw,w (@) }-

@

Proof. Assumptions (25) imply (16) and (19). The statement follows immediately
x

from Lemma 2 and 3 choosing w = « + f f =f+a f g(t) dt respecti-

p® "
vely, and Lemma 6.
Theorem 2. Suppose that p(z), g(z) € C°(J), p(z) # 0 and
q(t)
29 dsdt < oo .
= lp I f f |
Then the equation (1) has a solution y, of the form
(30) n=xU% @,
0
(31) Py =Y, V{_lo’wfq(t) at
0
with the following estimates for the kth approximations
Lk %0 @)
(32) @) =Y UL @)= —;c,— exp{ 00 (2)}
@)
33) | p(x) Z 43 t) dt | | q(t) | dt k exp{ Ouw,x ()} .

Doing further assumption
3
(34) f b.“_(_). di < ©
lp

then there exists another solution y, of the form

X

) . dt

4 v = 3 U fp ®°

(36) p) yp(@) =1+ 3 Vo VL (2)
0

and it holds



k T a d & ok _(2)
(37) y;(x) —; U:‘o,oo J‘m’ = f Tw,a (t) lp(t) | _a;l,c—’—- exp {ow,oo (x)} 4

0

k—1
68)  IpEyi@—1=Y V5 ¥ 'Sf‘q“”d‘f’““) P01

X

k—1 (x
@,

)
: (_Ié__——l)!exp{aoo,oo(z)}'

If the assumption (34) is replaced by some of the conditions

dat .
(39) ! 20 18 bounded on J.
r s
40 yI —
“ U =a p(t)'<°°’

then, in the estimates (37), (38), the right hand sides have to be replaced by

@ I

(42) fl q(t) | dt l J‘z_)—(‘tt‘)l &,’;—(x) exp { 0o, (¥)}, respectively, in the case (39)
5 !

0'k+1 z
k+1)’ Xp{a'@ m(x)}

and
dt a '
(43) p—‘t‘ —ICT eXp{o'Oo’w(x)},
(44) j| ;d’ j_dt_ Ek___i_)ex{ e
q p(t) J (k —1). p O'w,w(x)}, respectively, wn the
case (40). '

If the assumption (34) is replaced by the following one

o]

(45) f ()—(5=oo fork=1,2 ... n.

10



IfV"“()*|<oo,o'w, (@) <1,

then, there exists a solution y. of the form

w

= [ at
46 ‘ =y |
(46) we =502,
(47) p(@)y,(x) = 2 Ve, a)
and it holds - T
(48) @—3 0, f | f dt | %0 (@)
* b2 =) , p(tl 1""‘0'00'1)(0') ’v
o i@
(49) (x)Jg(x)~Z Ve @1 =

1— Ow,0 (@) '

Proof. It follows from Lemma 6 that the series (31), (36} and (47) are formal
derivatives of the series (30), (35) and (46) respective]y, so that it is sufficient to
prove the uniform convergence of the mentioned series. ‘

First of all the conditions (29) imply (16) and the umform convergence of (30)
follows from Lemma 2. Further, we have

[ s 'U!:ooo(x)
IVi‘ome(tdtl—lf ) U )dt[;;fgq(g)[dth_

Hence the series (31) is uniformly convergent and (33) holds. Under the assumption
(34) we have

T 0

z
dt ' e |
Un — | = |11 f ._‘ = Un—lf vt l <
] 90,00 fp (z) l l 0, © 0, 00 P (t) ! 0,0 ( )

xT

dt ‘72;,_:0(75)
= f"fco,a( Ip(t)] ® :_T

X
and this implies the uniform convergence of (35) and the estimate (37).
The uniform convergence of (36) and the estimate (38) follows from

:)jq(t)U’;, J lf us? m,wfp_d(i—)

V2. VL. @)

11



a o)
t Uu——-l |74} < f dt f wa @077
U a0 f o0 5 )' O T4 | Tea OaT Gy

If we replace the assumption (34) by (39) we have

» ()
l Ya p (t) ' f T
and under the assumption (40) o
T x @ o.n—], (x)\
Un —1 Ul — 2>
‘ ””f o | == f (‘)1—‘ °°°°fip( ;g (m—=Dt"’

’ dt | ovl (i)
Un 1 — 2>
U ” f wafp(t), m—1!

This implies the uniform’ convergence of (35) and (36) and the estimates (43) and (44).
Finally, the assertion concerning the series (46), (47) follows immediately from
Lemma 4 letting there

x

,a(®)

(x) n+1 J d(tt) , w(z) = 1, respectively. Theorem is proved.

Theorem 3. Suppose that p(x), q(x) € C°(J), p(x) %% 0 and

© o t
_ a6
.!Iq(t)ldt—oo, J.;”P(t)

Then the equation (1) has a solution y, of the form

dsdt < .

p(@®) 0 ’ .

o« 3 di , S
) =3 Un f S e =) 7@

with the following estimates for the k™ approximations

| k—1 wdt * di TI:O w(:c)
]! yi(x) '—; U';,,w fm = W -—'k—,— exp{ Tw,» (%)},

— k .
k—1 ¢ o (@)

| pla)yy(@) — 3 Ve @) | = 5 exp{ To,n (2) } -
, k!

12



Doing further assumption

(50) f 1 g(0) | G, a(t) dt <

then there exists another solution y, of the form
x

6) e =145 Ve pd@ =37 [ana
and it holds |
k=1

- e ()
(62) | yal@)—1—Y 0% U o (@) < f f 10)| G0 () At G222 5iexp (T (o)),
o | p(t) | —1

. LS 7% o (@)
(83) | p(®) yy(®) — V?,,,,,fq(t) dt | < fl q(O)] 0, () db —5— exXp{ Tew,o (2) } -

a

!

If the assumption (50) is replaced by some of the conditions

(54) fq t) dt is bounded on J ,
']

(55) ’fq (t) U ,,a (t) dt I <

then in the estimates (52), (53) the right hand sides have to be replaced by

0

exp {Tw, (@)},

TEo,tn (@)
q(t) d‘L 7 exXp {7 ., »(®)}, respectively, in the case (54)

|

S

and by
ol
J'lp(t)l‘f MU, a(t)dtl (k 1), exp{'rw «(@)}
® &
lf q(t) Uﬂ,,a () dt \1:7—— exXp { Tw, () }, respectively, in the case (55).

13



If the assumption (50) is replaced by the following one

fq(t)Ufo,a(t)dtzoo for  k=0,1,...,n,

U t)U"+1(t)dtI<oo To.wl@) <1,

then, there exists o 8olutzon Y2 of the form
x

mwp=wvgmwn, vl —3 fﬂnm

and it holds
®  (a)

'””‘%U @l=i— @

() '(:v)——MkVl f(t)dtlslf (t) U™+ () dt ‘T]:o,w(“)_
lP Yol2 |§ a, .q —-a q oo,zt {Jvl_:‘"tw,m_(a)'

The proof of this Theorem is similar to the proof of the preceding statement and
will be omitted here. .

\

Appendix. Using the preceding notation let us consider the following transfor-
mation of the equation (1) ,

¥ = flz) Z w(z),

SsC Ve Vo

z ' .3
ds
= f W] in the real case appeared in the paper [1}
T C )

ca S .

N PO

whose special form [w(x)

by U. Richard. W‘Le gét ,
[P(z) z']' —Q@)2=0,

Ve n s o L i fo
P(z) = p(z) f*(2), Q(x) = ¢(=) fz) U w(x) o .
This equation is of the same type like (1) and above theorems can be applied.

N
}

J
i
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