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SIMULTANEOUS NONDETERMINISTIC GAMES (III)

JAN HANAXK, BrNO

(Received June 7, 1971)

REMARKS

The preceding two parts (§§ 0—3; §§ 4, 5) of this discourse appeared in this journal
in T5 (1969), 29 —60, and T6 (1970), 115 —144. The third part contains the introduc-
tion of some special aims and of certain properties of aims (§ 6a, b), and the most
important general min-max results for aims (§ 6¢/1—3). These min-max results
are very strong [as they guarantee that plain strategies (excepting the case of the
passive player in § 6¢/3, where somewhat ‘“‘stronger” kinds of strategies must be
used) are sufficient for in some sense optimal playing at aims belonging to certain
important sizable classes of aims], and involve significant particular cases investigated
formerly in [1] (and other Berge’s works), [4], [5], [18], as we shall show in § 6e,
where the connections among the corresponding results of the quoted references
and those of this article will be presented, too. Remarks to § 6a-c will be contained
in § 6d, in the fourth part. The results of § 6¢ will serve for deriving theorems on
pay-off functions (mainly on the so-called Bergean ones, cf. [18], and § 10 of [4])
in §9, on topological games (cf. [7], [8]) in § 8, and for proving theorems belonging
to the so-called descriptive point of view (cf. § 9 in [4], and [11])in § 7.

Preliminary (and, usually, considerably less general) versions of many results and considera-
tions of the whole discourse are contained in my papers [4], [6], [18], which were published as
research memoranda of the research programme headed by doc. dr. V. Poldk. Within the frame-
work of this programme, I have besides investigated some problems concerning the actual playing
of certain SN-games: As it was already shown by Zermelo in [20], "two—player initial finite
games with perfect information and with (antagonistic) WDR (= win—draw—Ioss; any infinite
play is drawn) pay—offs7 (instead of ...7 we shall say only “PI-games’’) have significant stra-
tegic properties; for having these properties, the so-called board games (special actual PI-games,
as, e.g., chess, checkers etc.), having been known for several thousand years, are to be considered
as the best among all actually played games. Nevertheless, the initial situation in any PI-game
(except those having only one play starting from the initial position) is asymmetric for the
players; thus, PI-games are not ‘‘fair”’, which is a ceértain flaw of them. But not only PI-games
but also | initial finite complete games with WDR pay-offs | (instead of , ..., we shall say only
“I-games”; PI-games can be considered as particular I-games, cf. § 4d) have those significant
strategic properties ([19], § 2.2); thus, it is natural to search for symmetric (i.e. having an auto-
morphism which changes the players and, of course, preserves the initial position) I-games,
expecially symmetric I-games with the character in some sense near to that of well-known board
games (as chess ete.). Constructing the former games — which might be considered as the best
among all possible games — has shown to be a somewhat complicated problem (while it is not
very difficult to construct ‘“well playable” symmetric I-games if no special preliminary conditions
to their character are given); this problem, together with certain connected questions (in particul-
ar, the applications of the so-called antagonistic coordinative arbitration) were investigated
cifcumstantially in [19], where I have also presented a well-playable concrete symmetric I-game
(called Symmetrized Chess and being near to the usual chess), as an example of the constructions
given there. (The main results of [19] will be published separately in a journal article.)
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Thus, one may conclude that investigating SN-games (and their special subclasses,
mainly antagonistic complete games) not only is advantageous from the mathematical
point view (ef. § 0), but also leads to the introduction of quite new actually playable
games being in principle better than the games known till now.

§6. THE FUNDAMENTAL MIN-MAX RESULTS

0. Convention (for § 6). In § 6, let (P, Po) be a type (§ 1.1); the basic aims (§ 6.6),
the r-aims (§ 6.13.2), the properties in § 6.1 etc. will be introduced to the given
type. Of course, also the sets Z := P — Py, Z, P, memory relations (cf. §§ 1.1-2)
ete. are considered as defined to (P, P,).

Further, in § 6a, b A denotes an aim (§ 1.1), & means an aim-collection (§ 3.4),
I'" € Corr (P, P) is some (fixed) Py-ended graph (§§ 2.16, 2.18.2), X : = Xr (§ 2.26.2).

Remark. In contradistinction to the preceding two parts, we shall always use
the denotations u,, uy, v,, U;, B, (etc.) instead of uy, u;, v, U;, By (cf. §§3.2, 3.3),
respectively, as the composition of the thick indices in the latter expressions would
be too laborious for the printing house. (That replacement does notlead to ambiguity.)

a) The properties (I, "), (I°, I'), (I, I'), (I3, T")

The important (cf. § 3.10—11) property (I, I') was introduced in § 3.9.2. Now we
define several other usable properties at aims.

1.1. Definition. We say that A has the property (K, I'), where K e{I,, I°, I3}
(three-symbol set), iff for each x € X and each k with 0 < k < 1 4 I(x) there holds
the corresponding statement [K, I'] (depending on x, k), where

[T, IM:=xecA=xl¥1c A
I IMN:=xcA <= xklc A
I3, I':=xeA<xklec A

1.2. Definition, remark. For x, yeX, 0 < % < 1 + min (I(x), I(y)) we define
(cf. 1.1, §3.9.2):

[LT]:=[xcAA (@,...., %) = (Yo, ..., &) A (xIF1¢ A v ylkle A)] > yecA
Then A has the property (I, T') iff [I, I'] holds for all those x, y, .

_ Io = IO —
1.3. Definition, remark. Weput K := {I, if K{=1° ; thws K=K.(K,TI)
' K e{l, I3}

(where K €{I°, L, I5, I}) is said to be an aim basic I'-property (or only: a dasic
property), and (K, I') is called its dual one. Instead of (K, L) we shall write (K), too.

1.4. Definition. We say that U has the property (K, I') iff each A€ U has this
basic property. (Cf. § 3.9.3.) We say that an aim function f [an aim corresponden-
ce p¢] (§ 5.8) has the property (K, I') iff the collection im f (:= {f(a) | a € dom f})
[{pt4 | A = P}] has this property.

2.0. Definition. A collection U is said to be U -directed [n -directed] iff to each
Ay, A, € U there exists A € U such that 4, U 4, <« A[4 < 4,n A42).
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2.1. Theorem. Let (K, I') be a basic property. There holds:

(0) Ahas (K,T') <~ An X has (K, T
(%) .A has (I, T') <> A has the properties (1I°, ), (Io, I')
(%)  Ahas (I3, T) = Ahas (I, T)
(4i5) Ahas (K, )< P — Ahas (K, ) <X — Ahas (K, T)
(1) A has (K) = A has (K, T)
(v) @ and P have the property (13)
X has the properties (Io), (I), (I5, I')
P — X has the properties (1°), (I), (I5, I')
(vi/l1) A bhas (I, I') <= An X has (L)
(vi/2) Ahas (I°, T) < Ay (P — X) has (I°)
(vit) Whas (K, ')A K+1 »ALE%A andAnmA have (K, T')
(vitgf1) W has (I, T') A A is y-directed »};IQIA has (I, T')

(viti/2) A has (I, T) A A is n-directed = () A has (I, T)

A
(Here we put (YA : = P.)

) A

Proof.

(0): Let xeX, 0 < k <1 4 l(x). Then, of course, xc A iff xe An X, and the
same may be said about x(*1, for evidently x{*] € X. By means of this trivial remark
the agsertion (o) can be obtained immediately from 1.1, 1.2.

(¢) is trivial, since [Ig, I'l < [I°, T'T A [L,, I'] (for all A< P, xeX, 0 <k <
< 1+ (x)).

(¢1): Let A have the property (I3, I'). If x, ye X, 0 <k < 1 4 min (I(x), [(y)),
then xe A A (xlk1¢ A v ylkle A) < (xc A A xIK1¢ A) v (xe A A Y&l € A) = yl¥]
€ A=>yecA(xeAA xtkl¢g A cannot occur, etc.); consequently, A has the pro-
perty (I, IN).

(¢¢5): Let xeX, 0 < k < 1 + I(x). If A has the property (I°, "), then xe P « A
implies x(¥1e P — A; thus P — A has (I,, I'). If A has (I,, I'), then x¥le P — A
implies x e P — A; thus P — A has (I°, I'). Consequently, if A has (I3, I'), then
P — A has (I, ') (cf. (i)).

Now let A have the property (I, I'). Let x, yeX, 0 < k < 1 + min ({(x), l(y)).
Letxe P — A, (o, ..., k) = (%o, --., Y), and let either x(¥1¢ P — A or yl¥1eP — A.
If y¢ P — A, i.e. ye A, then this and the above suppositions imply:

yeAA (xo, ..., %) = (Yo, ..., Y&) A (y¥1¢ A v x[¥1€ A);
consequently (cf. 1.2 with x: = y, y: = x) x € A, but this is a contradiction for we
have supposed x € P — A. Therefore y e P — A. Hence P — A has the property (1, T).

Thus, if A has a basic property (K, I'), then P — A has (K, I'). Hence, if P — A
has the property (K,T), then A=P — (P — A) has (K, I') = (K, I'). Finally,
X —A=(P—A)n X, hence (see (0)) P — A has (K, T') iff X — A has (K, I).

(1v): This follows immediately from 1.1, 1.2 (X = Xr < P = Xp).

(v): Evidently, § has the property (I5), X has the properties (Io) and (I, I').
If x,yeP, 0 <k <1+ min (I(x), [(y)), xeX, then x(¥] ¢ X cannot occur, and if
moreover yl¥l e X, (o, ..., 2x) = (Yo, ..., Y&), then, clearly, y € X, too. Thus X has
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the property (I), The other assertions in (v) follow, e.g., from the above proved ones
by means of (iii).

(vi/1): If An X has the property (I,), then An X has (I, I') (see (iv) with A: =
:= An X),hence (cf. (0)) A has (I, I'). On the other hand, if A has (Ip, I'), then
An X has (I, I'), hence if some x € P belongs to An X and if 0 < &k < 1 + I(x),
then (x € X and hence) x*1e An X; thus An X has the property (Io).

(v4/2): This follows from (vi/1) and (iii).

(viz): This assertion follows immediately from the definition 1.1.

(vi4i/1): Let A have (I, I') and be U -directed. Let B be the union of A. Let x, y e X,
0 €<k <1+ min (I(x),(y)). Let x € B, (2o, ..., k) = (%o, ..., Y&) and either x(k1¢ B
or yl*l e B. There exists A; € W such that x € A;; if x[¥] ¢ B, then x[¥1¢ A, hence
y € A, < B (since A, has (I, I')), if yi*] € B, then yl¥] € A, for some A, € U, but A is
U-directed, hence there exists A e U such that A, U A, < A, hence x € A, yi*¥l € A,
y € A < B. Thus always y € B. Therefore, B has the property (I, I').

(vidi/2): If A has (I, I') and is n-directed, then B: = {P — A| Ae A} has (I, T
(see (ii1)) and, clearly, is U-directed. Hence the union C of B8 has the property (I N}
(see (viii/l)), thus P — C has the property (I, I') (again (iii)), but P — C is the inter-
section of A.

Q.E.D.

2.2. Counter-Examples. Let P: = {1, 2}, Po: = 0, let I' be such that I'z = {«} for
each ze P. Hence X ={(1,1,1,...),(2,2,2,...)}. Clearly, X has not (I°), con-
sequently (2.2 (iii)) P — X has not (Io); cf. 2.2 (v) Nevertheless, X and P — X have
() (2.2 (v)); of. 2.2 (ii).

Let A:={(1,1,1,...),(1,2,2,2,...)}. Then An X=1{(1,1,1,...)}, hence A has
the property (I3, I') and thus also the other three basic I'-properties (2.2 (o), (i), (ii)).
On the other hand, A has no basic L-property (K) [in fact: if x: = (1,2,2,2,...),
y:=(1,2,1,1,1,...), then xeA, (%, %) = (Y0, ¥1), x(I¢ A, but y ¢ A, hence A
has not (I); clearly, A has not any other basic L-property]; cf. 2.2 (iv).

Let A :={(1,2,1,2,...), (2,1,2,1,...)}, A:={(1,1,1,...)}, Bn:=P — Ap
(m =1, 2). It can be slmply verified tha.t A1 and A; have the property (I) (and (Io),
too), hence (2.2 (iii)) B, and B; have (I), A, U A; has not (I) [in fact, if x :=(1,1,1,...),
y:=(1,1,21,2,..)), then xeAi U Az, (%, 1) = (Yo, %), yeAU Az, but
y¢ A U A;], hence Byn B; (= P — (A U Ap); 2.2 (iii)) has not (I); cf. 2.2 (vii) —
(viii).

b) The basic aims, the r-aims, and their properties

3.1. Convention. If some x = (Zx)o <k<1+i(x) € P i8 considered, then we shall use
also the denotation x = (z3), and, moreover, if I(x) < ko < wo, then we introduce
formally 2, := %i(x) and xo) := (%(x)). Thus, if x = (zx) € P, then we have defined
zp, for each integer n > 0.

8.2. Convention. In the following A (V) means the universal (existential) logical
quantifier applied to non-negative mtegera Eg, A P(m, k) means: “for all integers m

being greater than (fixed non-negative mteger) k P(m, k) is valid”’, while e.g.

A P(m, k) means: “for all non-negative integers k being lesser than (fixed non-nega-
k<m

tive integer) m P(m, k) is valid”’. Similarly, the short denotations as |J, () ete. will
k k»n

concern non-negative integers.
71 will be used as the symbol of negation.
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4. Definition, remarks. For 4, B < P we put
=(BX 4,P,P),
i.e., LE (e Corr (P, P)) is a graph (§2.18.1) such that

fo:{g if ”E{ﬁ—A‘

LA == Lf;, LB .= Lg

Further we introduce

Evidently, there holds:

(0) L =L},

@ L = Lp = L7,

2) Lj =L, =15

(3) LE=Lsn LB

4) LE-% = (Lp — La) n (LP — L),

4') . Lp_4=Lp — L4, LP-B = LP — LB,

(the operations N, — on the right sides of (3), (4), (4') are used in the sense introduced
in §2.5.2). .

5. Definition, remark. Under a parameter we shall mean an ordered pair y =

= (I'T, ') e Corr (P, P) X Corr (P, P); ¥ := (Lp — I', Lp — I') ig said to be the
complementary parameter (to v). Evidently then

) , ¥=r.

6. Definition. (The basic aims.) Let y = (I'l, ') be a parameter. For ¢ {s, O,
0,1, 2,...} we shall introduce the aims q%(y) = q%(I'L, I'Il), q,(y) = q.(I'%, I'):

qk(y) :={x | xeP, a4 Iy Am/ékxmﬂf‘nxm},
qr(y) :={x| xe P, zp [y Vm!kxmul‘nxm},
q4(y) := lkJ q&(y),
aly) = fk\ qx(Y),
970 =N U ¢(v)
= ykoﬂ qx(Y),
:={q%(y) | Y € Corr (P, P) X Corr (P, P),*€{2, 5,0, 0}},

(where and also in the following, the - symbohsm is used in the same manner as in
§5.8). Elements of M will be called the basic aims.

7. Theorem. Let v be a parameter, e {4, 0,01, ., .61,...}.
Then

@) 9*(y) = P — q.(Y).
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Further (for any aim A)
(ii) AeM<=P —Aec.

Proof. For any 2,y € P and an arbitrary I'° € Corr (P, P) there holds: [1yIz
iff y(Lp — I'°)z. This trivial remark shows that (i) is true with ¢ := % and © :=
(k=0,1,2,...). Now the verity of (i) with the other ¢ follows immediately from
definition 5. (i) and the corresponding definitions 5, 6 imply that (ii) holds. Q. E. D.

8. Theorem. For every parameter y = (I'Y, I'l) there holds:
(/1) 9a(y) ={x|xeP, (A zeMar) v V (@1 e A A xm+1I‘I¢m)},

(¢/2) q2(y) ={x | x€P, (V e Ilg) A A (@1 e v meﬂl"lxm)}

m<k
((5s1)  q5(y) ={x|x€P, (A ap Mag) A A ka+1PIwk},
(13/2) aly) ={x|xeP, V e M) v V /\ Tp+1 Mg}

n k»n

Proof. Tt will be sufficient to prove only e.g. (i/1), (ii/1) (cf. the preceding proof
and 7 (i)). Let x = (xx) € P be fixed. We introduce (at x) these four statements:

V)= A (el x v V 2m1 ' ry),

m<k
Vai= (A 21 IVee) v V (tr+1 e A Ak"’mﬂl“xm),
me
Vii= AV @lT2e A A Zpaa[Teem),
n k>n m<k
V= (A apTze) A AV 2.
n k»n

It is evident that if (for each x) there holds V; <> V2 [V3 < V], then (i/1) [(ii/1)] is
valid.
1. If 2y [, A A xm+1FIxm for some 7, then (A V 2puI'ey) A /\ Zpep [Ty,
E>r m<k k<
hence A (@p+1 Ty v V Zm+11Tzy,). The latter statement also holds if /\ g4 [y,
m<k

Thus Vz implies V;. On the other hand, if V; holds, then either - V xk+1l‘nxk then

A 7V 2m11 ey, hence A Zp+1 1 ey which 1mp11es V,, or VleI‘ka, then there
E m<k k
exists the integer 7 := mm {k| zkHI‘ka} hence A 7 &g Mg, consequently

k<
A 7V 2mu 'y, therefore (cf. V) /\ ap g, thus zp Iz, A V xm+1plﬂ7m,

k<r m<k k< me<r
hence again V; holds. Thus we have proved Vi< V2.

2. If V3 is valid, then A Vx,,“l"lxk and A V A Zm+11'x,, , hence /\ Tn 02,
Thus V, holds. On the other hand if Vg4 holds then A V (1 e A A Tm+1 [ Tg,),
consequently A V (@1 T2 A A Zma I y), hence V3 is valid. Thus Vi<V, hag

m<k
been proved.

Q.E.D.
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9. Remarks. Let q¢ (where ¢ is some of those occurring in the head of 6) be that
mapping of Corr P X Corr P (= the set of all parameters) into exp P which maps
any parameter y to q¢(y). Thus gq°e (exp P)CorPxCortP; ge jg g certain aim-
function (§5.8). Let E := Corr P X Corr P, F := P in the situation considered
in §2.4; then we may introduce the induced operations |J, (], — onto (exp F)E =
= (exp P)Cor P x CorrP by §2.5.2. It is easy to see that then

(6) *=Ud =09
(7) q- = limsup g, qg = liminf qk»
where llmsup [hmmf] means, of course, n Uiv n]

k»n n k»n

10. Theorem. Let v be a parameter. Then
q5(y) has the property (o),

qo(y) has the property (I°).
Proof. These assertions follow immediately from theorem 8, (ii/1-2). Q.E.D.

11. Theorem. Each basic aim has the property (I).

Proof. Let v = (I'l, I'l) be a parameter. Let x, ye P, 0 < m < 1 4 min (I(x),
uy)), (o ..., Zm) = Yo, ..., Ym), let x € A := q°(Y), where ¢ w111 be chosen in the
followmg

1. Let ¢ := 4. Then (cf. 6) there exists k; such that @g.41 [Tax, A A @1y,

k<lk,
If &y < m, then yg Iy, A /\ Y+ My (since A yr =2 and ky + 1 K m),

hence y € A. If k1 > m, then xk1+1].-‘ 2k, A A xkﬂl"nxk,hence x(m] e A; if, moreover,
m<k<k,
yml e A, then there exists k, > m such that w1 Iy, A A Y[y, but

m gk<k,
A Yre+1 My ( A yr = ax ete.), hence yx 11 [lyk, A . A Y1y, thus y € A. Therefore,
<k,
A has the property (I).
2. Let ¢ := O. Then xI[ml ¢ A (cf. 10) and, in particular, A Zp g ey, A Yr+1 1 Tyg

(8(ii/1)). If, moreover, ylml¢ A, then (see again 8(ii/1)) A ?/k+1P Tye) A N V :l/k+1r Y,
n>mkikpn

but then (cf. above) (A yx+1I'Myx) A A V ?/k+1F I?/k, hence y e A. Therefore,
k n  k»n

A has the property (I).

3. If ¢ is either A or o, then q°(y) has the property (I) (see 1, 2), hence q.(y) =
= P — q°(y) has the property (I) (7(i); 2.1(iii) with I" := L).

Q.E.D.

12.0. Remark. It is possible to derive several other properties of the basic aims
by means of theorems 2.1, 10, 11. On the other hand, simple examples show that
it may happen that e.g. q2(y) has neither (I°, I') nor (Lo, I'), q9(y) has not (I°, "),
ete. Nevertheless, there holds

12.1. Lemma. Let v = (I'T, ') be a parameter, ¢ e{a, o}. Then
(i) T' = ' = q%y) has the property (I°, T)
(ii) Lp — I' © T = q,(y) has the property (I,, T")
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Proof. (i) follows immediately from 6 (¢ := 4), 8(ii/l) (¢:=0). f Lp — I' ©
o> I'fL, then I' © Lp — I'I, hence q*(Lp — I'T, Lp — I') = q*(y) has the property
(Ie, T'), and q,(y) = P — q°(y) has the property (I,, I') (12.1(i), 7(i), 2.1(iii)). Q.E.D.

12.2. Remarks. Clearly, Lp — I' © I'l is equivalent to the condition I'n
n I' = Lg. Thus 10 and 12.1 imply especially:

12.3. Corollary. For any parameter v = (I'T, ') there holds:
(i) T’ = 't = q0(y) has the property (I3, I),
(ii) I'n I' = Ly = q(y) has the propervy (I7, I').
13.1. Definition, remarks. Under an r-parameter we shall mean a pair x = (R, I'°)

where & is a countvable (i.e. card & < No) collection in P and I'* e Corr (P, P).
To such an r-parameter x we define the complementary one

x:={P—K|KeS&)}, Lp —I"),
(i.e. % = (exp P — &, Lp — I'*), where - is the operation introduced in §4.2 (@ :=
:= P)); evidently
(®) —x

We say that an r-parameter x = (R, I'°) is a U -parameter [an N - parameter] iff |
is U -directed [N -directed]. Evidently

xRl

(9) % is @ U -parameter <> x is an - parameter

13.2. Definition, remarks.
(i) Let x = (K, I'¢) be a U -parameter. Then we put

ro(x) := rg(&, I') :=}EJRqA(LK, ).
(ii) Let x = (&, I'’) be an n -parameter. Then we put
rO(x) := ro(K, I'?) := ) q2(Lk, I').

Ke
(where the intersection is defined to be equal to : if & = ). By means of (4') and
7(i) we conclude
(10/1) ro(x) = P — rg(x) for each n -parameter x,
(10/2) rO(x) = P — rO(%) for each U -parameter x.
Elements of {r(x) | x is a U -parameter} [{r0(x) | x is an n -parameter}] will be called

U -atms [N -asms]. U -aims and N -aims will be also called r-aims. From (10) there
follows

(11) Aisa U-aim < P — Ais an N -aim
(11) Ais an r-aim <> P — Ais an r-aim

13.3. Lemma. Let x, = (], I',) (¢ = 1, 2) be complementary r-parameters (i.e.
%2 = %;), let % := (K1 U {B}, T1), %5 := (K2 U {P}, I'2). Then »;, »; are complementary
parameters, and the following four statements are mutually equivalent: », is a U -para-
meler; %, 18 a U -parameter; x; 18 an (\ -parameter; x; 8 an N -parameter. Further, if
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some (and, consequently, each) of these four statements is valid, then ro(x1) = Pg(%;),
ro(xz) = ro(xy).
(This lemma follows immediately from the above definitions and remarks).

14.1. Lemma. Let C < A, D < B. Then L2 < L3.
Proof. This follows immediately from §6.4 (as D X C < B X 4). Q.E.D.

14.2, Lemma. Let I'l, ', 'O [V e Corr (P, P), let & be some of those occurring
in the head of 6. If 'l < T'T I'IV < T'IL then q*(I'I, I'IV) < q¢(I'1, '),

Proof. In fact, yI'"M! z = yI'ky, yI''Va = yI'x for any z, y € P, hence the assertion
follows immediately from the definition 6. Q.E.D.

14.3. Remark. If x = (], I°) is an n-parameter and »' := ([K]p, I'°), then
ro(x) = rg(x’) (namely, “>“ follows from K < [R]p, while “=*“ can be derived
by means of 14.1-2, cf. 13.2 (ii) and § 2.12).

15. Lemma. Each r-aim has the property (I).

Proof. Let A be a U-aim, i.e. A= rg(x) for some U -parameter x = (], I'°).
R is U -directed, hence {q,(Lk, I'°) | K € &} is U -directed (14.1, 14.2), each q(Lk,
I'°) has the property (I) (theorem 11), hence F(x) has the property (I) (13.2(i),
2.1(viii/1) with ' := L). This, (11) and 2.1(iii) imply that also each n -aim has the
property (I). Q.E.D.

¢) The main min-max results

Meta-remarks. We shall apply the idea of active and passive aims (§ 5¢) in the following three
cases (§§ 6¢/1, 2, 3). The corresponding considerations would comprehend a certain sizable common
part; we do not wish to present it three times, therefore we shall use an advantageous (though
somewhat unusual) way of exposition (such a way was used in [4], too): we shall present not the
actual three texts (corresponding to those cases), but a certain fext schema (containing, in fact
that common part) and further three lists of text substitutions. The exact wordings of actual texts
are to be obtained from the text schema by replacing all ococurrences of the variables « and ath
by their particular values (cf. the formative rules) and by the replacement of all text variables
by the corresponding particular texts from the ath list.

Thus, we may say that the proper text of this paper consists, on the one hand, of the explicitely
presented passages, and, on the other hand, of those (not explicitely presented!) passages which
are to be formed in the above mentioned way, while the forming means (i.e. the text schema and
the lists of text substitutions) and also the meta-text (i.e. these meta-remarks on and the rules
of that formation) do not belong to the proper text and are designated in another manner than
its parts. (The prefix “meta” is used only in the above mentioned connections in this paper.)

THE FORMATIVE RULES. o will denote the serial variable (o = 1, 2, 3),

first 1
ath = {second for o = {2. The proper text of § 6¢c/a is to be obtained by the replacement of
third 3

each o and ath by its actual value and by the replacement of each text variable (there are nine
text variables) (B> (where E is some auxiliary desngnat.xon, “@dermjier”) by the particular text
presented in the ath list beyond the corresponding expression “(E) := *,

THE TEXT SCHEMA

c/a) The ath main min-max results

16/x. Suppositions, definition, remarks. In § 6¢/a let {j, i} = {1, 2} (j and ¢ are
fixed), let % = (w1, 42) be a regular weakly complete pair of elements of Corr (P,
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exp P), let (P, Po) be the type of %. We put v, := [u,]p(t = 1, 2) (the “‘player t's”
game correspondence), thus vs_, = v; (cf. §4.16). (the choice of A,, A;>

Let ~y := ~ (§1.2) (i.e., roughly speaking, the active player uses only his plain
strategies; cf. § 5.11). (the choice of ~;)

17.0/«. Definition, remark. (the introduction of w,, w,)

17/1/a. Lemma. There holds: -
() wy =,
(42) wy and w, are Mcorrespondences.

Proof. {the proof of 17.1/0a) Q.E.D.
17.2/«. Definition. We define w} € Corr (P, exp P) (1 = 1, 2) by
w’}‘::ln wy, wii=1U w,
(where 1 is defined by § 2.18.1).
© 17.3/a. Lemma. There holds: .
(%) w) = wf,
(1) w} and w} are M -correspondences.
Proof. In fact, wf =10 w; = 10 wy = 1n wy = w} (17.2/a, 17.1/ax (i), §4(24),
47)). (ii) follows from 17.1/a (ii) (cf., e.g., §2.12, § 2 (30)). Q.E.D.
18.0/a. Definition. We put
Q‘ji:{XiX <P XCw;X}_.
W :={X | X <P, X o wX}
18.1/a. Remark. Clearly, for ¢ =1, 2

A ={X|X <P X=ulX}
'e., U, is the set of all fixpoints of the M-correspondence wy.

18.2/x. Remark. w, and w! (: = 1, 2) are M-correspondences, hence they have

ﬁxpomts (§ 5.15.0); moreover (| X and n X are the smallest fixpoints of w; and

XCP
XDw'X

respectlvely (§ 5.15.0%); but X S>wX if X o w*X therefore w; and w} have
the same smallest fixpoint. Analogously, w; and w] have the same greatest

fixpoint |J X = | X. (Of course, the equations between those fixpoints follow

Xxcp xcp
XCw; X XCwiX

from §5 (13'), (14), too, but the latter statements were derived by means of the
transfinite iterations (“successive a,pproxlmatlons ’), while we shall need to~have
derived those equations without using the notion of transfinite iteration, cf. remark
19/a.)

19/x. Remark. 16/a and 18/« have introduced a particular case of the situation
considered in § 5c. To this particular case there will be related the conditions (C)
(P*), (A*) defined in § 5.11. ¥; was chosen in such a way that it is simple to verify

(P*) (see 21/a). Ay is umquely determined by 2, if (C) holds (then Ay = exp P — Ay,

“.*Y where the words “smallest” and ‘‘greatest’’ are to be replaced mutually.
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gee §5.11), but we have also U; explicitely defined (while (C) will be proved in 20/«)
as the set of fixpoints of a certain M-correspodence, which is important especially
at the following application of the method of ‘‘successive approximations”. The

condition (A*), which here consists in finding 4 € W; and o4 € S°(u¢) such that s(z, y) <
< A; for each z € A, will be proved twice, namely by means of the mutually inde-
pendent uses of both the methods mentioned in §5.12: the “(I)-property method”
(22/«) and the ‘“successive approximations method” (23/a); the auxiliary results
and considerations obtained at applying these two methods are important, too.

20/x. Lemma. The condition (C) is satisfied.

Proof. In fact, foreach X <« P P —wjX = P — wiX = w*(P — X) (17 3/a(i),
§ 4(30)), therefore X e Aj<= X = wiX - P X=wiP—X)=P—-XeWU
(18.1/«). Q.E.D.

21/o. Lemma. The condition (P*) is satisfied.
Proof. {the proof of the satisfaction of (P*)> Q.E.D.
22/«. THE <(I)-PROPERTY METHOD.

22.1/x. Lemma. A, and A; have the property (I).
Proof. This follows immediately from 16/« and {the property (I)>. Q.E.D.

22.2/a. Corollaries. A; has the property (I) (22.1/a), hence it has the property
(I, ') (theorem 2.1 (iv)) where I" may be the graph of ug. Therefore, a plainly {A}-

absolute u;-strategy exists (§ 3.11), i.e., there is oy € S(ui) such that s(z, 0;) < A
for each z € ;A; (§3.5). Consequently, #A; = {x |z € P, s(z, 64) < A;} (cf. §3.2);
if c*eS(w) and o | Z n 4;A; = 6* | Z n ;A;, then s(z, 6*) < A; for each z € i#;A;
(§3.10), i.e., then ¢* is a plainly {A;}-absolute u;-strategy, too.

22.3/a. Lemma. ii;A; € ;.

Proof. Let 4 := &;A;; it is sufficient to prove w;A < A (18.0/a). Let o; € S(u):
be such that s(x, 6;) < A; for each x € A (see 22.2/x). (the remainder of the
proof of 22.3/a> Q.E.D. ‘

22.4/a. Corollary. (of 22.3-2/a; cf. 19/a). (A*) is satisfied.

23/a. THE “SUCCESSIVE APPROXIMATIONS METHOD”.

23.1/a. Definition, remarks. In § 6.23/a we shall denote (for shortness)

w = wy.

w i8 an M-correspondence (17.1/a (ii)), hence the sets w® @), wt) (for any ordinal
number §) are defined (see § 5.15.1); we denote

A% = wo@, A := ws).

Thus, 45 = U wA" for every & (§5.15.1). Let & := min{§ |  is an ordinal number
AF — A5+1); indeed, & exists (§ 5(10)), and '
O=A"S A G .. g db= At = . =4,

§ 5(1), (7)). Further, for cach z € 4 we put ‘ o

n(z) := min {n | 7 is an ordinal number, z € A"}
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There holds especially:

a) A® is the smallest fixpoint of w(= w;) and also of w} (§ 5 (14), (13")); conse-
quently,
A® e U;.

b) If ze A=, then 0 < % () < & (cf. above) and g(z) is not limit (§5 (5); cf.
above); consequently, n(z) — 1 exists, and (cf. §5 (3)) '

z € AMD) — A1(@) -1 — Q@)1 — An(2)-1,

23.2/a. Remarks, definition. (the definition of o)

23.3/a. Lemma. s(z, 6o) < A; for each x € A® (where o, is the strategy introduced
tn 23.2/a).

Proof. (the proof of 23.3/2> Q.E.D.

23.4/«. Corollary (of 23.2/a, 23.1/a a); cf. 19/a). (A*) is satisfied.

24/a. Remark. Thus we have proved the satisfaction of (C), (P*), (A*) at the
above introduced situation (cf. 19/«). Now the main result of those of § 6¢/«, namely
theorem 25/a, follows immediately from § 5.11 (excepting the statement (iv), which
follows from (iv’) by means of 18.0-2/«).

25/a. THE ath MAIN MIN-MAX THEOREM. Let
E, :=~uA for 1=1,2
(16/x; in particular, BE; = &,;A;). Then there holds:

(¢) E,v E;=P, E\n E,=0.
(1%) E, =uA,.
(#4%) There exists a (~, {A.})-absolute u,-strategy.
., E, . smallest Ay
(sv') E,} 18 the { greatest (under <) set of { %,
. ) By . smallest . wy w;"
(iv) El} 18 the {grea tost Jixpoint of {w, and also of {w;'

THE LISTS OF TEXT SUBSTITUTIONS

THE FIRST LIST OF TEXT SUBSTITUTIONS
(x:=1, ath:= first) ~

(the choice of A,, A;) := Let vy, = (I'}, I'Y) (¢ = 1,2) be mutually complementary
parameters (i.e. vy, = ¥1), let
A; := qalys), A= q2(11);
consequently (cf. 7(i)), A, = P — A,.
(the choice of ~;) := Let ~; := =, i.e., the passive player uses only his plain
strategies, too.
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(the introduction of w,, w,) := For ¢t = 1, 2 we put

Py :={x|xePyn I'x};
evidently, Pz = P, — P}.
Let wj, w; be those elements of Corr (P, exp P) for which

zwiD < xe Pju v n (Du '),
awiC <>ze Pyy v(I'lzu (Cn I'a)),
for any xe P, D, C < P.

(the proof of 17.1/a) := v; and v; are M-correspondences, which easily implies
that w; and w; are M-correspondences, too (cf. §2(13)). Thus (ii) holds. Let
zeP, Dc P, C:= P —D. Then (cf. 16/1, §4(30), (31)) zwD < 2w,C <
> @ePo A TawC) v (@eZ A TawiC) < (wePo A "xePi) v (®evl A
A av(Tlz U (O n TMr)) < xe P} v av)(P — (M vy (C n I'x))) < ze Py
U v5(Cfz n (D U I'}'x)) < zw;D. Hence w; = wy, i.e., (i) holds.

{the proof of the satisfaction of (P*)> := Let Be W;,i.e., B< P and B < w;B.
For each zeZ n B there holds ze [us]p(I'Jen (B U I‘“z)) (16/1 17.0/1); hence,
there exists o € §(u;) such that oz < I'zn (BU I'Jz) for eachze Z n B. For this ¢
and any x € B, x = (x) € 8(z, o) (cf. 3. 1) there holds If o € B for some number £,
then x;mI‘ ax [namely, if xx € B, then either zy€ Pon B, then x4y = ax € Pon
nBcPkP, n w;B = P}, hence xk+1I‘ ey (17.0/1), or 2y € Z n B, then xy41 € oxg <
< TI'Jag, thus again kaI‘ka] Therefore if /\ xy € B, then A xx+1 2k, hence x €

€ qA(Ys) (see 8(i/1)). On the other hand, if - A z € B, then there exists ko such that

(A 2x€B) A xx,41¢ B (namely, xp =z € B) thus A xg+1 e and, further, ax, €
k <k, k <ko
€Bn Z [xx,€ B; xx,e B n Py implies x3,41 = xx, € B, which is a contra,dlctmn]

therefore, k,+1 € oj2x, — B < (I'Jag, N (B U IMtay,)) — B < I'Jay,, hence T, 111 e, 3
thus, again x € qa(y;) (see 8(1/1)) In such a way we have proved that a,lways
x € qa(yj) = Aj. Therefore, s(z, 6) = A; for each z e B. Consequently, (P*) is
satisfied.

(the property (I)> := theorem 11

(the remainder of the proof of 22.3/a) := Let y e wid, i.e., ye Py U v(I'Tu
U(AnTHy). Let y¢ A. If y € Py, then y € Py n wid = Pj, yI'ly, hence (y) € §4(y1),
8(% o1) = {(¥)} < q2(yi) = A; (see 6), y € #;A; = A, which is a contradiction (as
y ¢ 4). On the other hand, if y € Z, then, evidently, there exists o* € A§’(u¢) such
that o*|ZnNAdA=06;|Zn A4, o*y = Tilyu (4n I'lly); hence (see 22.2/1) s(z,
6*) < A for each z € 4, and that contradiction y € A can be obtained again: Let
X = (x%) € 8(y, o*). Then l(x) > 0 (as wo = y € Z), x; € 6*xy = o*y < [y U (An [y);
hence, either z; € I'ly, then 2"y, x € q2(yi) = Ay (see 6), or 2, € A n I'fly, but
then x(1 ¢ s(x;, o*) < A; (as ;€ 4), but z;I'Mx, hence (cf. 6) x € A;, too. Hence
8(y, o*) < A;, y € A; = A (the contradiction). ’

Therefore, y € A. Consequently, wd < A.

{the definition of ao) := Let gp € S(u;) be such that cpz < Iz u (A"a-1n T'Hz)
for each ze Z n A*; such o, exists [if ze Zn A®,then ze Z n wA'(z) -1(23.1/1 b)),
hence z € [u;]p(I'z U (47@-1n T'Hz)) (17.0/1, 16/1)]. :
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(the proof of 23.3/a> = Let xe A®, X = (xx) €8(x, o). Let x¢ A;. Let Vi,
be this assertion: 2, ..., xm € A®, (o) > ... > n(Tm), A (@rr1 TPar A 7 2pqq D).
k<

Vo is true. If Vy, holds for some m, then 1 Zp1[len (otherwxse X € qn(y;) < Ag,
a contradiction), hence z,, € Z (as otherwise z,, e.Po N A4® = Pon wdAd® = Pi,
Zm41 = T € [lm, of. 23.1/1, 17.0/1, 16/1), Zm+1 € ooy — L% Ty < A"@m -1 0 [Hy,, |

N(Tm+1) < N@m) — 1 < n(xm); therefore, Viu1y is valid. Thus, Vi holds for each £,
hence (n(:ck))o<k<,,,o is an infinite decreasing sequence of ordinal numbers, which
is impossible. This contradiction shows that x € A;. Consequently, s(z, o) < A
for each x € A>.

THE SECOND LIST OF TEXT SUBSTITUTIONS
(o :=2, -ath := second)

the choice of A,, A;) := Let y, = (I'f, I'!!) (: = 1, 2) be mutually complementary
parameters (i.e. v = ¥3), let

A; = q5(y)), A= qp(yi);
consequently (cf. 7(i)), A, = P — A,.
- (the choice of ~;) := Let ~;:= =, i.e., the passive player uses only his plain
strategies, too.
(the introduction of w,, w,) := Let w;, w; be those elements of Corr (P, exp P)

for which

w;D = #,q2(Tfn TP n L2, IYH,

wiC = dyq(Iu 'y LS, TH),

for any D, C < P; here we might write also u,q ... instead of &,q ... ¢ =1, 2),
too (cf. 25/1(ii)).

(the proof of 17.1/a) := (ii) follows immediately from § 2(13), § 3(3), § 6.14.1-2.
Let D = P, C:= P — D. Using §4(30) (with @ := P), § 6.25/1(i), § 6.7(i) and the
faoct that (I‘I n Ij'n LD, '), (I'fu 'y Le, T'Y) are mutually complementary
parameters (cf 5 § 6(4'), (1) etc.), we obtmn WD =P —wlC =P —iuqa(li U

v 'tu Le, TH) = i;,q5(TF n T L2, TF) = w;D. Hence w; = wy, i.e., (i) holds.

(the proof of the satisfaction of (P*)) := Let Bey,i.e., B< P,B < wyB. Let
B:=qA(I'fn I'f'n LB, TJ). Then there exists o € 8(uy) such that s(z, 6) < B
for each z € ﬂjB = w,B (see 25/1(iii); cf. part IV). Let e B, x = () € 8(x, o).
Let some ko be such that xy, € B; then xy, € wyB, therefore xik] e s(z,, o) < B,
hence there exists r > 0 such that x,,o+,+1(l‘ n TPn LB) agqr A /\ xk,+s+1F11 Tko+s

(see 6), which implies (cf. 4) Zr e D 4r A (A xk.,+s+1rnxk.,+a) A Zgart1 € B.

Frong this and from z, = z € B it follows (by mductlon) that there exists a sequence

0 =14k < k2 < ... such that for m =1, 2, ... there holds x,, I[2k,.~1 A

Al A mealT) A 2, €B. Consequently, (/\ zenTTae) A A V xk+1Fka,
n

{22

kn s
hence (see 8(ii/1)) x € qO(y;) = A;. Therefore, s(z, c) < Ay for each z eB
(the property (I)> := theorem 11
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(the remainder of the proof of22.3/a) := Let C:= q,(I'T UMy L4, TH), ¢ :=
= #C(= wyd), let ¢ be some plainly {C}-absolute us-strategy (see 25/1 (iii) or
22.2/1 (with A;:= C)). Let o* be that plain w-strategy for which ¢*|Zn 4 =
=o06t|ZN A, 6*|Z—A=0|Z — A. Then s(x, 6*) < A; for each ze€ 4 (see
22.2/2).

Let 2z € C, x = (xx) €8(x, 6*). Then there occurs just one of the following cases

(), (B):
() ANxx¢ A. Then xes(x, 6) = C (namely: 6¥|Z —A=06|Z — 4, ¢ i8

k
plainly {C}-absolute, z € ¢ = #;C) and: either V Zg+11 My, then x € go(I'}, TH) =
= A; (see 8(ii/2)), or A = 2g+1 ', then (cf 8(i/1)) A (1 @+ T2 A 21 (TF U

UTIy LA) 2 A g1 ¢ A) hence (cf. 4) /\ 21 Dz, thus (see again 8(ii/2)) x € A;.

(8) There exists ko such that oy, € 4; then (see above) xlk g s(zg,, 6*) < A;, hence
x € A; (A; = q(y:i) has the property (I°), as we have mentioned in 10).

Thus we have proved that s(z, 6*) < A, for each z € C, consequently w4 = C <
< ﬁ¢A¢ = A, ie., wd < A.

the definition of c,) := For any non-limit ordinal number » such that 0 < 5 < &
let 67 € S(us) be such that sz, 6”) = go(TTu My L4™ 'Y for all z € A" [such
o” exists: A7 = wA" 1 = duqa(IT U T U LA™, T'H), see 23.1/2b), 17.0/2; further,
of. 25/1(iii)]. Let oo € S(u;) be such that for each z€ Z n A= there holds (cf. 23.1/2b))
6oz = ")z,

(the proof of 23.3/a) := Let z€ A®, x = (wx) €8(2, 60). If V ak+1'Mag, then

k
X € q(ys) = Ay (see 8(ii/2)). In the following let A -1 x+: 'y (the other possibility);
k

then there holds A (xx € A® = Tg41 € AM(2R)), '

[Proof: Let there exist m such that z,, € A® but x4, ¢ A7xm); there holds xy ¢ Py
(otherwise Xy+1 = p € A7), a contradiction) and (see 17. 0/2 23.1/2b)) A7@m) =
= wiA"@m) -1 = ;C where C := qA(FI U FII U LA7(Zm)-1 I‘II)’ hence 8(Zm+1, G"(I’n))¢
¢ C (otherwise @m+; € 4C = A"@m), a contra,diction), thus there exists y = (yk) €
€8(xm+1, o"@m) — C. Now we put X' := (Tm, Tm+1, Y1, ¥2,...); then x’ €s(zy,,
g(zm) = C (see 23.2/2), but A 7 ag+1['x (the supposition), hence (see 8(i/1))
3
y = (x")[1] € C, which is a contradiction (as y ¢ C).]
From this and from 2y =2z € 4
it follows that A ax€ A® and that (5(%k))ost<w, I8 & nonincreasing sequence of
A

ordinal numbers. Consequently, there exists n such that (z, € A* and) 5(xs) =
= n(®n+1) = .... Then, clearly (cf. 23.2/2), xInl € 8(zn, o"2») < qo(I'TU Ty

y La™@—1 '), but A 7 wg+1['Max (the supposition) and A xp ¢ AT -1 (g8
n(xk) = n(xn) for k > n), hence (cf. 4, 8(i/1)) A Zg+1 [Ty, thus (see 8(11/2)) xeqnlyi) =
= A;.
In such a way we have proved that s(z, oo) < A; foreachze 4=, -
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THE THIRD LIST OF TEXT SUBSTITUTIONS
(o := 8, ath := third)

(the choice of Ai, A;) := Let x, = (K,, I\) (1 = 1, 2) be mutually complementary
r-parameters (i.e. x2 = %), let x; be an n -parameter and »; be a U -parameter (cf.
§ 6(9)). We shall suppose (without loss of generality, see 13.3) that & &= 0 == K,.
Let

A] = rD(uy), A; = rD(m);

congequently (cf. § 6(10)), A, = P — A,. (Of course, the symbol x itself (i.e., without
" index) will be used in the sense introduced in §1.2.)

(the choice of ~j) :=
Let I be the graph of u;, let X := Xr (§ 2.26.2).
Let y be a mapping of Z into {(), P} such that: if z = (20, ...,2s) € Z, yz =0,
then there exists K € & such that V [K n {20, ..., 2} = 0 A 71 2k1's2]. (Clearly,
k<n

<
if x = (zx) € P, (%o, ..., 2x) = ) for some k (< l(x)), then x ¢ A;.)
Let & be a mapping of Z into [K;]p (§ 2.12) such that for each x = (xz) € X with

I(x) = wo and for each z = (2, ..., 24) € Z having the property A zm+1['2y there
holds: m<n
(i) /I} Kk, ze+1} N wl@o, ..., 2x) = 0 = A(wo, ..., ) = Ao, ..., Tp1)],
(ii) 2n € 7(20, ..., 2y) = for each Ke K Vzpe K,
m<n
(i) A V2meno, ..., 2k)] = for each KeR; Vrnec kK.
k. m>k m

Let ~; be that (binary) relation on Z for which
Z! ~; 22 <> %(21) = %(22) A 72 N g2 = mZ2 N Y22
for any z!, 22€ Z (cf. §1.2). Evidently, ~; is a memory relation.

Remarks.

0) The above given definition of ~; is somewhat complicated, but it involves
various natural particular choices of ~y;, cf. remarks 2 and 3. In contradistinction
to the cases & = 1 and a = 2, here it is not possible to choose ~; := ~ generally
(although there are particular cases at which the latter choice is possible, see remark
2), a8 it is shown by this

Example ([4], §9.3.2). Let P :={0, 1,2, ...}, Po = @, Ou; := {1}, {2}, ...}, 2u; :=
:={0} for ze P — {0}, Ou;:={1, 2, ...}, zus :={0} for ze P —{0}. Let A,, U,
ete. (of. 16-18/3) be introduced to K;:={{k, k+1, k+2,..}|k=0,1, 2,...},
I'y:= Lp (which determines x;, cf. 13.1). Clearly, then ;= {B|B<¥* P,
card Be{0, No}}, ujA; = 0 #~ P = u;A; (cf. 25/3(ii)); especially, Pe Uy, but s(x, o) ¢ Ay
for each x € P and each o€ fS(u;) (cf. (P*)).

1) By definition, at z € Z the player j retains the last position »(z) of z and the
set wz N yz. If nz n yz = (J, then either yz =0 or 7z = (J (as yz e {0, P}), and x ¢ A;
for any variant x having z as an initial segment (cf. the definition of y; if nz = 03,
then (J € K; and A; = 0). If nz n yz == @, then yz = P, sz n yz = nz, and, roughly
speaking, 7z can be considered as the set which could be attained under abiding I'y
in the following course of play (cf. the proof of 21/3).

138



2) ~j is uniquely determined by n and . If 7z N yz depends only on x(z), then
~y = ~. There are three important particular cases at which such a choice of »
and of y is possible:

a) ( e R (then A; = @; cf. 1)), i.e., K  is a singular collection. Then it is possible
to take the constant mapping of Z onto {{J} as x (and to choose y arbitrarily in com-
pliance with the corresponding definition). The case a) is a particular case of the
following one:

b) N K €K;. Then it is possible to choose the constant mapping of Z onto {( K}

Kef Ke®
as 7, and the constant mapping of Z onto {P} as y. '

¢) X does not contain infinite variants. Then it is possible to choose the constant
mapping of Z onto {P} as y, and to put #z := mox(z) where 7 is a mapping of Z
into [Ry]p such that z¢ nz if 2€ Z — N K.

Kef;

3) Always it is possible to take the constant mapping of Z onto {P} as y. Let us
mention two general examples of practically suitable mappings s.

In the following two examples, let (Kpu)o¢n<1+1 (0 < ! < @wo) be a sequence of
sets such that {K,|0 <n <14+ 1=R;}. (Such a sequence exists, as 0 <
card 8; < No.)

3.1) Example. Let 7, be the mapping of Z such that for any z = (2, ..., zm) € Z
there holds
v Kﬁ n {20’ ey zm} = g
o {Kmin{ni0<n<}1+l‘ Ean{zo, oo 2m)=0} - n<l+l
mz if

- P A Kﬂn{%s---yzm}*g.

n<l41
This defines just one mapping sz, of Zinto & U {P} < [R]p. It is clear that those
conditions (i) — (iii) are satisfied with n := m;.

3.2) Example. Let the symbol (z, ..., 2_;) mean the empty sequence. We put
mo, ..., 2_1) :=0, l(2, ..., 2_1)) := —1. Let m be arbitrary; if for any ze Z U
U {(zo, ..., 2_1)} With [(z) < m an integer uz is defined, then we put for each z =
= (zo, ceey 2m)ez

puz :=min {n | u(zo, ..., 2m_1) < < 1 +1, 2m ¢ Kp},
where min (J := 1 4 I. Clearly, this inductive definition introduces an integer uz
(such that 0 < uz < 1 + 1) to any ze Z. We introduce Ky4; := P. Let m; be the
mapping of Z such that s,z = K,, for each z€ Z. Thus x; is a mapping of Z into
K; U {P} < [R]p. It is not difficult to verify that those conditions (i) — (iii) are
satisfied with = := ;.

(the introduction of w;, w;) := Let w;, w; be those elements of Corr (P, exp P)
for which

w;D = () #;q94(Lknp, I'y),
Ke®;

wiC = J diqa(Lrue, ),
Kefy

for any D, C < P; here we might write also u.q... instead of &9 ... (1 =1, 2),
too (cf. 25/1(ii)).

(the proof of 17.1 |a) := (ii) follows immediately from §2 (13), §3(3), §6.15.1 2.
Let D < P,C:= P __ D Using § 4 (30) (with @ := P), § 6.25/1 (i), § 6.7 (i), § 6.13.1
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and the fact that (Lgyc, I't), (Lp-k)np, I'y) are mutually complementary parameters
for any K < P (cf. 5, §6(4’) etc.), we obtain: wyD =P — wyC = P — |J @qa(Lruc,
Kefy
') = q 4;92(Lee_kynp, I'y) = q ;92 (Lgnp, I'y) = wyD. Hence w; = wy, i.e., (i)
Kef,; Kef;
holds.
(the proof of the satisfaction of (P*)> := Let B ; in this proof. For any

K < P we denote By := qA(LKnB’ I'y), Bx := 6;Bg. Thus B < w;B = n Bg.
Ke®;

For any K < Plet ox € :’S(u,) be such that s(z, 6g) = Bk for each x € Bg (such og
exists, see 25/1 (iii); cf. part IV). Again, let I' be the graph of u;.

There holds:

(L1) Bg, = w;B for any K, € [R/]p.
(L2) ' Pon w;B< K
Kef,

(L3) IfKe[Rylp,ze(Zn wB) — K and y € oxz, then y € w;B and yI'y2.

Proofs (of (L1) — (L3)):

(L1): Let Koe€[R]p. There exists K,eR; such that K, = K,. There holds
Bg, © Bg, ﬂ BK = w;B (§6.14, § 3 (3)) Let K € K. Letu be the mapping of Z

such that for eaoh z = (29, ..., 2m) € Z there holds:

0
+0

Clearly, o € S(u;). Let x € Bg,, let x = (2) € 8(x, 6). Supposing A zx ¢ Kon B, we
k

az:{“x"z'” if {20, ....2m} N Kon B{
OKm

can obtain a contradiction (then x e s(z, 6g,) < Bx., (as = € Bg, etc.), hence, among
others, V xx € Ko n B). Thus, there exists ko := min {k | zx € Ko n B}; there holds

ko < l(x) and x*] € s(xx,, ox) = Bg (namely, zx,€ Kon B <« B < w;B < Bg).
Thus, there holds:

3Y) Az ¢ Kon B,
k<ko
(a2) kv (zxe Kn B v A :tm+1].-‘jxm)
> o mZk,

Further, A %11 € o6&k, hence there exists y = (yx) € s(x, ok,) such that
k<<ko

(B) A % =Y. "
k <ko
There holds y € 8(z, 6x,) < Bg, (as # € B < Bg, etc.), hence
») V (yxe Kon B A A ym+1me)-

But (a), (B), (y) give V (yxeKon B A A ym+11'1ym), hence A ym+1P;ym, ie.,
A zm+1l";xm (see (8)), whlch together with (azz) gives V (zv€ K n B /\ /\ Zm+11 5m).
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Hence x € Bg. Consequently, 8(z,6) < Bk, hence x € u;Bg = @;Bg = Bg (see 25/1
(ii), 16/1). Thus, for any K € &, and each z € Bg, there holds x € Bg. Hence Bg, <

< N Bk = w;B. This completes the proof of (L1).
Kef, .

(L2): If K € &; and z € w;B, then s(z, ox) < Br (as w;B < Bg); if, moreover,
x € Py, then s(z, og) = {(x)} < Bk = q2(Lgna, I'y), hence, among others, z € K.
Thus Pon w;B < K for each K € K.
(L3): Let Ke[Rylp, 2€(Zn wyB) — K (or only zew;B — K, see (L2)), let
y € ogz. There exists x = (#x) € 8(z, ok) such that z;, = y, further s(z, 6x) < Bx (as
zew;B < Bg, cf. the proof of (L1)), thus V (xxe K n B A Akxm+1rjxm), but xp =
k

=2¢ K, hence V(zxeKn B A A xm+ll‘jxm) Thus x[11 e Bg, and, moreover,
k» 1

@10y, i.e., y['j2. Further, y € Bg [1f y ¢ Bg, then there exists y = (yx) € s(y, k) —

— By, but now we can choose x = (2¢) := (2, ¥, ¥1, ¥2, ...), then x € 8(2, og), 1 = ¥,

hence x[11 € Bk (see above), but x[1] = y ¢ Bg, which is a contradiction], but Bx =

= w;B (see (L1)), hence y € w;B, which completes the proof of (L3).

Q. E. D. (L1) — (L3))

Let 6 be the mapping of Z such that 6z = 6azny2?(Z) for eagh z € Z. Evidently,
6 € ~; S(uy).

Let 2 € w;B, let x = (2¢) € 8(z, &). There holds
() xes(x,0) < Xr.

For obtaining a contradiction we shall suppose x ¢ A;.
We introduce (for any k)

Vi:=axewB Ak LUx) A A\ 2palsm.
m<k
Let Vi hold for some k. Then there exists Ko € & such that Ko n {%o, ..., ¢} =
(otherwise the supposition A m+11'jem implies x € A;, which is a contradwtlon)

in particular, z ¢ n K. Hence, a2 € Z (otherwise zx € Py n wiB < n K (see (L2),

which has been ehmmated), thus k 4+ 1  U(x). Further, (xo, v xk) P (as
A Zm+1I'j2n). Therefore, 2x € (Z N w;B) — n(a:o, ceey Tk) (namely, if ax € (%o, ..., Zx),
m<k :

then we can obtain a contradiction by means of (Z), the condition (ii) in the definition
of n and the supposition A xmi1ljxp, cf. above), m(z, ..., 2x) € [Rjlp, Zrr1 €

m<k

€o(xg, ..., k) = On(Ts, ..., Tx) N 2o oo, 2x) Tk = Onz, ..., 2) Tk > hence x4, € wyB, xk+1F1xk
(see (L3)).

Consequently, Vi1, holds.

We have proved Vi = Vi, for each k, but Vo holds trivially, hence Vi holds for
each k. From this it follows that there holds: ;

(2 I(x) = wo;
(3) /L_\ X1 L s
(4) : 4 Xy € w,.B
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The above considerations (cf. (ii) in 16/3, (3) etc.) imply
(5) /k\ xg ¢ (o, ..., zx);
(6) A Tk+1 € On(a,..., 5,0k

the supposition x ¢ A; and the properties (1), (2) and (3) imply by means of the
property (iii) (in the definition of z) that

(7)  there exists » such that A ax ¢ @w(2v, ..., ).
k>n

Let W := (nu(o, ..., k) = 7(%o, ..., Tn)). Wy is valid. If W, holds for some r >. =,
then 2, Zy41 ¢ (%o, ..., Tn) = 7(%o, ..., Zr) (se€ (5), (7), W), hence (see (), (2) and

the condition (i) in the definition of x) z(wo, .., 2p+1) = ®(o, .., Ty) = (o, ..., Tn),
thus Wy holds. By induction, Wy holds for each & > u, i.e. there holds
(8 A 7t(xo, ..., 2x) = 7(xo, ..., Tn).

k»n

Therefore (see (6) and (8)) xI#] € 8(2y, Or(z,....zn) < Baiz,...,z,) (DBMely, w(xo, ..., 2y) €
€ [R4]p, hence (see (4)) zp € wsB = Ba,,..,s,), 8ee (Ll1)). But xI#l e By, ... 1,
implies that there exists r > n such that x, € #(xo, ..., ¥n) = 7(wo, ..., zy) (cf. (8)),
which is a contradiction (see (9)).

In such a way we have proved that s(z,6) < A; for each 2 € w;B, and, therefore,
for each x € B (< w;B).

(the property (I)> := lemma 15

{the remainder of the proof of 22.3/a) := Let K € K be fixed in the following
part of the proof, let C:= qa(Lgua, I't), C:= #C. Let ¢ be some plainly
{C}-absolute u;-strategy (see 25/1 (iii) or 22.2/1). Let o* be that plain w;-strategy
for which ¢*|Zn A=01|Zn A4,6*|Z —A=0c|Z — A.

Let z € 0, x = (zx) € 8(z, 6*). Then there occurs just one of the following cases
(); (B):
() A 2x € A. Then x € 8(z, 6) < C (namely: 6* | Z — 4, ¢ is plainly {C}-absolute,
z € C = §;C), hence (see 8 (i/1)) there holds

(Azxe KU A) v Y (@g+1l4ze A /\kx,,.eK U 4);
k . m<

this and A 2 ¢ 4 imply
A .

(AxxeK) v V (@xulixe A A 2m e K),

: k k m <k

ie., xeqa(Lk, Iy) < A

(B) 7 A 2x ¢ A. Then there exists n := min {k¥ | zx € 4}, hence -

)
1) ~A z ¢ A

and x(] € 5(x,, 6*) < Ag(namely: z, € A i4As, o* is plainly {A;}-absolute (22.2/3)),
hence there exists K; € R such that xinl € a(Ix,, I'y) (16/3, 13.2). There exists

K€ R such that K; U K < K, (see 16/3, 13.1). Consequently, xIn e q (K2, I'y)
(§6.14):

@ (AmeKy) v V (@l A A zme Ky),
k»n k»pn msk
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(8 (i/1)). Further, (1) implies /\ Tk € o2 (s, clearly, 2% < UX)), thus there exists

y = (yx) € 8(x, 6) < B (cf. above) such that

(3) ki\n T = X}

y € C together with K < K, implies

4 (Ayee KU A) v V (T AyAkymeKzUA)

There holds

6) (L/}nxkeK, U 4) = x € q,(Lg, T

[Proof. If A rre K, U A, then A\ xz€ K, (see (1)), which together with (2) gives
A xkEKz v V (k1 Dexe A Ak::, €K,), i.e., x e qu(Lg,, I'1) (cf. 8 (i/1).]

m<k

(4) shows that there occurs some of the following casges (f 1) — (B3):
(p1) /\ ye€ K, U A. Then A zxe K, U A, xe qp(Lg,, I's) (see (3), ().

k<n

(82) V (Ye+1Tsyr A /\ ym€K,U A). Then A xx € K,U 4, x € qa(Lg,, I';) (see (3),(5)).

k«n

(B3) V (Ye+1Diyre A /\ ym€ K, U A). Then by using this, (3), and (I) we get
<k
Vv (xkﬂl’ixk AA xme K,), hence x € q(Lg,, I's) (8 (i/1)).

k= n m <k

Consequently, always x € g, (Lk,, I'1) < A;.

Thus we have proved that s(z, 6*) < A;for each « € C. Therefore, &g (Lxua, I't) =
< #4A; = A for each K € K¢, hence (cf. 17.0/3) w4 < A.

(the definition of 5oy := Let 7 be a non-limit ordinal number such that 0 < 7 <

< &o. Let K € K. In the remainder of § 6¢/3 we shall denote C}; = qa(Lryan-, I‘;)
A" 1= 1;C; of course, A" = |J A%. Let there be chosen_oc% € S(uq) (to any of those

Kefy

7, K) such that s(z, 6%) < C} for each z € A% (such ok exists, cf. 25/1 (iii)). Further,
let <y be a well order of ;. For x € A* we put

K(z) := ming){K | K € &, x € AF},

where min, () is taken under ). (This is a correct definition, cf. 23.1/3b).) Let
6o € 8(u;) be such that oz = o3, for each zeZ n A*.
(the proof of 23.3/a) := We shall use the following auxiliary assertions:
(Al) Let 5 be a non-limit ordinal number, 0 < 5 < %, let K e K. Let ye A%,
= P
y {e oziy if ye{z". Then ye KU A1 A (y Tiy v yfeA}).
(A2) If y e A™, then y € (AFY, n K(y)) — A"»1,

[Proofs. Let the suppositions of (A1) be satisfied. If y ¢ K y A»-1, then y ¢ C} for
any y = (yx) with g, =y, hence y¢AK Therefore, y€ K y A"-1. Let neither
y'Tinor y’ € A% hold. Then there exists y’ = (y,,) es(y’, of) — C} Lety = (y,) =
= (%> Y0, Y1 Yo, --.); clearly, y €s(y, o) < Ck (y1 =9 = ¥'; y  4}), but it is easy
to see that 1y I‘,y (i.e., 1y1l'yo) together with (yl!l =) y’ ¢ C} implies y ¢ C}
(cf. 8 (i/1) ete.), whichis a contradwtmn Thus (Al) is proved. (A2) follows from (A1)
and 23.1/3b).]
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RN

Lot e 4% x = (=) e 8(, 6). R
a) If k, is such that g, 112k, A A T eA®, fahen there exists K eR;-such that

(:vo) U...U K(zr,) < K (a8 R is U dn'ected) hence xkoﬂl"txko A AN 2z K (see
k.slxo

(A2)), thus x € q,(Lg, I') < Ar. S B
b) If ~ A 2y € A®, then there exists m such that xm¢A°° A /\ z € A®. Then

O<m (xo =zeA*). We put ko :=m — 1 and obtain xko+1]7¢xko from (AL) [by
choosing K .= = K(wx,), n:=nlwx,), ¥y := @,y := &x,+1 in (Al) and using w41 =
= #m ¢ A%]. Thus the case a) has occurred, hence x & A

).. Let A zxe A®. If V Tp+11 2k, then again there occurs the case a) and hence
Xe At Let A —n:ckﬂﬂxk Then (A1) gives- /\ xk+1 € AFm, < An@ [by choosing

Y= x, y’ :—- Fit1, K i= K(xp), n:= n(xk) and using 1 xg+1lxx]. Therefore,
(m(2k))xs> 0 is & nonincreasing sequence of ordinal numbers, thus there exists &, such
that A @) = (xr,); let - mo :=n(xx,). Hence A xxi1 € A¥(z,). Therefore,

k>k,

(K{xk))k,,k is a nomncreasmg sequence at <, as the well order, thus there exists

ka > kl such that /\ K(2x) = K(a,); let Ko := K(xz,). Clearly, xt* € s(xy,, o) <

S C?;‘f,, hence A xk e A"" 1y Ko (as A T g1 ', see 8 (i/1)), but /\ xp ¢ An(@ -1 =
k»k,

= A1 (23.1/3b)), consequently, /\ xk € K. The U -directness of Rt guarantees the

existence of K e R; such that K(a:o) ..U K(xx,) < K. Therefore, A zx€ K,
k

xEqS(LK;Pi)CAi- :
.. The considerations a), b) and ¢) have shown that always x € A;. Consequently,
8(x, 0o) < A; for each z € A™.

(To 'b‘e, cbntinued}
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