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ON THE EXCEPTIONAL CASE IN SYSTEMS 
OF NON-LINEAR DIFFERENTIAL QUATIONS 

R A H M I IBRAHIM IBRAHIM A B D E L K A R I M 

Cairo University, Faculty of Science, Mathematical Dep. 

(Received August 28, 1970) 

§ 1. I N T R O D U C T I O N 

Consider the system of non-linear differential equations 

(1) W = g(u, t) + h(t), 

where g and h are continuous vectors in t of n components and periodic of the same 
period p (not necessary the smallest one) 

(2) g(u, t + p) = g(u, t), h(t + p) = h(t). 

Let a periodic solution u0(t) of period # of (1) be given: 

(3) u'0 = g(u0, t) + h(t), u0(t +p)=^ u0(t). 

By varying the R.S. of (1), we consider the differential equation 

(4) u' = g(u, t) + h(t) + m) 

with a small parameter 

(5) I /? I * #>, • 

where the vector of n components f(t) is also continuous and periodic of period p 

(6) f(t + p) = f(t). 

We assume that the vector g(u, t), for which 

(7) . | u — Uo(t) ! S e, 

possesses continuous partial derivatives w.r.t. the components of u till the second 
order. Let 

(8) o(0 = iio(0 + x(0-. 

Setting 

(9) u(t, X) = u0(t) + kx(t), 

then 

(10) Ub(0 = u(t,0),u(*) = i i (U) . 



Subtracting (4) from (1) and rising Taylor's expansion for the vector function g 
w.r.t. A, we obtain (see |1], §2) 

x'(t) = A(t)x+f(t) + r(t,x) 

3g(u0(t),t) 

(11) 

wheп 

(12) 

or in components 

and 

(13) r(L . 

A(t) = 
дu 

{ /,.. í^9i(u0(t),t)\ 

<l, x) = g(u0(t) + x,t)- g(u0(t), t) - дÄM)A x 

/ - • 

T(u0(t) + Åx,t)x-(ì — A)dA 

or in components for i = 1, . . ., n (see [1], (19)) 

(14) r,(*, x) - ^(u0(0 + x, t) - 9i(u0(t), t) - f M ^ l l l l Xk 
k=l OUjc 

I £ 
Э2gг-(Uo(0 + ЯX, Q 

Ä̂ľ̂ г(l — A) dЯ. 

We note that xTl means the transposed vector of x and T denotes the tensor 

(15) 5P(iio(f) + Яx, ř) = 

T,(uo(<) + Ax,í), 
T2(u0(t) + Яx, t) 

, with Tt(u0(t) + Ax, t) = 

Tn(u0(t) + Ax, l)_ 

^ td*gi(uo(t) + Xx,t)\ 

\ dujcdui J 

Here we shall seek solutions of (11) for sufficiently small e and /?o (see (7) and (5)). 
Evidently it is 

(16) A(t + p) = 4(*), T(u0(t + p) + Xx,t + p) = T(u0(t) + Ax, t) for 

fixed x and A. 
We set now for /? 7-= 0 

(17) x = ^x* 
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and we obtain first of all 

(18) x*' - A(t) x* + f(t) + -L r(t, fix*). 

Since the remainder term r (t, fix*) is in fact of order p2 (see (13) and (14), then we 
can replace it by 

(19) r(t, px*) = p2 . r*(t, x*, p) 

and we obtain for x* the system of differential equations 

(20) x*' == A(t) x* + f(t) + pr*(t, x*, p). 

For p •=£ 0, there exists by virtue of (17) a unique correspondence between the solu­
tions of (11) and (20). For /3 = 0, (20) possesses still other solutions x*, for which (11) 
has no correspondents. 

It is necessary to examine the continuity properties of r*(t, x*, /?), in particular 
as P tends to zero. 

§2. STUDY OF THE CONTINUITY OF THE R E M A I N D E R 
TERM r*(t,x*,P) AND ITS DERIVATIVES 

a) Continuity of r*(t, x*, P). 
Referring to (13) and (19), we obtain for r*(t, x*, /?) the representation 

g(uo(0 + px*, t) - g(u0(t), t)-W!jMx* 
(21) r*(t, x*, p) = — = 

o 
or in components 

ß2 

i 

= \x*т. T(u0(t) + pXx*, t) . x* . (1 — X) dX, 

9l(u0(t) + /Jx*, t) - gi(u0(t), t) - /? £ ^ ^ ~ x; 
(22) r*(t,x*,f})= k ÓUk 

P2 

S2Mu0(t) + ^,J)xlx.{l__k)dL = ÍI 
J fa дикдщ 
o Applуing ĽHospitaľв rule, we get 

£ дgtЫ*) + ß**> t) . A ðgtЫt), t) , . 

(23) I i m г ; ( . , x * , / ï ) - - l i m J - î -*- ^ — ^ ** 
6-+0 ß+0 ćp 

ß^o\fri ! дщдщ ** frt12 дщдщ * " 
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<«> '••«•»*• •>-£v.^Ьîi*f 

From this, it follows immediately with 

jtj dukdui 

the continuity of r*(£, x*, /?) as /? tends to zero. This result coincides with the integral 
representation in (22), namely 

U^iu^i) )dk 
J JM cukcui 
0 

b) The continuity of the first derivative w.r.t. x*. 
dr*(t x* 6) 

We examine the continuity of the partial derivative —l I * (i, v = 1, 
dxv 

in particular as /? -> 0. For ft =fi 0, we get from (21) 

(25) &*(t,x*,p) _ £ /fo(iio(*) + ]8x*,*) __ dgj(u0(t), t) \ 
dx*v ft \ duv duv J ' 

As ft ~~> 0, we get 

26 hm -------- = hm 2. * — ^ xi = 
p-»o dxv p_^Q \Y duiduv J 

,n), 

=z avi(uo(o,o . 
7* duiduv 

Xr 

Referring to (24), wo obtain at the same time for /? -> 0 

^ oX*(*,x*,0) _ , , / v G^(u0(*M) „. , y d29i(uo(t),t) ^\ _ 

(27) _ - ^ - , 2 ^ _ ^ ^ ^ + 4 * dukduv
 Xkf~ 

= y d2gi(u0(t), t) „ 

The continuity of the first derivative follows from the concidence of (26) & (27). 
Then x* is uniquely determined from the parameter /3 and the initial vector x* (0), 

and is differentiate w.r.t. components of the initial vector (see [2], § 17). 
c) The continuity of the second derivative w.r.t. x*. 

d2r*(t x* ft) 
Finally wre examine the continuity of the second derivative * ' m 

(i, X, v = 1, . . . , n). Differentiating (25) we get for /? ^ 0 

(28) 8*r'(A x*, /?) = 8^i(u0(t) + fat*, t) _ 
dx*dx*v dux duv 

As ft -> 0, we obtain 

^zy; urn — , « = — - — . 
^ o GXX axv dux auv 

12 
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At the same sime we calculate by virtue of (27) 

t9-r«(i\ x*, 0) d / v d*gt(u0(t),t) A d^gi(u0(t),t) (30) 
*,«»,0) d /y d*gi{u0(t),t) A 

dx*x dx*v dx*K \i dujcduv I dujcduv 

From (29) and (30), it follows the continuity of the second derivative w.r.t. x*. 

§ 3 . T H E C O N D I T I O N S OF P E R I O D I C I T Y 
IN T H E E X C E P T I O N A L CASE 

The problem of the existence of periodic solutions x(t) with period p of the system 
of differential equations (11) of order | (3 \ leads immediately to the problem of the 
existence of periodic solutions x*(l) with period p of the system of differential equ­
ations (20). 

As in [1], we consider the homogeneous linear system of differential equations 
corresponding to (20) 

(31) y'(t) = A(t)Y 

and its adjoint (see e.g. [3], §3.2) 

(32) z'(t) = AT(t) z, 

where AT denotes the transposed matr ix of A. 
The case, where the adjoint system (32) possesses at least one with p periodic 

solution z(t), for wrhich 
v 

(33) zT(t) f(t) dt = c 9-= 0 (resonance case) 

is already t reated in [1] and also the case where (32) possesses no with p periodic 
solutions at all (principal case). 

We state 
Theorem A (Resonance case): If the adjoint system of differential equations (32) 

possesses a t least one periodic solution z(t) of period p , for which (33) is satisfied, 
then every solution of (11) — independent of the initial values — is such tha t | x(t)\ = 
-= | u(t)\ — iio(t) is at least of order ] / | fi | with increasing t. 

Theorem B (Principal case). If (32) has no periodic solution z(t) of period p , then 
(11) possesses — to every sufficiently small ft — vector solutions x(t) for which 
j x(l)| ^ const. | fi | for all t, e.g. the unique existing small with p periodic solution 
x(t + p) = x(t). 
(For the proof, see [1]). 

In this paper studied will be the so-called exceptional, case, where the adjoint 
system (32) possesses with p periodic solutions z(t), but for every such solution 
z(t) the exceptional condition. 

P 

(34) (zT(t)f(t)dt = 0 

o 
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is satisfied. In §4, it will be shown that under certain conditions, the system of dif­
ferential equations (11) possesses in the exceptional case with p periodic solutions 
of order | ft |. 

It is well known from the study of the linear systems of differential equations 
(31) & (32), which has been already treated in details in [4], that a fundamental 
system of solutions Y(t) of (31) or a fundamental system of solutions 

(35) Z(t) = (Y-Цt))* 

~кľ 

with Kv = 

a„ 1 

. 1 

нв_ a 

of (32) (see e.g. [5], (17)) can be obtained such that the constant matrix (see [4], 
(10)) 

(36) P = 7-i(0 Y(t + p) 

has the form 

(37) P == ex*. 

Here the constant matrix K has the Jordan canonical normal form (see [4], (17)) 

(38) 

The submatrices Kv have the order mv, where n = £ mv. 
I 

We consider now the vector solution of (20) in the form 

(39) x* = x*(t, p, c), 

where the vector c is related to the initial vector x* (0, /?, c) by the relation 

(40) x*(0, 0, c) = 7(0) c. 

We are going to prove the following. 

Theorem 1. Necessary and sufficient condition, that the vector solution x*(l, ft, c) 
possesses the period p, is the satisfaction of the equation 

p P 

(41) (P-i — I) c — f ZT(T) f(r) dT — fi f Z^(T)r*(T, x*(r, 0, c,) /?) dT = o. 

0 0 

Proof. By means of the method of variation of constants applied on the diffe­
rential equation (20) and using (40), we obtain for x*(t, ft, c) the integral equation 
(see e.g. [4], (9) or [6]). 

(42) x*(t, ß, c) = Y(t) Íz-Чт) f(т) đт + ß [z.т(т) г*(т, x*(т, ß, c), ß) dт + c 
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Referring to (36), (35) and (6), we get 

(43) x*(f + p, p, c) = Y(t) P \ 
í v 

f Zľ(т) f(т) dт + f; Zîf(т) f(т) dт + | Z^(т + p) f(т) dт + 

P * 

+ $ | V ( T ) r * ( T , X*(T, ft, c). /?) dT + p f Z^(T + p) r*(T + p, X*(T + 

0 0 

p * 

P f Z*(T) f(T) dT + f Z^(T) f(T) di + + p. ß, c), ß)år + c 

+ ßP Іzт(r) r*(т, x*(т, ß, c), ß) ãr + ß f ZÎ-(T) r*(т. x*(т + p, ß, c), ß) dт + Рc i . 

0 0 

Subtracting (43) from (42). we obtain 

(44) x*(l + p, $, c) — x*(l, p, c) = Y(t) 
(P-l)c + P 

P 

j Zт(т)f{ т)dт + 

p i 

+ ßP ľ z * (т) r*(т, x*(т, ß, c), ß) dт + ß JV(т) [r*(т, x*(т + p, ß, c), ß) — 

0 0 

— r*(т, x*(т, ß, c), łЗ)]|dт. 

Setting t = 0 in (44), we get 

(45) x*(p,p,c) — x*(0, /?, c) = Y(0)P { 

p 

í (У _ p-1) C + | ZT(т) f(т) dт + 

p 

ß f Z*(т) r*(т, x*(т, /?, c), ß) \ dт. 

Referring to (45), we see that if x*(l, p, c) has the period p, then (41) follows neces­
sarily. Conversely, if (41) holds, then it follows from (45) that 

x*(l + p, 0, c) = x*(t, p, c), 

and consequently, due to the periodicity of the differential equation (20), it follows 
in general that 

(46) x*(t+p,p,c) = x*(t,p,c). 

Thus the theorem is proved. ' 
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The problem of the existence of periodic solutions of period p of the differential 
equation (20) is therefore reduced to the existence of solutions c = c(/8) of the equ­
ation (41). If we suppose that to every sufficiently small /3 with 

o < I p 1 ^ ft 
there corresponds a vector c(/?) with 

(47) lim c(j8) = c(0), 
5->0 

so that the solution x* (t, /?, c(/8)) has the period p, then there exists, because of the 
continuous dependence of the solution on fi and c, the limit 

(48) lim x*(t, ß, c(ß)) = x*(ř, 0, e(0)). 

Here x*(t, 0, c(0)) denotes a periodic solution of period p of (20) for /3 = 0. Then 
it follows necessarily from (41), that the relation 

(49) ( P - i _ Л e ( 0 ) . 

P 

-jzЦr) f(-r) dг 

holds for c(0). Now we know from [4], that to every submatrix (38) with ocv = 0, 
there exists one and only one with ft periodic solution Z[v\(t) of (32) 

(60) zVv)(t + p) = z[v](tl 

where the symbol \v] denotes the index of the last column in (38), i.e. 

(51) M = _ > , -
i 

Consequently, it follows in case fiv = 0 that the corresponding submatrix of the 
matrix Pl — J is singular. Hence the condition of solvability of (49) coincides with 
the exceptional condition (34). 

We consider again (41) with arbitrary ft. The matrix P in subdivided, as it follows 
easily from (38), in the elementary submatrices (see e.g. [7], (53)) 

(52) 

W,P... pшv -1 

" ( » . - l ) ! 
'P, 

with P„ = 

l,p, •• 

pmv -2 

" (mv — 2)\ 

L Ps. 
4 P 

1 

ďvV, 

from which it follows that the matrix P 
submatrices (v = I, . . ., s) 

I is subdivided in the elementary 
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1 > - P 

1 , - P 
(53) (P-1-!). 

( J))™v-l 

' * " ' (mv — 1)! 

(—p)*ь-2 

" ' (m*—2)! 

1 

Є - a f 2> 

For a,, ^ 0, the submatrices (53) are regular, while for <xv = 0 they have the rank 
mv — 1. We shall assume that the submatrices are arranged, such that 

(54) B * „ J = 1 (V=1,...,Q) 
\фl ( v = í? =.!..... s). 

Then for v = 1, . . . , Q the first column and the last row vanish in the submatrices 
(53). 

The system of equations (41) consists of n equations of the form 

<*») t ^ c , P) = y c ) - ^ ( c , /3) = 0 (/i = 1, . . . , n). 

Here 1^(c) denotes the linear part 

(56) lfl(c) = flc+Jzl(T)f(T)dT, 
0 

where q£ is the u-th row vector of the matrix (P_1 —J) and z j is the w-bh row 
vector of the matrix ZT. Further 

(57) 

P 

bџ(c, ß)=jzï(т) Г*(T, X*(T, ß, c), ß) dт. 

Evidently the linear part (56) vanishes, if the w-th row of the matrix P-1 —• I vanis­
hes, i.e. if ft = [v], v = 1, . . . , g (see (34) and (50)). In this case (55) for fi = [v] 
becomes 

(58) *-,-(€, 0) s —/86M(c, iff) = 0 (v = 1, . . . , Q). 

Dividing by /?, we obtain instead of (41) for /? =fi 0 the system of equations 

Mc> /*) = J„(c) - ^ ( c , j8) (/i = 1 . . . , n & 

(59) vџ(c, ß) = 
fl ф[v],v = 1, . . . Q) 

{ - j » „ ( e , 0) = bџ(c, ß) = 0 (fi = [v], v = 1 . . . , Q.) 

If we suppose again, that to every /? there exists a vector c(fi) such that (47) 
and (48) hold, then it follows necessarily from (57) and (58) that 

P 

(60) 6w(e(0), 0) = f-f,j(T)r*(T, X*(T, 0, e(0)), 0) dT = 0 (v = 1, . . . , Q). 
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We use now (49) and (60) together as a system of equations to determine the vector 
c(0). By virtue of (49), the vector c(0) is uniquely determined up to the components 
c(v)(®) (v = 1, . . . , Q), which remain here arbitrary (see [4], §3 or [6]). The indices 
(v) denote those indices of the first corresponding column in (52), i.e. 

(61) (v) = £ mџ + 1. 
v-l 

í 
1 

Setting the just determined constants cfl(0) in (60), then (60) will represent another 
system of equations in the D constants q.,)(0). Let us assume now that (49) and (60) 
have a common vector solution c(0), that will be fixed. Thus the system of equations 
(59) for /? = 0 is considered to be solved. 

If we assume also that the functional determinant 

(62) 3 6 ^ 1 = | S ^ O ^ O ) j ^ 0  
OC(a) \p=o j GC(CT) 

c-c(0) 

is different from zero, then it will be proved in § 4, that the system of equations (11) 
possesses, for sufficiently small values of /?, a unique solution c = c(/3), which con­
verges to c (0) as @ approaches to zero. 

The elements of this functional determinant (62) can be calculated as it follows: 
From the expressions (57) with JU = [v], ft = 0, we obtain 

p 

(63) 6[,](e(0),0) = JV,j(0 I*(T, X*(T, 0, e(0)), 0) dr = 

S2gk(u0(r), T) ••', , 

0 

P 
1...П 

0 

Further we obtain from (42) 
t 

l„ .n 

*,*(*, 0, c(0)) = fyi,k(t) ( {zi,t(т)ft(т) dт + c*), 
i, k J 

= yi.(cr)(T). 

i, k 

from which it follows that 

dxl(T, 0, c(0)) 
dc(ff) 

Hence we obtain for the derivatives of (62) 

0 ' ' 

' 2/l,(o)(T)dT (v, a = 1„ . . . , Q). 

Then it can be tested whether the functional determinant (62) vanishes or not. 
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§ 4 . T H E E X I S T E N C E OF P E R I O D I C S O L U T I O N S x(t) OF (11) 
W I T H P E R I O D p OF O R D E R \p\ IN T H E E X C E P T I O N A L CASE 

Theorem 2. Under the hypothesis (34) and the existence of a vector c(0) such 
that (49), (60) and (62) hold, there exists to every sufficiently small values of P 
a vector solution c(p) of (41), which converges to c(0) as p tends to zero, such that 
the solution x*(t, p, c(p)) has the period p. 

To prove this theorem, we need the fundamental theorem of implicit functions, 
which will be formulated as the following 

Lemma: Let the vector 
v(c,p) = v(c, ...,cn,p) 

possess in a certain neighbourhood of the values 

ci = c,(0), c2 = c2(0), . . . , cn = cn(0), p = 0 

continuous first derivatives w.r.t. c^, and let it be continuous in all its n. + 1 vari­
ables. Further let. 

(65) v(c(0), 0) = 0; 

and finally let the functional determinant 

! 3^(0,(0), c2(0), . . .,c„(0),0) 
(66) ф0(ţл, A = 1 ...,n). 

Then there exists, to every sufficiently small p, a unique small vector solution c = 
— c(/J) of the system of equations 

(67) v(c,/3) = 0, 

which converges to c(0) as P tends to zero. 
(For the proof see e.g. [8], § 7.) 

Proof of theorem 2. Let the system of equations (41) be written in the form (59). 
We examine now the validity of the assumptions of the preceding lemma. Referring 
to (54), (49) and (60), we get for p = 0 

S/c(0), 0) - ^(c(0), 0) - i„(c(0)> = 0 (/i = I,". . ., n & p ^ [v] for v = 1, . . . , o), 
' • • . • ' • • • p 

«,,,(e(0), 0) = 6 t v ] (c(0), 0) =jz?v](x) r*(r, x*(r, 0, c(0), 0) dT = 0 (v = 1 , . . . , e ) . 

0 

Thus the condition (65) in satisfied. 
Further we obtain from (59) for JUL ^ [v] (v"= 1, . . ., o) 

; dvp(c, P) ^ 8ty,(c, P) ^ 
3cA dc .:'• 

Since by virtue of (45),and (55), v(c, P) satisfies the equation 

x*(0,p,c)~x*(p,p,c)=Y(0)Pv(c,P). 

then it can be written, by using (35) and (36) for t = 0, in the form 

v(c,P) = ZT(p)(x*(0,p,c)-x*(p,p,c)). 
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Thus the assumptions of the preceding lemma of the continuity of the partial deriv­
atives — ^ can be reduced to the continuity of the derivatives — ~ ^ — — - , 

dex dcx 

which follows from known theorem on the dependence of the solutions on the initial 
values and the parameters (see e.g. [2], § 17). For ju, = [v] (v = 1, . . . , Q), it can 

be easily shown by virtue of (59), (57) and (27) that the derivatives —^—— are 
dcx 

also continuous. 
It remains only to show, that the condition (66) is satisfied, i.e. it is required to 

prove that the system of equations (59) for /? = 0 & c = c(0) possesses a regular 
functional matrix 

m ( j^ _ (^j ^ _ , „, 
c-c(O) 

Referring to (59) with /? = 0, we obtain for (68): 

( dv[v](c(0), 0) _ aftr,3(c(0),0) 

(69) 

— (fJL = [v]f0TV= 1, ...,Q). 
dcx dcx 

Svu{c(0)90) dlu(c(0)) l£ „ ^ . ,. 
—^v v n ' = —**\ v n (for all other indices u). 

dcx 3cx 
We see that the functional matrix (68), in all the rows with indices ju =£ [v] (v = 
1,...,Q) coincide with the matrix (P~l — I). These rows are linear independent 
(see (53)). In the rows with indices // = [v] (v = 1, . . . , Q), for which the elements 
of the matrix (P"1 — I) are all zeros, there exists instead of them the partial deriv­
atives 

(70) 8 H C ( 0 ) ' °>- (A = ! , . . . , * ) . 
dcx 

Thus we obtain the following representation: 
Since the triangular submatrices of (P_1 — I) for v = 1, . . . , Q of order mv — 1, 

which are obtained by eliminating the (y)-th column and the [>]-th row, are regular 
and since the other triangular submatrices for v = Q -\- \, .. .,s of order mv are 
also regular, then by using row-combinations we can replace all derivatives (70) 
by zeros, with exception of the derivatives 

,7 9 , /86tr[(c(0),0)\ 
( 7 2 ) \ Sc{a) ) 

(V, ( 7 = 1 , ...,Q). 

I t follows easily that the functional matrix (71) is regular if the submatrix (72) is 
regular, which is exactly the assumption (62). By virtue of the preceding lemma, 
there exists to every small sufficiently small /?, a unique vector solution c = c(/8) 
of (59), which converges to c (0) as /8 -> 0. Since the system of equations (41) follows 
directly from (59), then the solution x*(J, /?, c(/})) of (20) is periodic with period p. 

It follows also that x = fix*(t, ft, c(/9)) is a periodic solution with period p of the 
system of differential equations (11) of order | {} |. 

We summerise our results. 
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««> {^TЦ-

( p)TПt - 1 

0, —ў 

Ә6m(c(0),0) Э6ш(c(0),0) Ә 6 m Э6[i] 

дcы ' ' " ' дcÍQÌ 

Ә6[i] Ә6(i) 
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Let all with p periodic solutions Z[v](t) (v = 1, . . . , Q) of the adjoint system (32) 
satisfy the exceptional conditions (34), and let c(0) be a vector solution of (49), 
so that the corresponding vector solution x*(t, 0, c(0)) of (20) has the period p. 
Further let all with p periodic solutions Z[v](t) of (32) satisfy also (60), and finally 
let the functional matrix (72) be regular. Then there exists, for sufficiently small 
values of fi a periodic vector solution x*(t, /?, c(/J)) with period p of the system of 
differential equations (20), which goes over in the vector solution x*(tt 0, c(0)) as 
/? -> 0 where at the same time c(/?) converges to c(0). Consequently, it follows simul­
taneously the existence of a periodic vector solution x(t, /?) = x*(t, f}, c(/?)) with 
period p of the system of differential equations (11) which is of order | /? |. 
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