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SCRIPTA FAC SCI. NAT. U J E P BRUNENSIS, ARCH. MATH. 3, 
VII : 123-—144, 1971 

SIMULTANEOUS NONDETERMINISTIC GAMES (III) 

J A N HANÁK, BRNO 

(Received June 7, 1971) 

R E M A R K S 

The preceding two parts (§ § 0 —-3; § § 4, 5) of this discourse appeared in this journal 
in T5 (1969), 29-60 , and T6 (1970), 115—144. The third part contains the introduc­
tion of some special aims and of certain properties of aims (§ 6a, b), and the most 
important general min-max results for aims (§ 6c/l-—3). These min-max results 
are very strong [as they guarantee that plain strategies (excepting the case of the 
passive player in § 6c/3, where somewhat "stronger" kinds of strategies must be 
used) are sufficient for in some sense optimal playing at aims belonging to certain 
important sizable classes of aims], and involve significant particular cases investigated 
formerly in [1] (and other Berge's works), [4], [5], [18], as we shall show in § 6e, 
where the connections among the corresponding results of the quoted references 
and those of this article will be presented, too. Remarks to § 6a-c will be contained 
in § 6d, in the fourth part. The results of § 6c will serve for deriving theorems on 
pay-off functions (mainly on the so-called Bergean ones, cf. [18], and § 10 of [4]) 
in § 9, on topological games (cf. [7], [8]) in § 8, and for proving theorems belonging 
to the so-called descriptive point of view (cf. § 9 in [4], and [11]) in § 7. 

Preliminary (and, usually, considerably less general) versions of many results and considera­
tions of the whole discourse are contained in my papers [4], [5], [18], which were published as 
research memoranda of the research programme headed by doc. dr. V. Polak. Within the frame­
work of this programme, I have besides investigated some problems concerning the actual playing 
of certain SN-games: As i t was already shown by Zermelo in [20], rtwo—player initial finite 
games with perfect information and with (antagonistic) WDR ( = win—draw—loss; any infinite 
play is drawn) pay—offsi (instead of r...n we shall say only u PI-games") have significant stra­
tegic properties; for having these properties, the so-called board games (special actual PI-games, 
as, e.g., chess, checkers etc.), having been known for several thousand years, are to be considered 
as the best among all actually played games. Nevertheless, the initial situation in any PI-game 
(except those having only one play starting from the initial position) is asymmetric for the 
players; thus, Pi-games are no t "fair", which is a certain flaw of them. Bu t no t only Pi-games 
but also Linitial finite complete games with WDR pay-offs j (instead of L . . (J we shall say only 
(i I-games"; PI-games can be considered as particular I-games, cf. § 4d) have those significant 
strategic properties ([19], § 2.2); thus, it is natura l to search for symmetric (i.e. having an auto­
morphism which changes the players and, of course, preserves the initial position) I-games, 
expecially symmetric I-games with the character in some sense near to t ha t of well-known board 
games (as chess etc.). Constructing the former games — which might be considered as the best 
among all possible games — has shown to be a somewhat complicated problem (while it is not 
very difficult to construct "well p layab le" symmetric I-games if no special preliminary conditions 
to their character are given); this problem, together with certain connected questions (in particul­
ar, the applications of the so-called antagonistic coordinative arbitration) were investigated 
circumstantially in [19], where I have also presented a well-playable concrete symmetric I-game 
(called Symmetrized Chess and being near to the usual chess), as an example of the constructions 
given there. (The main results of [19] will be published separately in a journal article.) 
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Thus, one may conclude that investigating SN-games (and their special subclasses, 
mainly antagonistic complete games) not only is advantageous from the mathematical 
point view (ef. § 0), but also leads to the introduction of quite new actually playable 
games being in principle better than the games known till now. 

§6. T H E F U N D A M E N T A L M I N - M A X R E S U L T S 

0. Convention (for § 6). In § 6, let (P, P0) be a type (§ 1.1); the basic aims (§6.6), 
the r-aims (§ 6.13.2), the properties in § 6.1 etc. will be introduced to the given 
type. Of course, also the sets Z : = P — P0, Z, P, memory relations (cf. §§ 1.1-2) 
etc. are considered as defined to (P, P0). 

Further, in § 6a, b A denotes an aim (§ 1.1), 91 means an aim-collection (§ 3.4), 
T 6 Corr (P, P) is some (fixed) P0-ended graph (§§ 2.16, 218.2), X : == X r (§ 2.26.2). 

Remark. In contradistinction to the preceding two parts, we shall always use 
the denotations ul3 it*, vt, Uj, 9?2 (etc.) instead of ut, a,-, vit Uj, $2 (cf. §§3.2, 3.3), 
respectively, as the composition of the thick indices in the latter expressions would 
be too laborious for the printing house. (That replacement does not lead to ambiguity.) 

a) The p r o p e r t i e s (I, T), (1°, T), (I0, T), (I£, T) 
The important (cf. § 3.10—11) property (I, T) was introduced in §3.9.2. Now we 

define several other usable properties at aims. 

1.1. Definition. We say that A has the property (K, T), where Ke{I0, 1°, I£} 
(three-symbol set), iff for each xeX and each k with 0 ^ k < 1 + l(x) there holds 
the corresponding statement [K, T] (depending on x, k), where 

[І0, Г] = x є A => x M є A 

[Г. Г] = x є A <= xrø є A 

PS. Г] : = x є A o x W є A 

1.2. Definition, remark. For x, yeX, 0 ^ i < 1 + min (l(x), l(y)) we define 
(cf. 1.1, §3.9.2): 

[I, r ] : = [ x e A A (xo,...,xk) = (y0,...,yk) A ( # 1 $ A v yl*l e A)] => y e A 

Then A has the property (I, T) iff [I, T] holds for all those x, y, k. 

:= {lo ü K{= Г 
[K U{I,I 

1.8. Definition, remark. We put K : = rlo if K { = 1° ; thus K = K. (K, T) 

(where J5TG{I°, I 0 , IjJ, I}) is said to be an aim basic T-property (or only: a basic 
property), and (K, T) is called its dual one. Instead of (K, L) we shall write (K), too. 

1.4. Definition. We say that 91 has the property (K, T) iff each A e 91 has this 
basic property. (Cf. § 3.9.3.) We say that an aim function f [an aim corresponden­
ce pB] (§ 5.8) has the property (K, T) iff the collection im f (:== {f{a) | a e dom f}) 
[{peA | A c P}] has this property. 

2.0. Definition. A collection U is said to be u -directed [(] -directed] iff to each 
Ai, A2GU there exists AeU such that At U A2 <-- A [A <= Ax n A2]. 
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2.1. Theorem. Let (K, Y) be a basic property. There holds: 

(o) Ahas(K,r)oA() X has (K, Y) 
(i) . Ahas (I%,Y) o Ahas theproperties (1°, F), (I0, T) 
(ii) A has (I°0, Y)=>Ahas (I, T ) _ 
(m) Ahas(K,Y)oP -A has (K,Y)oX~A has (K, Y) 
(iv) A has (K) => A has (K, Y) 
(v) 0 and P have the property (IJJ) 

X has the properties (I0), (I), (I0, Y) 
P —Xhas the properties (1°), (I), (IJ, V) 

(vijl) Ahas(I0,Y)oA(\ Xhas (I0) 
(vi/2) A has (1°, Y)oA[) (P -X)has (1°) 
(vii) 91 has (K, Y) A K 4= I => \J A and f) A ham (K, Y) 

Am Am 
(viii/l) 91 has (I, Y) A 91 is ^-directed =>\JAhas (I, Y) 

Am 
(viii 12) 91 has (I, Y) A 91 is ^-directed =>f[Ahas (I, Y) 

Am 
(Here we put f\A:~P.) 

AS 
Proof. 
(o): Let x eX, Q <>k <\ + l(x). Then, of course, x e A i f f x e A f i X, and the 

same may be said about xW, for evidently xW eX. By means of this trivial remark 
the assertion (o) can be obtained immediately from 1.1, 1.2. 

(t) is trivial, since [I°0, Y] o [1°, Y] A [I0, Y) (for all A <= P, X G X , 0 < k < 
< 1 + l(x)). 

(ii): Let A have the property (F0, Y). If x, y eX, 0 < A; < 1 + min (J(x),/(y)), 
then x e A A (x-*- ^ A v yC«e A) o (x e A A XW £ A) v (x e A A Ym e A) => yt*J 
e A = > y e A ( x e A A xW^ A cannot occur, etc.); consequently, A has the pro­

perty (I, T). 
{Hi): L e t x e X , 0 < & < 1 + l(x). If A has the property (1°, Y), then XBP —A 

implies x-*3 € P - A; thus P - A has (I0, Y). If A has (Io, Y), then x ^ eP -A 
implies x e P — A; thus P — A has (1°, F). Consequently, if A has (IJj, F), then 
P - A h a s ( I S , r ) (cf.(i)). 

Now let A have the property (I, Y). Let x, y eX, 0 <; fc < 1 + min (J(x), J(y)). 
Let x 6 P — A, (a;0, ..., xk) = (y0, ..., #*), and let either x-*l £ P — A or Ym e P — A. 
If y ^ P — A, i.e. y e A, then this and the above suppositions imply: 

y e A A (x0, ...,xk) = (y0i ...,yk) A (y-*l£A v x-*-eA); 
consequently (cf. 1.2 with x: = y, y: = x) x e A, but this is a contradiction for we 
have supposed x 6 P — A. Therefore y e P — A. Hence P — A has the property (1, Y). 

Thus, if A has a basic property (K, Y), then P — A has (K, F). Hence, if P — A 
has the property (K, Y), then A = P - (P - A) hm (K, Y) -= (-K", F). Finally, 
X - A = (P - A) n X, hence (see (o)) P - A has (K, F) iff X - A has (K, F). 

(iv): This follows immediately from 1.1, 1.2 (X = Xr <= p == XL)« 
(t;): Evidently, 0 has the property (1%), X has the properties (I0) and (IjJ, T). 

If x, y e P, 0 < & < 1 + min (l(x), 1(Y)), xeX, then # 3 £ X cannot occur, and if 
moreover yt*3 eX, (x0, ..., %) = (^0, ...,y*), then, clearly, y e X , too. Thus X has 
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the property (I). The other assertions in (v) follow, e.g., from the above proved ones 
by means of (iii). 

(vijl): If A n X has the property (IQ), then A n X has (I0, Y) (see (iv) with A: = 
:=as A(] X), hence (ef. (o)) A has (Io, T). On the other hand, if A has (I0, T), then 
A n X has (I0, T), hence if some xeP belongs to A n X and if 0 ^ k < 1 + J(x), 
then (x e X and hence) x£*-G A n X; thus A n X has the property (I0). 

(vi/2): This follows from (vi/1) and (iii). 
(vii): This assertion follows immediately from the definition 1.1. 
(viiijl): Let 31 have (I, T) and be u -directed. Let B be the union of 91. Let x, y eX, 

0 < k < 1 + min (l(x), l(y)). Let xeB, (x0, ..., xjc) = (y0,..., yk) and either x-*-£ B 
or yW e B. There exists Ai e 91 such that x e Ai; if xM $ B, then xW $ Alt hence 
y g At c B (since At has (I, T)), if y-*- 6 B, then yM e A2 for some A2 e 91, but 91 is 
U-directed, hence there exists A 6 91 such that Ai u A2 <= A, hence x e A, y-*- e A, 
y 6 A c B. Thus always y e B. Therefore, B has the property (I, T). 

(vnt/2): If 91 has '(I, T) and is n -directed, then 93: = {P - A | A e 91} has (I, T) 
(see (iii)) and, clearly, is U -directed. Hence the union Cof 93 has the property (I, T) 
(see (viii/1)), thus P — C has the property (I, V) (again (iii)), but P — C is the inter-
section of 91. 

Q . E . D . 
2.2. Counter-Examples. Let P : == {1, 2}, P0: = 0, let V be such that Tx = {x} for 

each xeP. Hence X = {(1, 1, 1,...), (2, 2, 2, . . . )} . Clearly, X has not (F), con­
sequently (2.2 (iii)) P — X has not (I0); cf. 2.2 (v). Nevertheless, X and P — X have 
(I) (2.2 (v)); cf. 2.2 (ii). 

Let A : = { ( 1 , 1,1,...), (1,2,2,2, . . .)}. Then An X = {(1,1,1, . . .)}, hence A has 
the property (I0, T) and thus also the other three basic T-properties (2.2 (o), (i), (ii)). 
On the other hand, A has no basic L-property (K) [in fact: if x: = (1, 2, 2, 2, . . . ) , 
y: = (1, 2 ,1 ,1 ,1 , . . . ) , then x e A, (x0, xx) = (y0, yx), xM$A, but y £ A, hence A 
has not (I); clearly, A has not any other basic L-property]; ef. 2.2 (iv). 

Let At :={(1 ,2 ,1 ,2 , . . . ) , (2 ,1 ,2 ,1 , . . . )} , A2 : - { ( 1 , 1,1,...)}, Bm := P - Am 
(m = 1, 2). I t can be simply verified that Ax and A2 have the property (I) (and (I0), 
too), hence (2.2 (iii)) Bi and B2 have (I), Ax U A2 has not (I) [in fact, if x : = (1,1,1,...), 
y := (1,1, 2 ,1 ,2 , . . . ) , then x e A i U A 2 , (x0,xx) = (2fo, yx), y f 1 l eA 1 uA 2 , but 
y £ Ai U A2], hence Bx(\ B2 ( = P - (Ax U A2); 2.2 (iii)) has not (I); cf. 2.2 (vii) -
(viii). 

b) The bas ic aims, the r -a ims, and t he i r p r o p e r t i e s 
3.1. Convention. If some x = (#A,)O <fc<i+j(x) e P is considered, then we shall use 

also the denotation x = (#*), and, moreover, if l(x) < k0 < co0, then we introduce 
formally xko := xi(X) and x#o- : = (#*(*))• Thus, if x = (%) 6 P, then we have defined 
xn for each integer n ;> 0. 

3.2. Convention. In the following A (V) means the universal (existential) logical 
quantifier applied to non-negative integers. E.g., ^ P(m, k) means: "for all integers m 

m>h 
being greater than (fixed non-negative integer) k P(m, k) is valid", while e.g. 
^ P(m, k) means: "for all non-negative integers Jfc being lesser than (fixed non-nega-

*<» 
tive integer) m P(my k) is valid". Similarly, the short denotations as \J, (\ etc. will 

k k>n 

concern non-negative integers. 
71 will be used as the symbol of negation. 
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4. Definition, remarks. For A, B c P we put 

Lf : = (B X A, P, P), 

i.e., Lf (e Corr (P, P)) is a graph (§2.18.1) such that 

\B . 
L*x XЄ 

Further we introduce 

Evidently, there holds: 

(0) 

(1) 

(2) 

(3) 

(4) 

(*') 

\P-A' 

LA :=- Lp, Ľ> L». 

L = L£, 

Џ=LP = V, 

L0, L0 

L | 

u0 
L^n L« 
(LP - LA) n(V - LB), 

LP_A = LP- LA, W-B = LP -LB, 

(the operations n , — on the right sides of (3), (4), (4') are used in the sense introduced 
in §2.5.2). 

5. Definition, remark. Under a parameter we shall mean an ordered £air Y = 
=- (P , T°) 6 Corr (P, P) X Corr (P, P); y := (LP - P , LP - P*) is said to be the 
complementary parameter (to Y). Evidently then 

(5) ү = ү. 

6. Definition. (The basic aims.) Let Y = (F1, P 1 ) be a parameter. For ee{A, D, 
0,1,2,...} we shall introduce the aims q*(y) = <j€(P, P1), qe(y) = q,(Yl, Yn): 

<ł*(ү) 

ł*(ү) 

ł л (ү) 

<łд(ү) 

qa(ү) 

<ła(ү) 

äR 

= {x I X 6 P, ak+1Pa* A A %*+irn*m}, 

= {x | X e P, a*+iP#* v V Xm+irvxm}, 
m<k 

= Uq*(Y). 

= fl q*(Y). 
= n u <?*(Y). 

n k>n 

= U f l <J*(Y)> 
n k>n 

= {<T(Y) I Y e Corr (P, P) x Corr (P, P), - 6 {A, A, • , a }} , 
(where, and also in the following, the e-symbolism is used in the same manner as in 
§5.8). Elements of 9Jt will be called the basic aims* 

7. Theorem. Let y be a parameter, e e {A, a? of i? #, t} A> Qj 0f lt..,}, 
Then 

(i) 9e(Y) = P - <MY)-
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Further (for any aim A) 

(ii) AemoP-AeWl. 

Proof. For any x,yeP and an arbitrary T° e Corr (JP, P) there holds: TiyT°x 
iff y(Lp — T°)x. This trivial remark shows that (i) is true with c :== * and e : = k 

(k = 0,1, 2,.. .). Now the verity of (i) with the other e follows immediately from 
definition 5. (i) and the corresponding definitions 5, 6 imply that (ii) holds. Q. E. D. 

8. Theorem. For every parameter y = (F1, Tn) there holds: 

'(•/i) *A(Y> = {* I * G p> (A xk+ir*xk) v v ( a ^ i r 1 1 ^ A A *H»ir**m)}* 
U h m<*h 

(</2) q-(Y) = {x I x e P, (V **+ir%*) A A (-*«r-i-* v V J t a u M 

((»/l) 9 ° ( Y ) = {x; | x e P, (A xk+lV^xk) A A V -*+ire»*}, 
I; n k>n 

(w/2) t7D(Y) = {x | x e P, (V afc+.r-ia*) v V A afc+T1**}. 
ifc n J>n 

Proof. I t will be sufficient to prove only e.g. (i/1), (ii/1) (cf. the preceding proof 
and 7 (i)). Let x == (xk) e P be fixed. We introduce (at x) these four statements: 

Vi 

V2 

v 3 

v 4 

= Л (xk+iГlxk v V xm+iГnxm), 
h m<h 

= (Л xk+iГlxk) v V (xk+iГnxk л Д Жw+iГ1^), 
* h m*h 

= Л V (xk+iГ*xk л Д я w + i Г п ж w ) , 
n &.*n w<fc 

= (A **+iГпa*) л A V ^ + i Г 1 ^ * . 
* n Jfe>n 

I t is evident that if (for each x) there holds Vi o V2 [V3 o V4], then (i/1) [(ii/1)] is 
valid. 

1. If xr+xT
nxr A A xm+irtxm for some r, then ( A V xm+iTnxm) A A xk+iT1xki 

m<r h>rm<h h^r 

hence A (^k+iT^ v V#m+irn#m)- The latter statement also holds if A xk+\Tlxk. 
h m<h h 

Thus V2 implies Vi. On the other hand, if Vi holds, then either n V xk+irnxk. then 
h 

A "i V^w+ir 1 1 ^^, hence A ^Ar+ir1^ which implies V2, or V%+it"n a r*» *hen there 
* !»<* h . h 

exists the integer r : = min{k | xt+iTRxk}, hence A ~i #*+irna;*, consequently 
*<r 

A "i V ^ w + i r % m , therefore (cf. Vi) A ^ l - F ^ * * t h u s ar+iFBay A V xm+iTIXmi 
h*r *n<* h*r vn«r 

hence again V2 holds. Thus we have proved Vi o V2. 
2. If V3 is valid, then A V xk+i?Ixk and A V A xm+irnxm> hence A Sn+i-P11-**. 

n Jfc**n n h>n m<h n 

Thus V4 holds. On the other hand, if V4 holds, then A V (^i.P-*fc A A xm+iT&$m), 
n h>n m 

consequently A V (xk+ir*xk A A xm+irnxm), hence V3 is valid. Thus V3 o V4 has 
n h>n m<h 

been proved. 

Q. E. D. 
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9. Remarks. Let q6 (where c is some of those occurring in the head of 6) be that 
mapping of Corr P X Corr P ( = the set of all parameters) into exp P which maps 
any parameter Y *° <T(Y)- Thus q£ e (exp P)COTTPX0OTTP; qe is a certain aim-
function (§5.8). Let E := CorrP X CorrP, F :== P in the situation considered 
in § 2.4; then we may introduce the induced operations (J, (\, ~- onto (exp F)s == 
= (exp pjcorrPx CorrP b y § 2.5.2. I t is easy to see that then 

(6) <?A = U « * > «?A = n<fr> 
k k 

(7) qn = limsup qk, qa = liminf qk9 
k k 

where limsup [liminf] means, of course, f\ \J [\J f)]. 
k k nk>n n k>n 

10. Theorem. Let ybe a parameter. Then 

q°(y) has the property (I0), 

qa(Y) ho* ^e property (Io). 

Proof. These assertions follow immediately from theorem 8, (ii/1-2). Q.E.D. 

11. Theorem. Each basic aim has the property (I). 
Proof. Let y = (Tl, Tn) be a parameter. Let x, y e P , 0 <; ra < 1 -f min (l(x), 

Z(y)), (x0, ...,xm) = (y0, ...,ym), let xeA := qe(y), where c will be chosen in the 
following. 

1. Let e := A. Then (cf. 6) there exists fa such that xkl+i P a ^ A A xk+iTnxk. 
k<kt 

If fa < m, then y^+iTty^ A A yk+iT^k (smce ^yk = xk and i-. + 1 < m), 
k<kt k%m 

hence yeA.lffa^m, then x^+iThs^ A A ^fc+iT11.^, hence x W 6 4 ; if, moreover, 
m^k<kt 

yM e A, then there exists fa > m such that y^+i.ny^ A A ^fc+iT11^, but 
m^k<k2 

A W+ir11^* (A If* = x* e t c - )> h e n c e M ^ i F 1 ^ A A 2 ^ + 1 ^ * , thus ye A. Therefore, 
k<m k<m k<k2 

A has the property (I). 
2. Le t e : = a. Then xW e A (cf. 10) and, in particular, A xk+iTnxk, A Vk+iTfyk 

k<m k<m 

(8(ii/l)). If, moreover, y M e A, then (see again 8(ii/l))( A Vk+iT^k) A A V^Jm r ty*, 

but then (cf. above) (A ^ H - I F 1 1 ^ ) A A V f t A * hence y e A. Therefore, 

A has the property (I). 
3. If e is either A or a, then qe(y) has the property (I) (see 1, 2), hence qe(y) = 

= P - <f (Y) has the property (I) (7(i); 2.1(iii) with T :== L). 
Q.E.D. 
12.0. Remark. I t is possible to derive several other properties of the basic aims 

by means of theorems 2 1 , 10, 11. On the other hand, simple examples show that 
it may happen that e.g. qA(t) has neither (1°, T) nor (I0, T), q°(y) has not (1°, T), 
etc. Nevertheless, there holds 

12.1. Lemma. Let y = (T1, Tn) be a parameter, e e {A, D}. Then 

(i) r <= pn => q*(y) has the property (1°, T) 
(ii) Lp — T --"> Tn => qe(y) has the property (I0, T) 
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Proof, (i) follows immediately from 6 (e : = A), 8(ii/l) (e := a). If LP — V => 
=> Pn, then r c LP - pn, hence ge(LP - P , LP - P 1 ) = <f ft) has the property 
(Io, T), and qe(y) = P — <f(T) has the property (I0, T) (12A(i), 7(i), 2.1(iii)). Q.E.D. 

12.2. Remarks. Clearly, LP — T => P 1 \8 equivalent to the condition P 1 n 
n r = Lg. Thus 10 and 12.1 imply especially: 

12.8. Corollary. For any parameter y = ( P , Tn) there holds: 

(i) r c p i => <j°(y) has the property (1°, T), 
(ii) P i n T = Lg ==> <jD(y) has the property (F0, T). 

13.1. Definition, remarks. Under an r-parameter we shall mean a pair x = (ft, F°) 
where ft is a countable (i.e. card ft ^ No) collection in P and T° e Corr (P, P). 
To such an r-parameter x we define the complementary one 

x : = ( { P - K | K e f t } , L P - r ° ) , 

(i.e. x = (exp P —- ft, LP — T°), where ~ is the operation introduced in § 4.2 (# : = 
:== P)); evidently 

(8) x = x. 

We say that an r-parameter x = (ft, T°) is a U -parameter [an n -parameter] iff ft 
is U -directed [n -directed]. Evidently 

(9) x is a U -parameter o x is an n -parameter 

10.2. Definition, remarks. 

(i) Let x = (ft, To) be a U -parameter. Then we put 

ra(x) := rn(ft, P) := U 9A(W, T°). 

(ii) Let x = (ft, r°) be an n -parameter. Then we put 

r°(x) : = rO(ft, P ) : = f\ q*{lK, T°). 

(where the intersection is defined to be equal to P if ft = 0). By means of (4') and 
7(i) we conclude 

(10/1) r a (x) = P — r a(x) for each n -parameter x, 

(10/2) rn(x) = P — r a(x) for each U -parameter x. 

Elements of {rD(x) | x is a U -parameter} [{ra(x) | x is an n -parameter}] will be c%lled 
U -aims [n -aims], U -aims and n -aims will be also called r~aims. From (10) there 
follows 
(11) A is a U -aim o P — A is an n -aim 

(11') A is an r-aim o P — 4 is an r-aim 

18.3. Lemma. Let x, = (ft,, Ft) (i = 1, 2) be complementary t-parameters (i.e. 
x2 = x7), ZeJ xi : = (fti U {0}, Tx), x^ : = (ft2 U {P}, F2). -T̂ ew xj, x^ are complementary 
parameters, and the following four statements are mutually equivalent: xi is a U -para­
meter; xj is a U -parameter; x2 is an 0 -parameter; K% is an n -parameter. Further, if 
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some (and, consequently, each) of these four statements is valid, then rQ(XI) = -"rj(xi), 
r°(x2) = rD(xi). 
(This lemma follows immediately from the above definitions and remarks). 

14.1. Lemma. Let C c= A, D c B. Then L# <= Lf. 
Proof. This follows immediately from §6.4 (as D X C c 5 X J ) . Q.E.D. 

14.2. Lemma. £e£ V1, T11, T m , TIV e Corr (P, P), let e be some of those occurring 
in the head of 6. / / P n c p , p v c p n *Ae?& q«(rin ViV) c <f(P, pn). 

Proof. In fact, yTm x => yT*x, yTwx => yTux for any x, y e P, hence the assertion 
follows immediately from the definition 6. Q.E.D. 

14.3. Remark. 1/ x = (ft, T0) is an n -parameter and x' :== ([ft]p, r°), JAen 
rD(x) = rn(x') (namely, " 3 " follows from 51 c [ft]p, while " c " can be derived 
by means of 14.1-2, cf. 13.2 (ii) and § 2.12). 

15. Lemma. Each r-aim has the property (I). 
Proof. Let A be a U -aim, i.e. A = rD(x) for some u -parameter x = (ft, P°). 

ft is U -directed, hence {qA(LK, T°) | K eft} is U -directed (141, 14.2), each q&(lK, 
T°) has the property (I) (theorem 11), hence i*n(x) has the property (I) (13.2(i), 
2.1(viii/l) with T : = L). This, (11) and 2.1(iii) imply that also each n -aim has the 
property (I). Q.E.D. 

c) The main m i n - m a x r e su l t s 
Meta-remarks. We shall apply the idea of active and passive aims (§ 5c) in the following three 

cases (§§ 6c/l , 2, 3). The corresponding considerations would comprehend a certain sizable common 
part; we do no t wish to present it three times, therefore we shall use an advantageous (though 
somewhat unusual) way of exposition (such a way was used in [4], too): we shall present no t the 
actual three tex ts (corresponding to those cases), but a certain text schema (containing, in fact 
t ha t common part) and further three lists of text substitutions. The exact wordings of actual tex ts 
are to be obtained from the tex t schema by replacing all occurrences of the variables a and a th 
by their particular values (cf. the formative rules) and by the replacement of all tex t variables 
by the corresponding particular tex ts from the a th list. 

Thus, we may say t ha t the proper text of this paper consists, on the one hand, of the explicitely 
presented passages, and, on the other hand, of those (not explicitely presented!) passages which 
are to be formed in the above mentioned way, while the forming means (i.e. the tex t schema and 
the lists of tex t substitutions) and also the meta-text (i.e. these meta-remarks on and the rules 
of t ha t formation) do no t belong to the proper tex t and are designated in another manner t han 
its parts. (The prefix "meta" is used only in the above mentioned connections in this paper.) 

THE FORMATIVE RULES, a will denote the serial variable (a =- 1, 2, 3), 

{first a 

second for a = <2. The proper tex t of § 6c/a is to be obtained by the replacement of 
third (3 

each a and a th by its actual value and by the replacement of each text variable (there are nine 
tex t variables) <S> (where S is some auxiliary designation, "identifier") by the particular tex t 
presented in the a th list beyond the corresponding expression "<S> : = ". 

T H E T E X T SCHEMA 

c/a) The a t h main min-max r e su l t s 

16/ou Suppositions, definition, remarks. In § 6c/a let {j, i} =- {1, 2} (j and i are 
fixed), let % = (ut, u2) be a regular weakly complete pair of elements of Corr (P, 
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exp P), let (P, P0) be the type of <$f. We put vt := [^]P(t = 1, 2) (the "player c's" 
game correspondence), thus v3_. = v\ (cf. §416). (the choice of Ax, A2) 

Let ~i .==- fZ (§ 1.2) (i.e., roughly speaking, the active player uses only his plain 
strategies; cf. § 5.11). (the choice of ~j) 

17.0/a. Definition, remark, (the introduction ofwit w2) 

17/1/a. Lemma. There holds; 

(i) Wj = Wi, 

(ii) w\ and w2 are Mcorrespondences. 

Proof, (the proof of 17.1/a> Q.E.D. 

17.2/a. Definition. We define w* e Corr (P, exp P) (i =-= 1, 2) by 

tv* : = 1 0 w , , w>* : = 1 U Wi, 

(where 1 is defined by § 2.18.1). 
17.3/a. Lemma, y&ere ^ofefs: 

(i) w* = w*> 

(ii) w* and w% are M-correspondences. 

Proof. In fact, ^ = uTm = 1 n ~wt = 1 D w, = w* (17.2/a, 17A/a (i), § 4(24), 
47)). (ii) follows from 17A/a (ii) (cf., e.g., §212, §2 (30)). Q.E.D. 

18.0/a. Definition. We put 

21, := {X \X <= P X c w,X}, 

18.1/a. Remark. Clearly, for t = 1, 2 

9J. = {X | K c P , X = w?X}, 

.e., SI, is the set of all fixpoints of the M-correspondence w*. 

18.2/a. Remark. w\ and w*(: = 1, 2) are M-correspondences, hence they have 
fixpoints (§ 5.15.0); moreover f\ X and f\ X are the smallest fixpoints of Wi and 

xcp xcp 
XDwtX XDWtX 

w*, respectively (§ 5A5.0*)); but X 3 WiX ifFX --> w*X, therefore Wi and w* have 
the same smallest fixpoint. Analogously, w$ and w* have the same greatest 
fixpoint (J X = U X. (Of course, the equations between those fixpoints follow 

xcp xcp 
XCWJX XCw)X 

from §5 (13'), (14), too, but the latter statements wrere derived by means of the 
transfinite iterations ("successive approximations"), while we shall need to*have 
derived those equations without using the notion of transfinite iteration, cf. remark 
19/a.) 

19/a. Remark. 16/a and 18/a have introduced a particular case of the situation 
considered in § 5c. To this particular case there will be related the conditions (C) 
(P*), (A*) defined in § 5.11. 91, was chosen in such a way that it is simple to verify 
(P*) (see 21/a). 9I< is uniquely determined by 91, if (C) holds (then % = exp P - %, 

*) where the words "smallest" and "greatest" are to be replaced mutually. 
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see § 5.11), but we have also 91* explicitely defined (while (C) will be proved in 20/a) 
as the set of fixpoints of a certain M-correspodence, which is important especially 
at the following application of the method of "successive approximations". The 
condition (A*), which here consists in finding A e 9l« and at e S(%i) such that &(x, at) <=: 
e At for each x e A, will be proved twice, namely by means of the mutually inde­
pendent uses of both the methods mentioned in § 5.12: the "(I)-property method" 
(22/a) and the "successive approximations method*' (23/a); the auxiliary results 
and considerations obtained at applying these two methods are important, too. 

20/a. Lemma. The condition (C) is satisfied. 
Proof. In fact, for each X c P P - w*X - P ~ wjx = w*(P - X) (17.3/a(i), 

§ 4(30)), therefore X e % o X = w*X o P - X = w*(P — X) o P - X e 2ti 
(181/a). Q.E.D. 

21/a. Lemma. The condition (P*) is satisfied. 

Proof, (the proof of the satisfaction o/(P*)> Q.E.D. 

22/a. THE "(I)-PROPERTY METHOD . 

22.1/a. Lemma. At and A2 have the property (I). 
Proof. This follows immediately from 16/a and {the property (I)>. Q.E.D. 

22.2/a. Corollaries. At has the property (I) (22.1/a), hence it has the property 
(I, T) (theorem 2.1 (iv)) where T may be the graph of u%. Therefore, a plainly {At}-
absolute ^-strategy exists (§ 3.11), i.e., there is ateS(ui) such that s(#, at) c A| 
for each x e &iAi (§ 3.5). Consequently, UfAt — {x \ x eP, s(x, at) <-- At} (cf. § 3.2); 
if a* e S(ut) and a \ Z f] utAi = a* | Z n &tAi, then s(x, a*) e At for each x s UfAi 
(§3.10), i.e., then cr* is a plainly {A$}-absolute ^-strategy, too. 

22.3/a. Lemma. &iAiE%. 
Proof. Let A :== utAi; it is sufficient to prove WiA c: A (18.0/a). Let at e S(Ui), 

be such that s(x, at) <^ At for each x e A (see 22.2/a). {the remainder of the 
proof of 22.3/a> Q.E.D. 

22.4/a. Corollary, (of 22.3-2/a; cf. 19/a). (A*) is satisfied. 

23/a. THE -SUCCESSIVE APPROXIMATIONS METHOD". 

23.1/a. Definition, remarks. In § 6.23/a we shall denote (for shortness) 

w :— Wi. 

w is an M-correspondence (17.1/a (ii)), hence the sets w*° 0, w%0 (for any ordinal 
number | ) are defined (see § 5.15.1); we denote 

A00:= w«>0, A* :~w%0. 

Thus, A* = U wAn for every f (§ 5.151). Let | 0 '~ min{ | | | is an ordinal numbir 

A.£ = AM}; indeed, f0 exists (§5(10)), and 

^ ^ i ^ i - i A ^ ~ A^i~ ... = 4 « f 

(§ 5( 1), (7)). Further, for each x 6 A*> w e put 

??(#) : = min {̂  I ^ is an ordinal number, xe A*}, 



There holds especially: 
a) A«> is the smallest fixpoint of w(= Wi) and also of wf (§5 (14), (13')); conse­

quently, 
A^eMi. 

b) If are J.00, then 0 < r\ (x) < f0 (cf. above) and rj(x) is not limit (§5 (5); cf. 
above); consequently, rj(x) — 1 exists, and (cf. §5(3)) 

x e A«te) — A7**)-1 = wAvM"1 — Art*)-1. 

23.2/a. .Remarks, definition, (the definition of cr0> 

28.8/a. Lemma. n(x> aQ) c At for each xe A™ (where do is the strategy introduced 
in 23.2/a). 

Proof, (the jproo/o/23.3/a> Q.E.D. 

28.4/a. Corollary (of 23.2/a, 23.1/a a); cf. 19/a). (A*) is satisfied. 

24/a. Remark. Thus we have proved the satisfaction of (C), (P*), (A*) at the 
above introduced situation (cf. 19/a). Now the main result of those of § 6c/a, namely 
theorem 25/a, follows immediately from § 5.11- (excepting the statement (iv), which 
follows from (iv') by means of 18.0-2/a). 

25/a. THE ath MAIN MIN-MAX THEOREM, Let 

Et :== ~tutAt for i = 1, 2 

(16/a; in particular, Et — UiAt). Then there holds: 

(i) EtU E2=P, Etf) E2 = 0. 

(ii) ^ = M « . 

(m) There exists a (~t, {At})-absolute urstrategy. 

®i\ • ^ (smallest (% 
hv) _ } is the { , , (under c:) set of {^ . 
v ' Ej) {greatest I SI/ 
/ . v -#« \ . n (smallest . f^ fw* 
(*t>) _ } »# Me { , , fixpoint of { and also of { I . 

THE LISTS OF T E X T S U B S T I T U T I O N S 

THE F I R S T LIST OF TEXT S U B S T I T U T I O N S 
( a : = l , ath := first) 

<tfce choice of At, Ap := Let Y« == (FJ, F}1) (t = 1,2) be mutually complementary 
parameters (i.e. y2 = Yi), let 

*l :=5 <?A(Y>)> ** — flA(Yi); 
consequently (cf. 7(i)), A2 = P — Ai. 

<rte choice of /-ŵ > :=_ Let ^ ;= t^, i.e., the passive player uses only his plain 
strategies, too. 
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(the introduction ofwi, w2} :== For t = 1, 2 we put 

P 0 : = { z | * e P 0 n Hz}; 
evidently, P* = P0 - PJ. 

Let Wj, Wi be those elements of Corr (P, exp P) for which 

xwfioxeP0[) v}(T}x n (D U Tfx)), 

xwiCoxePlu Vi(rjx u (On Tfx)), 

for any xeP, D, C c P . 

<tfte proof of 17.1 /a> := v̂  and ^ are M-correspondences, which easily implies 
that WJ and w?< are M-correspondences, too (cf. §2(13)). Thus (ii) holds. Let 
xeP, D c p , 0 :== P - D . Then (cf. 16/1, §4(30), (31)) r w D o ~\xwtC o 
o (x e P 0 A n a^C) v (x e Z A ~I xwtC) o (x e P0 A ~I X e P0) v (x e #sP A 
A 1 aa^rja: U (C n Tfx))) o x e P j vj*^(P - ( I > U (0 n Tfx))) o xePl U 
U t^(r*# n (D U Tpo;)) OXWJD. Hence Wi = Wj, i.e., (i) holds. 

(the proof of the satisfaction of (P*)> := Let B £ 91^, i.e., B <= P and P C WJB. 
For each z e Z n . f i there holds z e [UJ]P(T}Z (\ (B U rj1.*)) (16/1, 17.0/1); hence, 
there exists G e S(UJ) such that GZ c: rjs n (P U rpz) for each ZGZ (] B. For this CF 
and any xeB, x = (xjc) e s(x, G) (cf. 31) there holds: If x& eB for some number k, 
then xjc+iTjxjc [namely, if xjc e B, then either % e ? 0 n B, then a^+i = a?* G P 0 n 
n P <= P 0 n wyP = P 0 , hence #*+irj#fc (17.0/1), or xjceZ n P , then ##+1 6 era?* c 
c= r?.rjt, thus again xjc+iTjxjc]. Therefore, if J\xjceB, then A ##+-17%, hence x e 

k k 

e qA(jj) (see 8(i/l)). On the other hand, if n A xjc e P , then there exists fc0 such that 

( A a ^ e P ) A #*0+i£P (namely, #0 = xeB); thus A %+ir?% and, further, xjcoe 

G P n Z [ % G 5 ; XJC0EB n Po implies %0+i = xjcoeB, which is a contradiction], 
therefore, a*o+1 e a ^ 0 — B c ( r ?^ o n (P U T ^ J ) — P <= Tfxko, hence %0+irp#*0; 
thus, again x e q&(yt) (see 8(i/l)). In such a way we have proved that always 
x e <fA(Y1) == A$. Therefore, &(x, G) c: Aj for each xeB. Consequently, (P*) is 
satisfied. 

(the property (I)> := theorem 11 

(the remainder of the proof of 22.3/a> := Let y e wtA, i.e., y e P 0 U ^(Vf U 
[)(A(] Tfy)). Let «/^^. If y e P0, then ^ e P 0 n wtA = P*, */I>, hence (y) e qHyi), 
&(y> (Si) = {(y)} <= <JA(y$) = Ai (see 6), ^ G U$_4$ = A, which is a contradiction (as 
y$A). On the other hand, if yeZ, then, evidently, there exists G* e 8(ui) such 
that a* | Z n -4 = a, | Z n AL, <x**/ <= T]y [} (A (] Tfy); hence (see 22.2/1) s(x, 
a*) c A$ for each x e A, and that contradiction ye A can be obtained again: Let 
x = (xjc) e s(y, or*). Then Z(x) > 0 (as #0 = V e Z), a?i G CT*#O = <r*tl <= r,% U (A(\ Tfy); 
hence, either xv e T\y, then x%T\x0, x e qA(y$) = Ai (see 6), or ^i G u4 n PJ1!/* but 
then xW 6s(-ri, <r*) c: A$ (as a?i G -A), but a^rf1^, hence (cf. 6) x e Ai, too. Hence 
s(̂ > 0*) c Ai, ye &iAi = A (the contradiction). # 

Therefore, ye A. Consequently, w%A <= A. 

(the definition of G0} := Let G0 e 8(Ui) be such that GoZ <= TJZ U (J.^^)-1 n r | lz) 
for each z e Z n -400; such cr0 exists [if z G Z n -4°°, then z G Z n wArM-* (23A/1 b)), 
hence z e [ui]P(T\z \} ( 4 ^ ) - i n T|%)) (17.0/1, 16/1)]. 

135 



<the proof of 23.3/<x> := Let x e A«>, x = (xk) e s(x, a0). Let x £ At. Let Vm 

be this assertion: x0, ...,xme A«>, ri(x0) > ... > rj(xm), A (%+irj1^ A -ixk+1V\xk). 
k<m 

V0 is true. If Vm holds for somem, then ~i a?m+1rjarm (otherwise x e qm(Yt) <-= At, 
a contradiction), hence xmeZ (as otherwise a ^ e P 0 n -400 = P0 f) WiA™ = P0, 
%t+i = %* e V\xm, cf. 23.1/1, 17.0/1, 16/1), xm+1 e aoXm - V]xm cz ,4 *<*-.)-- n Vfxm, 
*?(#m+i) <*?(%*) — 1 < ^(a?m); therefore, Vm+i is valid. Thus, V* holds for each k, 
hence (f](xk))0^k<(Oo is an infinite decreasing sequence of ordinal numbers, which 
is impossible. This contradiction shows that xe_4<. Consequently, s(x, G0) <= At 

for each xeA*3. 

T H E S E C O N D L I S T OF T E X T S U B S T I T U T I O N S 

(a := 2, ath :== second) 

(the choice ofA1, A2} := Let yt = (V], V}1) (t = 1,2) be mutually complementary 
parameters (i.e. Y2 = Y-)> ^ 

^ : = <ja(Yi), Af :== , D ( Y i ) ; 

consequently (cf. 7(i)), A2 = P — A%. 

<the choice of ^ > ;= Let <-^ := > ,̂ i.e., the passive player uses only his plain 
strategies, too. 

(the introduction ofwx, w2} := Let Wj, wt be those elements of Corr (P, expP) 
for which 

WjD = u^(V} n Vf n L» Vf), 

^ = ^ A ( r ] u rpu Lc, rji), 
for any D, C <-= P; here we might write also utq ... instead of dfq ... (t = 1, 2), 
too (cf. 25/1 (ii)). 

(the proof of 17.1/a> := (ii) follows immediately from § 2(13), § 3(3), § 644.1-2. 
Let D c P , (7 : = p _ J>. Using § 4(30) (with # := P), § 6.25/1 (i), § 6.7(i) and the 
fact that ( r j n Vfo LI>, Vf), (VJu rjxU L<s Vf) are mutually complementary 
parameters (cf. 5, § 6(4'), (1) etc.), we obtain: wiD = P - wtC = P - mq^Vj U 
U I?1 U LC, r?1) = 4 ^ ( 1 7 n r j 1 n LI>, r,n) = WjD. Hence ^ = w,, i.e., (i) holds. 

(the proof of the satisfaction o/(P*)> :=Le t Be9lj,i.e., B c P , P c t^B. Let 
B : = q ^ ( I 7 n r p n L* TJ1). Then there exists a 6 % ) such that' s(s, <*) <= B 
for each a e fyB = wjB (see 25/l(iii); cf. part IV). Let xeB, x= (xk) €B(x, a). 
Let some k0 be such that xkoeB; then xkoewjB, therefore xWes(% 0 , a) c B, 
hence there exists r > 0 such that a*0+r+i(r? n Vf n L*) **0+r A A %e+8+irP^o+« 

(see 6), which implies (cf. 4) xko+r+1Vjxko+r A (A -^+#+1^^+ , ) A a^+r+i e B; 

Fronj this and from #<, = a; e B it follows (by induction) that there exists a sequence 
0 = i i < k2 < ... such that for m = 1, 2, .. . there holds %w+irj#*ro+1~-i A 
A ( A a:*+ir?Ia?ib) A crjtm+1 e-B. Consequently, (A %+iITa*) A A V ock^riV)xki 

hence (see 8(ii/l)) x e qafy,) = Aj. Therefore, s(a?, a) c A/ for each ar € .B. 

<t&e property (I)> :== theorem 11 
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(the remainder ofthe proof of 22.BI<x.} :-=- Let C '.:=- qA(FJiJ rjJU IA, TJ1), C : = 
: = #*C(-= WiA), let <r be some plainly {C}-absolute %-strategy (see 25/1 (iii) or 
22.2/1 (with Ai : = C)). Let <r* be that plain w<-strategy for which <r* | Z n A = 
= <Ti | .£ n A, a* \ Z — A = a\ Z — A. Then s(x, er*) c A< for each xeA (see 
22.2/2). 

Let xeC, x = (#*) GS(#, <r*). Then there occurs just one of the following eases 
(oc), (ft): 

(a) A ^* ^ -4- Then x e s(#, <r) c C (namely: <r* | Z — -4 = <r | Z — .4, <r is 

plainly {C}-absolute, xeC = &iC) and: either V ^l--!1*?*, then x G q Q(T], TJ1) = 

= Ai (see 8(ii/2)), or A ^ **+irP«fc» then (cf. 8(i/l)) A (nafc+ill1** A xk+1(T
I
i{) 

U TJ1 \J IA)xk A xjc+i $A), hence (cf. 4) A xk+\T\xk, thus (see again 8(ii/2)) xeAi. 
k 

(ft) There exists k0 such that xkoeA; then (see above) x W 6s(##0, <r*) c A*, hence 
x € A* (Ai -= qa(yt) has the property (1°), as we have mentioned in 10). 

Thus we have proved that B(X, a*) c ^ for each x G C, consequently W(A = C cz 
c &tAf = .4, i.e., w?i.4 c: ,A. 

<tfee definition of <r0> : = For any non-limit ordinal number rj such that 0 < rj <; fo 
let a* 6 S(t^) be such that s(#, o") c q A ( r j U TJ1 U L^"1, r ? ) for all a; G .4* [such 
<r" exists: ^ - 10,4*-- = £*<JA(rj U TJ1 U JAV'\ rj1), see 23.1/2b), 17.0/2; further, 
cf. 25/l(iii)]. Let <r0 e S(tn) be such that for each ZGZ(] A«> there holds (cf. 23.1/2b)). 
<r0z = <T*<*>Z. 

(the proof o/23.3/a> :== Let xeA«>, x == (xk) GB(X, <T0). If V «*+irPa&, then 

x e qD(yi) = Ai (see 8(ii/2)). In the following let A *i %k+iF\lxk (the other possibility); 

then there holds A (%k e -400 => #AH-I G _4??<rc*>). 

[Proof: Let there exist m such that xm e .A00 but xm+\ $ A^x^; there holds xm $ P0 

(otherwise xm+x = xmeAH*»), a contradiction) and (see 17.0/2, 23.1/2b))v.4^<^> = 
= WiA^rn)~i = UiC where C := <jA(rj U TJ1 U L^<#*>--, rj1), hence B(xm+\, <**<*»>}$ 
£ C (otherwise xm+t G utC — .A *?<**>, a contradiction), thus there exists y == (̂ jfc)6 
es(%+i, a^<^>) — C. Now we put x' := (xm, xm+\, yx, y2,...); then x'Gs(a?m, 
or"<^)) c C (see 23.2/2), but A ~i %+irf1^* (t*16 supposition), hence (see 8(i/l)) 

y == (x')W G C, which is a contradiction (as y £ C).] 
From this and from Xo — xe A* 

it follows that A xk e -400 and that (rj(xk))o%k<mo is a nonincreasing sequence of 
k 

ordinal numbers. Consequently, there exists n such that (xn G AI00 and) ?7(a;w) =. 
= i?(«n+i) = . . . . Then, clearly (cf. 23.2/2), xW e *(xn, o*<*>) c q A ( r j U T? u 
-j j ^^nr - i^ r n ) ? b u t ^ n ^ + i r j 1 ^ (the supposition) and A ** £ *4,?(*B)~~1 (a0 

*?(%) — *?(#«) for * > n), hence (cf. 4,8(i/l)) A xk+tT}xk, thus (see 8(ii/2)) x e qa(Y*) = 

In such a way we have proved that B(X, a0)
 c A« for each x e ^l00. 
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T H E T H I R D L I S T OF T E X T S U B S T I T U T I O N S 

(a := 3, ath : = third) 

(the choice of A\, -42> := Let x4 = (Rt, I\) (i = 1, 2) be mutually complementary 
r-parameters (i.e. %2 = xl), let x, be an n -parameter and xi be a u -parameter (cf. 
§ 6(9)). We shall suppose (without loss of generality, see 13.3) that ^ 4 = 0 4= &2. 
Let 

Aj : = r®(Y.j), At : = rD(x«); 

consequently (cf. § 6(10)), A2 = P — Ax. (Of course, the symbol x itself (i.e., without 
index) will be used in the sense introduced in § 1.2.) 

(the choice of ~$y :== 
Let T be the graph of uh let X :== X r (§2.26.2). 
Let % be a mapping of Z into {0, P} such that: if z = (z0, ...,zn) e Z, %z = 0, 

then there exists K 6 $kj such that V [K 0 {zo, • • •, z*} = 0 A ~I Z^+IIVA;]. (Clearly, 

if x = (xjc) e P, %(x0i ..., xk) = 0 for some k (< l(x)), then x £ A;.) 
Let ft be a mapping of Z into [5t;]p (§2.12) such that for each x = (xjc) 6 X with 

l(x) = coo and for each z = (z0, ...,zn) e Z having the property A zm+iFzm there 
holds: m<n 

(i) A [{**» ^*+i} n tt(3&> ... , xk) = 0 => 7r(^o, . . . , xk) = ^(#0, . . . , afr+i)], 

(ii) zn G 5T(̂ O, ..., zn) => for each K G ft, \jzm€K, 

(iii) [A V % e :rc(#0, .• •, %)] => for each KeRjVxmeK. 
k »C>k m 

Let ~j be that (binary) relation on Z for which 

z i ~ , z 2 o x(z*) = x(z2) A rcz1 n %zx = rcz2 n #z2 

for any z1, z2e Z (cf. § 1.2). Evidently, ~ , is a memory relation. 

Remarks. 
0) The above given definition of ^ is somewhat complicated, but it involves 

various natural particular choices of <̂ *>,, cf. remarks 2 and 3. In contradistinction 
to the cases a = 1 and a = 2, here it is not possible to choose ^ := ~ generally 
(although there are particular cases at which the latter choice is possible, see remark 
2), as it is shown by this 

Example ([4], § 9.3.2). Let P := {0, 1,2,. . .}, P 0 = 0, 0% := {{1}, {2}, . . . } , xu, :.=-
:={0} for xeP - {0}, 0ut := {1, 2, . . . } , xut := {0} for xeP -{0}. Let A , % 
etc. (cf. 16-18/3) be introduced to ft, := {{&, k + 1, k + 2, ...} | k = 0, 1, 2, . . . } , 
r , := LP (which determines x*, cf. 13.1). Clearly, then 91, = {S | B *: P , 
card -Be{0, tf0}},w^ = 0 ^ P = w,Ay (cf. 25/3(ii)); especially, Pe%}, buts(x, a) cfe A/ 
for each a; e P and each a e S(u}) (cf. (P*)). 

1) By definition, at z e Z the player j retains the last position x(z) of z and the 
set nz n #z. If nzf\ %z = 0, then either %z = 0 or nz = 0 (as #z e {0, P}), and x £ A, 
for any variant x having z as an initial segment (cf. the definition of %\ if nz = 0, 
then 0 G St, and A, = 0). If TTZ n #z 4= 0, then %z = P, nzd %z~ nz, and, roughly 
speaking, nz can be considered as the set which could be attained under abiding IT, 
in the following course of play (cf. the proof of 21/3). 
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2) <*+•>? is uniquely determined by n and %. If nz n %z depends only on x(z), then 
^ = AJ. There are three important particular cases at which such a choice of n 
and of % is possible: 

a) 0 e Rj (then Aj = 0; cf. 1)), i.e., $tj is a singular collection. Then it is possible 
to take the constant mapping of Z onto {0} as n (and to choose % arbitrarily in com­
pliance with the corresponding definition). The case a) is a particular case of the 
following one: 

b) () K e St?. Then it is possible to choose the constant mapping of Zonto { f\ K} 
Kefy Ke®, 

as n, and the constant mapping of Z onto {P} as %. 
c) X does not contain infinite variants. Then it is possible to choose the constant 

mapping of Z onto {P} as %, and to put nz : = 7ZOK(Z) where JT0 is a mapping of Z 
into [$tj]p such that z $ TXQZ if z e Z — f\ K. 

Ke$ts 

3) Always it is possible to take the constant mapping of Z onto {P} as %. Let us 
mention two general examples of practically suitable mappings n. 

In the following two examples, let (if»)o «n<i+i (0 < I < a>0) be a sequence of 
sets such that {Kn\ 0 ^ n < 1 + I = 51/}. (Such a sequence exists, as 0 < 
card fy ^ Ko) 

3.1) Example. Let nx be the mapping of Zsuch that for any z' = (z$, ..., zm) e Z 
there holds 

л 2 = f ^mln{n|0-<n<l+ï, KnQІZo,...^}^} .£ 
V KnC\ {ZO , . . . ,ZÍ»} = 0 

n<l+ř 
A I-TÍIÍ! {*o, . . . , Zm} 4=0* 

w<i+i 

This defines just one mapping TTI of Z into 51/ U {P} c [%]p • It is clear that those 
conditions (i) — (iii) are satisfied with n : = n\. 

3.2) Example. Let the symbol (ZQ, ..., z_\) mean the empty sequence. We put 
fi(zo, . . ., z_x) : = 0, l((zo, ..., z_i)) : = — 1 . Let m be arbitrary; if for any ze Z U 
U {(ZQ , ..., z_i)} with l(z) < m an integer fiz is defined, then we put for each z = 
= (zo, • •-, 2W) e Z 

fxz : = min {> | IA(ZQ, ..., zm_t) < n < 1 + Z, zm $ Kn}, 

where min 0 : = 1 + I. Clearly, this inductive definition introduces an integer /At 
(such that 0 < fiz < 1 + I) to any ze Z. We introduce Kt+i : = P . Let n% be the 
mapping of Z such that rc2z = K^% for each z e Z. Thus jr2 is a mapping of Z into 
% U {^} c t^LlP- I* - 8 »°* difficult to verify that those conditions (i) — (iii) are 
satisfied with n : = m* 

(the introduction of w\, w2} : = Let Wj, w% be those elements of Corr (P, expP) 
for which 

w^D = f| uflH^KOD, r,)9 
Ke®i 

wtC = U UiqA(hKUc, Ti), 

for any D, G c p ; here we might write also iMf... instead of &tq ... (t = 1, 2), 
too (cf. 25/l(ii)). 

(the proofof17.1 /«> : = (ii) follows immediately from §2(13), §3(3), §6.15.1-2. 
Let D <= P, C : = p _ D. Using § 4 (30) (with Q :=-= P), § 6.25/1 (i), § 6.7 (i), § 6.13.1 
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and the fact that (L^ue* T<), (L<p-~#)n.0> Yj) are mutually complementary parameters 
for any K c P (cf. 5, §6(4') etc.), we obtain: wtD = P ~~ WiC = P - (J #*<JA(LKUC» 

Ti) = f\ ^flA(L(P-K)n/>, T/) = (1 uflH^KnD, Yj) = wft. Hence wt = «?/,i.e., (i) 

holds. 

<tfce proof of the satisfaction of (P*)> :-= Let B e 91/ in this proof. For any 
K c P we denote BK : = ^ ( L J ^ B , Ty), % := &,BK. Thus B c ^ J 5 == f) BK. 

Ke®i 
o 

For any K c p let aK e $(%) be such that s(#, <?#) C BK for each a: G BK (such CTK 
exists, see 25/1 (iii); cf. part IV). Again, let Y be the graph of Uj. 

There holds: 

(LI) BKo = t^J3 for any K0 e [%]p. 

(L2) P 0 n wfi c f| K 
Ke®} 

(L3) If K e [$fy]p, z G (£ n tv;J?) — K and y G (j/rz, then y G w/2? and yYjZ. 

Proofs (of (LI) - (IA)): 

(LI): Let Jr0e[Jl/]p . There exists K0e% such that K0 c K0. There holds 
#*o => -BJK; => fl BK = wy-B (§ 6.14, § 3 (3)). Let K e % . Let a be the mapping of Z 

such that for each z = (zo, ..., zm) e Z there holds: 

WKZm V 

Clearly, n e S(%). Let a; G .Bjr0, let x = (#*) e s(a;, ex). Supposing A a* $ K0 n -B, we 

can obtain a contradiction (then x G S(#, <xjr0) <= B^0 (as a; e BKtt etc.), hence, among 
others, V xk € Ko H -B)« Thus, there exists jfc0 :— min{& | a:* € JK"o n B\; there holds 

&o < l(x) and x-*»- G s(afc0, d^) c B# (namely, a?*0 e K0 n B c 5 c ^ 5 c B x ) . 
Thus, there holds: 

(ai) Axk$K0(\B, 
* < * o 

(a2) V (% e K n B v A % + i ^ % ) . 
* » *?o m<k 

m>k0 

Further, A **+ie <*K<Fk> hence there exists y =-= («te) G s(a?, aKo) suoh that 
* < * o 

(ft) Axk = yk> 

There holds y 6s(a;, aKo) c BKo (as xeB cz BKo etc.), hence 

(y) V (3te 6 K0 n B A A ym+iYiym). 
k m<k 

But (ai), (^), (y) give V (3tee.K0 n B A A ym+il>w), hence A ym+iTiym, i.e., 
*>*o m<* w < * 0 

A a?m + i l>m (see (fi)), which together with (a2) gives V (a* € K n B A A ab+iIVifo). 
m<*0 * m<& 
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Hence x e BR- Consequently, s(x,a) <-= BK, hence x e UJBR = &jBK = BR (see 25/1 
(ii), 16/1). Thus, for any KeRj and each x e BKo there holds xeBK. Hence BKo c 
c fl ^ ^ w/-®- ^n* s completes the proof of (LI). 

(L2): If KeStj and xewjB, then s(#, <IJC) c BK (as w/B c B#); if, moreover, 
xeP0, then s(#, GK) = {(a?)} c B# = qA(l*Kr\B, Tj), hence, among others, xeK. 
Thus P 0 n w5B <= K for each K e Sly. 

(23): Let Ke[%>, z e ( £ n w/B) - K (or only zewjB -K, see (L2)), let 
y e GRZ- There exists x = (a?*) € s(z, <TK) such that #i = y, further s(z, GK) <= ftr (as 
2 G w*B c B#, cf. the proof of (LI)), thus V (% e -f H B A A Xm+J?jxm)> but % = 

* f t * 
= z<£K, hence V ( # * e - ^ n -® A A #m+iFy#m)- Thus x-1-e Bj^, and, moreover, 

A;>. 1 m<k 

XiTfXo, i.e., yr^». Further, yeBK[ify$BK, then there exists y = (yk) e s(y, GK) — 
— BK, but now we can choose x = (xk) : = (z,y,yi,y2, . . . ) » t n e n x e s(z, <r^), x% -= y, 
hence x-1- e BK (see above), but xW = y ^ B^, which is a contradiction], but BK = 
= WjB (see (LI)), hence y e w$B, which completes the proof of (L3). 

Q. E. D. ((LI) - (23)) 

Let a be the mapping of Z such that az = Gntnxxy.(z) f° r ea#k z e -̂ - Evidently, 
o e ^ S(%). 

Let x e WjB, let x = (xk) e &(x, a). There holds 

(1) x e s(x, o j c X r . 

For obtaining a contradiction we shall suppose x $ Aj. 
We introduce (for any k) 

V* : = a;* e w^B A ^ l(x) A A %m+iTjXm. 
m<k 

Let V* hold for some k. Then there exists K0 e .$1/ such that K0 n {#o, •.., a?*} = 0 
(otherwise the supposition A #m+ir/#w implies x e Ay, which is a contradiction), 

m<fc 

in particular, % £ fj K. Hence, ^ e Z (otherwise xk eP0 n w/B c: fl K (see (L2), 

which has been eliminated), thus k + l ^ l(x). Further, %(x0, ..., xk) = P (as 
A xm+iTjXm). Therefore, xke(Z f] WjB) — n(x0, ..., a>) (namely, if a;* e n(x0,..., Xjc), 

m<k 

then we can obtain a contradiction by means of (1), the condition (ii) in the definition 
of 7i and the supposition A xm+i^jXm, cf. above), n(x0,...,%) e [Sij]p9 % i e 

m<zk 
eo(«o, ..., Xk) = o«(*o,...,**)nz(ab,...,**)«* = <Ma<,,...,&*)#*> hence % i e w/B, afe+iFja;* 
(see (13)). 
Consequently, V#+i holds. 

We have proved V* => Vĵ +i for each k, but V0 holds trivially, hence V* holds for 
each k. From this it follows that there holds: 

(2) l(x) = <o0; 

(3) A afc+iX/sjt; 
k 

(4) f\.xke WjB. 
k 
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The above considerations (cf. (ii) in 16/3, (3) etc.) imply 

(5) Kxk$n(x0,...iXk)', 
k 

(6) A #*+ie °*<*o,...,.r*)S*; 

the supposition x £ Aj and the properties (I), (#) and (3) imply by means of the 
property (iii) (in the definition of n) that 

(7) there exists n such that A #* ̂ 7t(x0, ...,xn). 

Let W* := (n(x0, ..., Xk) = n(x0,..., xn)). Wn is valid. If Wr holds for some r > n, 
then xr, xr+t$7t(z0>..., #») = n(x0, ..., a?r) (see (5), (7), Wf), hence (see (1), (2) and 
the condition (i) in the definition of n) n(x0, .., zr+t) = n(x0, .., #r) = TZ(X0, ..., xn), 
thus Wr+i holds. By induction, W* holds for each h > n, i.e. there holds 

(8) /in(x0, ...,Xk) ==7t(x0, ...,xn). 
k>n 

Therefore (see (6)and (8)) xM 6»(xn, ant*,...,**)) c : -U,..,«»o (namely, n(x0, ...,xn)e 
€ [%>, hence (see (4)) xnewjB = Bn{Xo Xn), see (LI)). But xWeB^, . . . , , , ) 
implies that there exists r *> w- such that av e 7r(a?0, ...,#«) -^ 7r(a\,, ..., xr) (cf. (5)), 
which is a contradiction (see (5)). 

In such a way we have proved that s(x, a) cz Aj for each x e w$B, and, therefore, 
for each x e B (c t^lj?). 

<tke property (I)> := lemma 15 
<ti%e remainder of the proof of 22.3/a> :== Let K e St* be fixed in the following 

part of the proof, let C :=-= qA(LKuA, T{), (7 := il*C. Let a be some plainly 
{C}-absolute ^-strategy (see 25/1 (iii) or 22.2/1). Let cr* be that plain ^-strategy 
for which o* \ Z 0 A = <x< | Z n A, o*\Z-A = o\Z— A. 

Let xeC, x = (#*) e s(a;, a*). Then there occurs just one of the following cases 
<«)*0»): 
(a) A x* $ <-!•' Then x e s(cr, a) <=' C (namely: cr* | Z — A, a is plainly {C}-absolute, 
xeC = &<C), hence (see 8 (i/1)) there holds 

(A xkeK u -4) v V frk+iTiXk A /ixmeK\) A); 
k k m<k 

this and A xk $ A imply 

(hxkeK)vV (xk+iTtXk A A % 6 K), 
Jc k m*k 

i.e., xeq[A(Lx,r<) c A«. 

(ft) ~* A x* $ A. Then there exists n := min {k\Xk€A}, hence 

W * >A**M 
*<n 

audxW6s(%, a*) cz A< (namely: xne A == il<A<,o* is plainly {AiJ-absolute (22.2/3)), 
hence there exists Kte$ti such that xW e flA^t* F«) (*6/3, 13.2). There exists 
•&*€.&< such that Kt\) K c K2 (see 16/3, 13.1). Consequently, xW e f A(JS.2, Ti) 
(§6.14): 

(2) (A »* € K2) v V ( - W V * A A % 6 * a ) , 
*>n * » n wt<* 
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(8 (i/1)). Further, (1) implies A x*+\ e <*xk (an> (dearly, n < ?(*)), thus there exists 
k<n 

Y = (yk) e s(#, cr) c ft (ef. above) such that 

(3) A #* = «*; 

y e C together with K c K2 implies 

(4) (Ayk£K2[) A) v y(yk+lFtyk A AymeK2[J A). 
k k m-^k 

There holds 

(5)* (A* *eJC 2 U. - r4 )=>xeq A (L^ , r< ) . 

[Proof. If A XkeK2 U .4, then Axk^K2 (see (2)), which together with (2) gives 
fc<n fc<n 

(A »* e K2) v V (»*+ir<«* A A % eK2), i.e., x e cjA(L#2, r<) (of. 8 (i/1).] 
<t k m<4k 

(4) shows that there occurs some of the following cases (/?1) — (j83): 

(/81) AykeK2[) A. Then A ^ e Z 2 u i , x e * A ( 1 - * J > r<) (see (3), (5)). 

(j82) V (yfc+ir^* A A ^ ^ 2 U A). Then A ^ € i f 2 U i , x e <JA(W2, T.) (see (<?),(5)). 
£>»n m-^k k*^n 

(03) V (yk+iFtyk A Aym€K2\j A). Then by using this, (3), and (J) we get 
V (xk+iTiXk A A #m e K2), hence x e qA(L^2,T t) (8 (i/1)). 

A*< n m-^k 

Consequently, always xe<jA(L#2, T<) C Ai. 
Thus we have proved that B(X, <T*) C At for each « e C . Therefore, &tq A(LKU^, T<) C 

c &tAi = .A for each K e ft*, hence (cf. 17.0/3) M>(-4 c i , 
<efce definition ofa0} : = Let ^ be a non-limit ordinal number such that 0 < r\ <; 

^ |o- Let K e ft(. In the remainder of § 6c/3 we shall denote C^ : = qA(LfcuAn-*> T(), 
.A^ :== &tCK; of course, A.^ = \J AK. Let there be chosen.vK e $ (^) (to any of those 

KeUi 

rj, K) such that s(x, cr̂ :) c CK for each xeAK (such <r# exists, cf. 25/1 (iii)). Further, 
let ^ be a well order of ft$. For x e A00 we put 

K(x) : = min„(iC){K | K e ft*, x e j ig*}, 

where m i n ^ ) is taken under <„(<!;). (This is a correct definition, cf. 23.1/3b).) Let 
a0 e #(^i) be such that (T<>Z = G T ^ for each z e Z n 4°°. 

(the proof o/23.3/a> := We shall use the following auxiliary assertions: 
(Al) Let rj be a non-limit ordinal number, 0 < *? < fo, let KG ft*. Let ye AK, 

V'lZl i f yel^-TtenyeKu A«~i A(y'Tiyv y'eAK). 

(A2) If 2/ e -400, then y e (Alfy) n K(t/)) - A***-*. 
[Proofs, Let the suppositions of (Al) be satisfied. If y $ K \j A^1, then Y$CR *° r 

any y = (yk) with y0 ~ y, hence y^Ag. Therefore, yeK\j A71"1- Let neither 
y'V\y nor y' e AlJ hold. Then there exists y' = (̂ j.) e s(y', aK) — C£- Let y == (y*) : = 
•= ( ^ % ^ i ^ 2 » - - ) ; clearly, yes(y, ejj) c C* (#i = y 0 = ^'; y e . 4£ ) ,bu t it te easy 
to see that i ^ T i y (i.e., nyiTiyo) together with (y-1- = ) y ' £ C £ implies y £ C £ 
(cf. 8 (i/1) etc.), which is a contradiction. Thus (Al) is proved. (A2) follows from (Al) 
and 23.1/3b).] 
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u) If k0 is such that xko+1YiXko A A x*$ 400* then there exists K e&rsuek that 
T~ k *k0 

^XXQ) U ... u K(xke) e K (as S^ is Undirected), hence xko+1YiXko A fa xkeK (see 
- iit <*v 

(A2)) , thuBX6q A (L K > r«)c A«. : * " - : - - ? " -
6) If "i A %Gi,0 0 . then there exists m such that #m;£^°° A /^xkeA°°. Then 

* ' . ' > . . • * < w 

^ < m (x0 = xeA00). We put &0 : = m — 1 and obtain xko+1YiXko from (AL) [by 
choosing K :== K(^0), ^ :== rj(xko), y : = xkoy' :=xko+1 in (Al) and using xK+1 = 
— crm ^-4°°]. Thus the case a)~ has occurred, hence xeAi. 

c). Let fa xke A00. If V xk+iYixk, then again there occurs the case a) and hence 
k k 

*$Ai. Let fa-^xk+1TiXk. Then (Al) gives - A xk+1 e 4£(£*}) <= 4r^*> [by choosing 
•' k • " " A: : 

y:=xk> y' :=s:#k^l9 K := K(xk), rj:=rj(xk) and using ~i xk+1TiXk]. Therefore, 
wtefc))/fc,*.o is a honincreasing sequence of ordinal numbers, thus there exists ki such 
that A V(xk) = rj(xkl)) let rj0 :=.rj{xkl). Hence A ^*+i e AK°(zkj. Therefore, 
v^{#jt ))&.»*,, is a nonincreasing sequence at ^Vo as the well order, thus there exists 
k2 > k! such that A #(#*) = #(**,); l e t #o := -8"(afra). Clearly, x-*»- 6 s(afra, <4°0) <= 
c Cf0, hence A «* e -4*"-1 U Ko (as A 1 s*+i--V*- see 8 (i/1)), but faxk$ Ar^)~^ = 

= A*70"1 (23.1/3b)), consequently, fa xkeK0. The U -directness of 51* guarantees the 
k>k2 

existence of KeS<i such that K(x0) u ... U K(xkz) c K. Therefore, faxkeKy 
k 

.The considerations a), b) and c) have shown that always x e At. Consequently, 
s(#,Go) e At for each x e A00. 

(To be continued) 
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