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SCRIPTA FAC. SCI. NAT. ITJEP BRIXNENSIS, ARCH. MATH. 2, 
V n : 77—86, 1871 

ON A CERTAIN DIFFERENTIAL EQUATION 
WITH TIME LAG 

JAN OHRISKA 

(Received August 28, 1969) 

This paper deals with the differential equation with time lag in the form 

(1) a0u'(t) + b0u(t) + btu(t — co)= f(t) + j b(h)u(t — h) dfc, t > y 

a 

where a0s b0, bt, co, on, /5 are constants; a0 ^ 0, a > 0, co ̂  a, /3 > a, y = max 
(/?, co). We are concerned with the existence and uniqueness of the solution, with 
relations between solutions of the equation (1) and finally with the representation 
of the solution of the equation (1) in the form of an integral over a simple regular 
curve. 

Theorem 1. Letf(t) e C° < 0, oo), b(t) e 0° < a, /8> and g(t) e C° < 0, y>. The equation 
(1) has one and only one solution u(t) with t > y, which satisfies the initial condition 
in the form 

(2) u(t) = g(t)forte<:0,y>. 

Proof: First we shall prove this theorem for the interval <y, y + a ) . Put 

v(t) = f(t) + I b(h) u(t — h) dh — hu(t — co). 

Then the equation (1) can be written in the form 

(3) a0u'(t) + b0u(t) = v(t). 

From the assumption of the theorem and from the representation of the function 
v(t) it is evident that this function is continuous in <y, y + a>, i. e. v(t) e 0° <y, 
y + «>• 

But the equation (3) is a linear differential equation. Since aQ, b0 are constants, 
v(t) is a continuous function in <y, y + a>, according to the Picard existential theo­
rem there exists only one solution u(t) of the equation (3), defined in the whole 
interval (y, y + a> and satisfying initial condition u(y) = g(y). The given solution 
is continuous and satisfies equation (1) in (y, y + a>. Since the solution u(t) is conti­
nuous, it is easy to find out that the function v(t) is continuous in the interval <y, 
y + 2a>. But it follows from the equation (3), that there exists only one continuous 
solution u(t) which satisfies equation (1) in the whole interval (y, y + 2ot}. Evidently 
we can repeat this process, extending thus the solution of the equation (1). 

Thus the solution of the equation (1) with the initial condition (2) really exists 
and this solution is unique for any t > y. This completes the proof. 

Note 1. Because u(t) e C° < 0, co), it follows from the equation (1), that u'(t) € CP(y, oo) 
orthatu(t)eC1(y, oo). 

77 



2. If g(t) eC1 < 0, y>, then u'(t) is continuous in the point y if and only if 

aog'(y — 0) + b0g(y) + bxg(y — co) = f(y) + f 6(*i) g(y — *,) d*i. 

a 

The equation (1) can be written in the form 

a0u'(t) + b0u(t) + bxu(t — co) — I 6(^) u(t — tx) dtx = f(t) 

a 

and we define the linear operator L(w) as follows: 

L(u) = aofft'(0 + b0u(t) + M(* — co) — J 6(*0 w(« — h) &h. 

a 

Then the following theorem holds: 
Theorem 2. Let Ui(t), u2(t) — be any two solutions of the equation L(u) = 0 and 

cu c2— arbitrary constants. Then CiUi(t) + c2u2(t) is also a solution of the equation 
L(u) = 0. 

To prove this theorem it is sufficient to note that L(ci% + c2u2) = ciL(^i) + 
+ c2L(u2) = 0. 

Theorem 3. Let wx(t) be a solution of the equation L(u) = f(t) and let w2(t) be a solution 
of the equation L(u) = 0. Then W\(t) + w2(t) is solution of the equation L(u) =f(t). 

Again it is sufficient to show that L(t#i + w2) = L(w\) + L(w2) = f(t) + 0 = f(t). 
Note: The theorems we have proved for the equations L(u) = 0 and L(u) = f(t) are 

analogues of those well known from the theory of ordinary differential equations. Simi­
larly, we shall try to find the solution of the equation L(u) = 0 in the form of an 
exponential function. To do this, we shall investigate the conditions for a function 
u(t) = est to represent a solution of the equation L(u) = 0. 

P 

L(e8t) = (a0s + b0 + M*"0* — I b(h) e~8t^ d^) e8t. 

a 

Thus u(t) = c8t is a solution of the equation L(u) = 0 if and only if s is a zero 
of the following transcendental function 

(4) h(s) = arf + b0 + bie-^ — b(h) e~st* d^. 

a 

The function h(s) will be called the characteristic function and the equation 
h(s) = 0 the characteristic equation; this equation has in general infinitely many 
roots. 

Theorem 4. Let {sr} be an arbitrary sequence of roots of the characteristic equation 
h(s) = 0. Let pr(t) be a polynom whose order is lower than the multiplicity of root sr. 

Then the function 

r 

satisfies the equation L(u) = 0. 
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The sum is finite or infinite, and in the latter fall it is expected, that given sum uni~ 
formly converges. 

Proof: The characteristic function of the equation h(u) = 0 is 

(4) h(s) = aos + b0 + bi e-<°* — I b(h) e"st» d*i. 

Then 

h'(s) = ao — bicoe-w + ҢhУhe-ъЬåîu 

a 
ß 

h"(s) = Ьюŕeг** — j b(h) t\e~*ь dtu 

(5) 

r_(_l)*J h(k)(s) .= (_i)fcblC0A;e-co«_(_i)*: b(h) hke~8U dtu k = 3,4.., 

For any n ^ 1 we have 

L(*nest) = a0(<nest)' -f 6o*nest + ^(t — co)nes <*-»> — 

— |&(*i)(t — ^i) n .e s (*-^)d^. 

a 

Hence after modifications and using (5) 

(6) L(tfnest) == est £ (») «n-*^(*)(«). 
*=o 

Now consider a root s with multiplicity m of the characteristic equation. Evidently 
h(s), h'(s), . . . , h^m~^(s) are all zero. Using the relation (6) and the note following 
the theorem 3 we see that L(2nest) = O f o r O < n ^ m — 1. Thus to a root s with 
multiplicity m of the characteristic equation there correspond m functions est, test, . . . , 
$m-iest. which are soluutions of the equation L(w) = 0 for all real values of the 
variable t. It is apparent that these functions are linearly independent. 

According to theorem 2 can conclude that p(t)eBt will be also a solution of the 
equation l*(u) = 0, where p(t) is an arbitrary polynom of the order lower than m. 
If, finally, we consider all roots sr of the characteristic equation, we obtain the state­
ment of the theorem 4. The proof is complete. 

We shall require an upper estimate of the solution of the equation (1), and this 
assessment will be made using the following well known lemma. 

Lemma 1. Let w(t) be positive nondecreasing continuous function, let u(t) §; 0 
v(t) ^ 0 be continuous and let 

t 

u(t) £ w(t) + I u(h) v(h)dh} a <t £b, 

a 
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then 
i 

u(t) £ w(t) exp J J v(h) d d a i ^ d . 
a 

Theorem 5. Let u(t) be a solution of the equation 

(1) aou'(t) + b0u(t) + btu(t — co)= f(t) + f b(h) u(t — h) dh 
a 

in the interval < Q, oo) with the initial condition 
u(t) = g(t), Q^t£y, 

wheref(t)eC° < 0, oo), b(t)e C° <&, £>, g(t)eCQ <Q,y>. 
Then let 

a) |/(f) | < cie^t, t £ 0 
where C\ and c2 are positive constants; 

b) m == max | ^(0 |; 
Q £t £ y 

c ) B - = max | 6(0 I 
a £ t £ p 

Then there exist such positive constants c3 and c4, depending only on: 
the coeficients of the equation (1), 
Ci and c2, 
the maximum of the function g(t) in interval <0, y>, 
the maximum of the function 6(0 in interval <<%, /?> 
and the length of the interval <a, /?>, 

that 

(7) | u(t) | ^ c3e^t, * £ 0. 

Proof: From the equation (1) we can see that 

t t, p 

, Oou(t) = aou(y) + /(fi) d î + b(t2) u(h — h) dt2 dh — 

r r a 
t t 

— 60 I u(h) dh — 6i I u(h — (JO) dh, t g: y, 

r r 

From the assumption of the theorem we obtain 

I f 

m ao||M(í)l Í | a o | w + ci f e ^ d í . + B f f | M(ř. — í2) | dť2 d ť i + 
7 7 « 

í t 

+ \b0\ f -| «(íi) I díi + |6i| i" |«(íi — a>)|dí,.,* žy . 
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First we shall modify the integral 

t fi 

f f \u(h-+-t2)\dt2dli.-
Y a 

Put h — t2 = p, 
h = q, 
then h = p + q, 
t2 = g, 
where y — jS g p ;g t — a, 
a g ? ^ j 8 a n d D - = | J l | - = l . 

It is evident that the conditions for transforming the integral are satisfied, so we 
can write: 

t p t—OL P 

f [ \u(h — t2)\dt2dh£ f !\u(p)\dqdp = 

y a y—p a 
t—a < 

= (j8 —a) J | «(JP) I clp ^ 0 - a ) J l ^ i ) ! * ! . 
y-/3 y—/5 

After substituting this (8) we have: 
* t. 

(9) |ao| \u(t)\ ^\a0\m + c1 f e*t» dh + B(fi — a) f | ufo) | d*i + 

t t 

+ | &o | f | u(h) \dh+\ 6i | f | *(*i — co)\dh,t^y. 
7 7 

Modifying the last term on the right hand side of the inequality (9) we find that 
the following holds: 

t t 

I h | f | u(h — co) I d*i £ I h I f I u(*i) I dI,. 
y Y—o) 

So after further modifications of the inequality (9) we obtain: 
t t 

\u(t) | g m + — r - r e ^ + B ( f ~ ^ f | «fo) |d*t + - N - f l«<'-> I** + 
c21 «o I cto I J flo J 

0 0 

+ 1VT f l«(*-)l*i>'-S y 
1^0 I J 

OГ 

c» <,-,. , B(|í —«) + |Ьo l+. |6 i N<) \ѓm + — ^ - в « + " V ľ ' ^ , ' ' Г 1 ' ' ' " " f 1 M*i) I dť„ ř Ł y-
Cг\ao\ | «o I J 

o 
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From the last inequality and lemma 1 we obtain: ' 

c» „,,n _ / - » ( 0 — . « ) + |6ol + l&i (10) | u(t) | ѓ (m H г—гec-t). e X p 

BQS — a) + | 6 0 | + | 6 i | 

' ) -

As | w(£) | ^ m for 0 ;§ J g y, we see that our estimate is valid for any t ^ 0. 

Finally designate 

/11X . * . B(p — a) + | 6 0 | + I 61 I 
(11) c3 = mH ; - 0 4 = 0 2 + c2 I «o I I «o I 

Using (11) we can write the inequality (10) in the form 

I u(t) I £ c3 e**, t £ 0. 
Thus the theorem is proved. 

Prior to the formulation of the solution of equation (1) in form of an integral over 
simple regular curve, one more lemma will be stated. 

Lemma 2, Suppose that b(t) e C° < a, /?> and does not change its sign in <a, /?>. 
Then all the zeroes of the characteristic function 

(4) h(s) = OQS + 60 + bie~ws — I b(h) e-»*- dh -!> 

lie in the complex plane to the left of the line x = M, where the value of the constant M 
depends only on the coefficients of the equation (1) and on the value of the integral 

Þ 

I b(h) dh 

Then 

Proof: As the function h(s) can also have complex null points, put s = x + iy 
and modify first the integral 

fi 
T b(h) e-*t- d*i. 

a 

fi ft 

J b(h) e-sti dh = J b(h) e-**--1-"* d^ = 
a a 

= I Hh) ®~xtt (cos yti — i sin yh) dh = 

a 

P P 
= I b(h) v~xXt cos yh dh — i j b(h) e-**» sin ytx dh. 
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ß 

PutK 

a 
ß 

With regard to the assumption for the function b(t) we can use the mean value 
theorem obtaining: 

I b(tx) e~8tl Ah = J b(tx) e-^vcos ytx dti — i J b(tx) e-*** sin ytx Atx = 

a a a 

e-^cos fiy J b(tx) Atx— ie-v* sin vy b(tx) &tx, /i, ve<fx,j8>. 

a a 
I 

fft(*i)*i.. 
a 

Then b(tx) e"st* &tx = K (e~^ cos fiy — ie~vx sin vy) 

a •} 

and the function h(s) can be written in the form: 

h(s) = h(x + iy) = a0(x + iy) + 60 + 6ie-wa; (cos co^ — i sin my) — 

—- K(e~^ cos fiy — ie~vx&invy). 

#Now the lemma can be proved by making an upper estimate of the absolute 
value for the exponential part of the function h(s) and a lower estimate of the absolute 
value for its polynomial part. The lemma is proved by a comparison of both estimates. 

Evidently it is sufficient to limit our considerations to the nonnegative values 
of the variable x. 
Then 

\bxe~vx (cos ojy — i sin coy) — Ke~m cos fiy + i Ke~vx sin vy \ S 

<> \ bxe-«>x \ + | Ke-M* | + \ Ke~vx \ S \ bx \ + 2 \ K |, for x £ 0. 
And then 

| a0(x + iy) + b0 \ = | a0x + b0 + ia0i/1 = V(«o» + M 2 + «o2/2 ^ I ao£ + b0 \. 

We investigate now the conditions for the following inequality: 

I a«x + b0 | > | bx | + 2 | K1, by x.£ 0. 

Evidently the real component of no zero of the function A(s) can lie in the interval 
which will be solution of the last inequality 

1. Let aox + b0 ^ 0, 

a) let a0 > 0, then x > 

b) leta0 < 0, then x < 
.. \ a0 a0 

b0 But the case b) is impossible already for a; > — — , since in that case OQX 4 
a0 

+ b0 < 0. 

I M — ь0 
, 2|J-1 

oo Oo 

I M — Ьo , 2 | K | 



2. Let OQX + bo < 0, 

a) let a0 < 0, then x > 
— « o — ß o 

b) let a. > O.then* < ' h ' + b° +2]K] 

—Oo —Oo 

But again the case b) is impossible for x > — — , since in that case Ooa; + bQ > 0. 
Ъo 
« 0 

PutM^xnaxliM^+a^+^JAiiA+iiJ^+a 
[ Oo Oo — « o — # o J 

where e is an arbitrary positive number. 
We see that all zeros of the function h(s) lie left to the line x = M, thus for any 

zero s of the function h(s) Re(s) < M. 
The proof is complete. 
Theorem 6. Let u(t) be a solution of the equation 

8 

(1) aou'(t) + b0u(t) + bxu(t — co) = /(*) + J b(h) u(t — h) d*!, t > y, a 0 =£ 0 

(X 

ti^A $Ae ittWa? condition u(t) = o(£), 0 < .; < y. 
£e$ jr(#) 6 C1 < 0, y > ; Id b(t) e 0° < a, ft > and let it not change sign in the interval 
<a , j 8> ; 
let f(t) eC° < 0, oo)ana* \f(t) | £ Cie^t, * £ 0, Ci > 0, c2 > 0. 
Then for an arbitrary sufficiently large constant C 

(12) ii(o = f e**-M«) [ P W + «W] <k> * > y> 
(C) y fi y 

wherep(s)=aog(y)e-r8 — b1e-m* I g(t)e-**dt+ I b(h) *-**• &tt . J e-**g(t)&t, 

y—o> a y—tt 

«(•> = Jyi*)e-»«df. 
7 

Proof: Multiply the equation (1) by the term e -8 t and integrate from y to oo. 
We note from the previous (theorem 5) the existence of the following integrals 
follows 

oo oo oo 

(13) j tt(*)e-** 6i, f u(t — a>) e"8t &t, j f(t) e~* &t 

r r r 
for an arbitrary complex s, for which Re(s) > c4. 
We can modify individual terms. 
Then 

00 00 00 00 

(14) j u'(t)e-** &t = I u(t)e-** \+ s \ u(t)e~**> 6t = —g(y) e~r* + s\ u(t)e - * d* 

r r r y 
because Mm u(t)e-**> = 0, if Re(«) > c4. 

ř-t-oo 



Then by substitution t — o> = tx 

00 00 00 

(15) f u(t — a>) e-st dt = j n(*i) e-s<<-+ <»> d*i = e-<»* f %(*)e-st d* = 
r 7—w y—& 

CO 00 

= e-W8 J f gr(0 e-^ df + f u(t)e~** del 
7—a> y 

And finally using interchange of order of the integration, which can be done in 
this case we have 

00 0 ft oo 

1 e-8t J 6(fi)w(* — *i)d*id*= j b(h) I u(t—tx)e^6i6ii. 
y * a y 

Using the substitution t — tx = f2, the right side of this equation can be written 
in the form 

P 00 

\Hh) I u(t2) e-*<*i+*-> dř2 dh = f fc(#i) e-»*» |w(*)e-«t dř dři = 
« , ^ * « y i 

í y ^ co 

== J 6(íj) e-stt dřj f gr(í) e-»t dí + f 6(*t) e-**» d*i f %(ř) e~«t di. 
a r—ti a y 

f r / ; 
J e 8 J 6(íj.)«(í — *i)dtid< = 6{<!)e-st.dÍ! j/p) e-«t # + 

(16) 
I I \'M.f w \ " "1/ w l ^ ~ " I w \ ' l / v ~*v 

a y—ti 
0 oo 

f 6(̂ i) e-stt dii f u(t) e-st d*. 

From (1) using ( l 8 ) > ( U ) j * 1 5 ) a n d ( W ) ^ o b t a i n 
oo oo y 

—«o^(y)«"r" + a w j ^) e-8t dt + 60 f u($) e~»t d* + 6ie-°* . j g(t)e~** dt + 
^ y y y—-a> 

J oo 0 7 

*(*)e-*tdi=- f/(f)e-8tdf+ f6(fi)e-^d^i, f jr(t) e~»t df + 
y a y—«! 

0 oo 

+ j 6(̂ i) e-sti dfi f ^)e-stdi, Re(«) > c4. 

+ 
a 

Hence a y 

t fi oo oo 

^ + 6° + 6ae-»* — f 6(fi)e-»t1 d^l f «(*)«-* dt = f/(*) e~»t d* + 
a 7 7 

7 fi 7 

^ f X ^ / °l^°>s ^ e-st dč + 6(ři) e-stt dii g(t)e~* dt, Re(a) > c4. 
y—ct> a y — h 
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According to the previously introduced designation, the left hand side of (17) is 
00 

actually h(s) I u(t) e~8t dt. 

y 

Further put j 
r P r 

p($) .=- aog(y) e-?* — bte -«>» I g(t) e~»t dt + \ b(h) e-st. d^ . f g(t) e~»t At 

7—on a y—tx 

and 
00 

:.flfW= jf(t)e-**di. 

7 

Then (17) can be written in form 

Г «i"(*) e-st åt -= h(s) «*"(*) e-st dt = p(s) + q(s), Re(B) > c4. 

7 % 

It is known from the lemma 2, that all the zeroes of the function h(s) have the 
property that Re(«) < M for sufficiently large M. Therefore we can write 

00 

J u(t) e-st dt = h'Hs)! p(s) + q(s)], Re(B) > M, Be(s) > c4. 
Y . • • .? 

Let c = max (M, c4), then 
00 

(18) J u(t) e-st d* = A-1^)! p(*) + q(s)\ Re(«) > c. 

y 

According to the notes following theorem 1 u(t)eC* < y, co); therefore it is 
continuous in that interval nad has a finite variation over any finite interval. The 
formula for determining a function from its known Laplace transform can therefore 
be used to represent the solution of (1). 

From (18) then follows 

u(f)= (eteh^s)\p(s) + q(s)]ds, t >y, 

and proof is complete. * 
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