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§ 1. INTRODUCTION

Consider the system of non-linear differential equations
(1) u' = g(u, t) + h(t),

where g and h are continuous vectors in ¢ of » components and periodic of the same
period p (not necessary the smallest one)

(2) g(u,t + p) = g(u, ), h(t + p) = h(t).
Let a periodic solution u(t) of period p of (1) be given:

3 Uy = gluo, ) + h(t), Uolt + p) = uo(t).
By varying the R.S. of (1), we consider the differential equation
4) u’ = g(u, t) + h(t) + Bf(t)

with a small parameter

(5) 1B1 = Bo, .

where the vector of » components f(t) is also continuous and periodic of period p
(6) fit + p) = f(t).

We assume that the vector g(u, t), for which

(7) lu—uo(t) | = ¢,

possesses continuous partial derivatives w.r.t. the components of u till the second
order. Let

8 u(t) = uo(t) + x(#).
Setting

(9) u(t, 1) = uo(t) + Ax(t),
then

(10) uo(t) = u(t, 0), u(t) = u(?, 1).



Subtracting (4) from (1) and using Taylor’s expansion for the vector function g
w.r.t. A, we obtain (see [1], §2)

(1) Xt =A@ x + ft) + r(t, x)
where

)  0g(uo(t).t)
(12) All) = =0

or in components

(au(t) = (ﬂ"i('-"-’-(’—”-fl) (hk=1,...,n)

Ouy
and
(13) rit. x) = g(uo(t) + x,t) — gluo(t), t) __Qg%«ifj), t)—x =
1

fxT. T(uo(t) + Ax,t) x:(1 — A)dA

0
or in components for i =1, ..., n (see [1], (19))
(14) ri(t, X) = gi(uo(t) 4 x, t) — gi(uo(t), t) — i Mﬂt—)x == .

=1 Ouy

1
1...n N2
_ f §7 Pguluo®) +Ax.0) o0 gy aa

kL Sukaul

We note that xT! means the transposed vector of x and 7' denotes the tensor
T](Uo(t) + AX, t),
Ta(uo(t) + x, 1)

(15) T(uolt) + Ax,t) =] * , with Ty(uo(t) + Ax, t) =

| Tn(uo(t) + Ax, 1) |
_ (82gi(uo(t) + Ax, t))

aukau,

Here we shall seek solutions of (11) for sufficiently small ¢ and fo (see (7) and (5)).
Evidently it is

(16) A(t + p) = A(t), T(uo(t + p) + Ax,t + p) = T(uo(t) + 4x, ¢) for

fixed x and A.
We set now for f #% 0
(17) X — fx*
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and we obtain first of all

(18) x* = A(t) x* + fit) + %r(t, Bx*).

Since the remainder term r (f, fa*) is in fact of order 32 (see (13) and (14), then we
can replace it by

(19) r(t, fx*) = 2. r¥(t, z*, f)
and we obtain for x* the system of differential equations
(20) x* = A(t) x* + f(t) + pr(t, x*, p).

For f + 0, there exists by virtue of (17) a unique correspondence between the solu-
tions of (11) and (20). For § = 0, (20) possesses still other solutions x*, for which (11)
has no correspondents.

It is necessary to examine the continuity properties of r*(¢, x*, 8), in particular
as f tends to zero.

§2. STUDY OF THE CONTINUITY OF THE REMAINDER
TERM r*¢, x*, f) AND ITS DERIVATIVES

a) Continuity of r*(f, x*, §).
Referring to (13) and (19), we obtain for r*(t, x*, ) the representation
og(uo(t), t
g(uo(t) + fx*, 1) — g(uol?), ) —i;%_)x*

(21) r(, x*, f) = iz : =

1
= fx*T. T(uo(t) + BAx*,¢) . x* . (1 — A) d4,
0

or in components

gi(uo(t) + Bx*, t) — gy(uo(t), t) — f f?i(;’;(:” D) o

(22) i, x*, p) = 5 k —

1
_ f v Fgoll) & PAXTD) ey gy da.
k, 1
0

aukaul

Applying L’Hospital’s rule, we gét

5 Ogiuolt) + px*.8) . 3 Ogi(to(t), 0) .

(23) lim 7} (¢, x*, ) = lim -1 O k-1 Ok —
80 g0 28
(R, 0%gu(uo(t) + Px*t) 02gi(uo(t), t) . .
— 1), ZIRNTON T PR 0 7T S N VAl
P (,,Z, 2 durou; x"’”l) ,rz, e
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From this, it follows immediately with

02 t),t) . .
(24) i, 0) = 5 1) L) o

the continuity of r*(¢, x*, §) as f§ tends to zero. This result coincides with the integral
representation in (22), namely

1

f y wlx;xf(l —A)da
)

auk cup
0

b) The continuity of the first derivative w.r.t. x*.
ori(t, x*, B)
oz,

We examine the contihuity of the partial derivative (5, v=1,...,n),

in particular as § — 0. For f§ = 0, we get from (21)
orj(t, x*,p) 1 (Bgt(uo(t) + Bx*,t)  Ogi(uolt), t)
B

(25) ox, Uy Cuy

As f— 0, we get

. Ori(t, x*, p) 0%gi(uo(t) 4 Pa*,t)
2 1 v - —_—
N e )
— 829i(uo(t)s t)~ x*
T OCwilu, b

Referring to (24), wo obtain at the same time for § — 0

(27 0 _y, (Z Foll0.1) I Foulo(d), 1 n) -

oz, ou, Juy Oug au,

_ Z azgi u() t) xt .

Bulau,

The continuity of the first derivative follows from the concidence of (26) & (27).
Then x* is uniquely determined from the parameter § and the initial vector x* (0),
and is differentiable w.r.t. components of the initial vector (see [2], § 17).
¢) The continuity of the second derivative w.r.t. z*.
o} (t, x*, B) .
ox30x,

Finally we examine the continuity of the second  derivative

(¢, A, v =1, ..., n). Differentiating (25) we get for f§ 5 0
02r; (¢, x*, ) 6Zg¢(uo(t) + px* 1)

28) 0,07, Ouy Ou,

As f— 0, we obtain

0% (t, x*, B)  0%gi(uolt), t)
29 ; =
(29) . ‘1(,1_13 ox; oz, Ouy Ouy
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At the same sime we calculate by virtue of (27)

(30) Orift, x*0) 9 (Z gi(ualt), 1) .\ _ Oga(ualt). 1)

ox; 0x;  Ox; \9 Ougouw, ‘| Ougou,

From (29) and (30), it follows the continuity of the second derivative w.r.t. x*.

§3. THE CONDITIONS OF PERIODICITY
IN THE EXCEPTIONAL CASE

The problem of the existence of periodic solutions x(¢) with period p of the system
of differential equations (11) of order | § | leads immediately to the problem of the
existence of periodic solutions x*(¢) with period p of the system of differential equ-
ations (20).

As in [1], we consider the homogeneous linear system of differential equa,‘mom
corresponding to (20)

(31) y'(t) = A(@)y
and its adjoint (see e.g. [3], §3.2)
(32) z'(t) = AT(t) z

where AT denotes the transposed matrix of 4.
The case, where the adjoint system (32) possesses at least one with p periodic
solution z(t), for which
»

(33) sz(t) f(t) d¢ = ¢ # 0 (resonance case)
0

is already treated in [1] and also the case where (32) possesses no with p periodic
solutions at all (principal case).

We state

Theorem A (Resonance case): If the adjoint system of differential equations (32)
possesses at least one periodic solution z(¢) of period p, for which (33) is satisfied.
then every solution of (11) — 1ndependent of the initial values — is such that | x(t)| =

= | u(t)| — uo(t) is at least of order V] | with increasing ¢.

Theorem B (Principal case). If (32) has no periodic solution z(t) of period p, then
(11) possesses — to every sufficiently small § — vector solutions x(t) for which
| x(t)] < const. | B | for all ¢, e.g. the unique existing small with p periodic solution
x(t + p) = x(t).

(For the proof, see [1]).

In this paper studied will be the so-called exceptional, case, where the adjoint
system (32) possesses with p periodic solutions z(t), but for every such solution
z(t) the exceptional condition.

y4

(34) f 2T(t)f (t) dt = 0

0
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is satisfied. In §4, it will be shown that under certain conditions, the system of dif-
ferential equations (11) possesses in the exceptional case with p periodic solutions
of order | £ |.

It is well known from the study of the linear systems of differential equations
(31) & (32), which has been already treated in details in [4], that a fundamental
system of solutions Y(¢) of (31) or a fundamental system of solutions

(35) 2(t) = (Y@)T

of (32) (see e.g. [5], (17)) can be obtained such that the constant matrix (see [4],
(10))

(36) P=Yt) Y(t+ p)
has the form
(37) P = Kb,

Here the constant matrix K has the Jordan canonical normal form (see [4], (17))

Kl oy 1

(38) K with K, = .. =1, ...,59).

Hyg oy
The submatrices K, have the order m,, where n = i my.
We consider now the vector solution of (20) in éhe form
(39) x* = x*(t, §, c),
where the vector c is related to the initial vector x* (0, 8, ¢) by the relation
(40) x*(0, 8, ¢) = Y(0) c.

We are going to prove the following.

Theorem 1. Necessary and sufficient condition, that the vector solution x*(t. §, c)
possesses the period p, is the satisfaction of the equation

14

y 4
41) (P1—1I)c— f ZT(7) f(z) dr — f ZT(7)r* (7, x*(z, §, ¢,) ) dr = o.
0 0

Proof. By means of the method of variation of constants applied on the diffe-
rential equation (20) and using (40), we obtain for x*(¢, 8, ¢) the integral equation
(see e.g. [4], (9) or [6]).

t

t
(42) x*(t, B, ¢) = Y(t) fZT(T) f(z)dv + ﬂfZT(r) r*(z, x*(z, f,¢), f)dr + ¢
0

0

14



Referring to (36), (35) and (6). we get
»

(43) x¥t+p.f,e)=Y(t) P IJ‘ZT(T) f(x) dz +fZT(T + p) f(z) dv +
0 0
P

'
+ ﬂfZT(‘r) r*(r. x*(1. 8. ¢). f) dr + ﬂfZT(T +p)r¥r + p, x¥T +
0 0

P
+ p. B, ¢),B)dr + ¢l = Y() {PfZT(r) fiz)dr AE—J‘ZT(T) f(x)dz +
0

0

P ¢
+ ﬁPfZT(r) r*(z, x*(z, 8. c), B) dz - ﬁfZT(r) r¥(z. x*(t + p, f. ¢), f)dr + Pc
0o 0

Subtracting (43) from (42). we obtain
»

(44) x*t -+ p, B, e)—x*t.p.c)= Yt {(P — 1) e+ Pf Z7(7) f(r) dr +
0

t

1 pP f 2T (z) £¥(z, x*(x, B ©), ) dv + B f Z7(2) [Pz x*x + p. B. €), B) —

0 0
— r¥(7, x*(z, §, c), ﬂ)]} dr.
Setting ¢t = 0 in (44), we get

P
45)  x*(p.B.e) —x*(0, f. ¢) = Y(O)P ](1 — P )e +fZT(T) f(z) dz +

» l '

B f 27(2) PH(x, x*(r. B, ©), )

0

dr.

Referring to (45), we see that if x*(¢, B, ¢) has the périod p, then (41) follows neces-
sarily. Conversely, if (41) holds, then it follows from (45) that

x*(it + p, B, €) = x*(t, B, c),

and consequently, due to the periodicity of the differential equation (20), it follows
in general that

(46) x*(t -+ p, B. €) = x*(t, f, c).

Thus the theorem is proved. ’
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The problem of the existence of periodic solutions of period p of the differential
equation (20) is therefore reduced to the existence of solutions ¢ = ¢(f}) of the equ-
ation (41). If we suppose that to every sufficiently small § with

0<[B]=Fo
there corresponds a vector ¢(f) with
(47) lim €(f) = €(0),
80

so that the solution x* (¢, 8, ¢(ff)) has the period p, then there exists, because of the
continuous dependence of the solution on f and ¢, the limit

(48) lim x*(t, B, ¢(B)) = x*(t, 0, <(0)).
,ﬂ—'O

Here x*(t, 0, ¢(0)) denotes a periodic solution of period p of (20) for f = 0. Then
it follows necessarily from (41), that the relation

P
(49) P-1—1I) c(0) — f Z7(7) f(r) dr =
0

holds for ¢(0). Now we know from [4], that to every submatrix (38) with «, = 0,
there exists one and only one with f# periodic solution zp,(t) of (32)

(50) z),)(t + p) = z[, (1),

where the symbol [¥] denotes the index of the last column in (38), i.c.

(51) [v] = t m,.
1

Consequently, it follows in case 8, = 0 that the corresponding submatrix of the
matrix P-1— I is singular. Hence the condition of solvability of (49) coincides with
the exceptional condition (34).

We consider again (41) with arbitrary g. The matrix P in subdivided. as it follows
easily from (38), in the elementary submatrices (see e.g. [7], (53))

pmyvl
. 1,p,....(7nv_—1)!
1)5 pm,, -2
. 1, p’ DRI '("'1—’?'11’ ——"év)_"
(52) e with P, = | - . e,
Py .
p
1

from which it follows that the matrix P-t— I is subdivided in the elementary
submatrices (» =1, ..., 8)

16



B (—p)m 1 |
1, P""’(mv———l)‘ . —
(—pym—2
: L=
®3)  (Pr—I), =] - : e p —
—p o
i 1

For a, # 0, the submatrices (53) are regular, while for a, = 0 they have the rank
m, — 1. We shall assume that the submatrices are arranged, such that

=1 (v=1,...,9)
54 %y D,
(54) € {;él(v=g=l,...,s).
Then for y =1, ..., g the first column and the last row vanish in the submatrices
(53).
The system of equations (41) consists of n equations of the form
(55) v,(c, B) = 1,(c) —fBb,(c, B) =0 (w=1,...,n).

Here 7 (c) denotes the linear part
P
(56) l(e)=qic —l—fzf,(r)f(r) dz,
0

* where qf" is the u-th row vector of the matrix (P-1 — I) and zf is the w-th row
vector of the matrix ZT. Further

y 4
(57) b,(c, ﬂ):fz/{'(r) r*(z, x*(t, g, c), f) dr.

0

Evidently the linear part (56) vanishes, if the u-th row of the matrix P-1 — I vanis-
hes, ie. if u =[], v=1, ..., 0 (see (34) and (50)). In this case (55) for u = [v]
becomes
(58) v,(€, B) = — Bby, (¢, ) =0 r=1,...,0).

Dividing by 8, we obtain instead of (41) for f # 0 the system of equations

v,(¢c, B) = L,(c) —Bb,(c, p) p=1...,n &
uFxh,v=1...9)

(59) (e B = 1
——Ev,‘(c,ﬂ)———b,‘(c,ﬁ):O (u=[M,v=1...,0)

If we suppose again, that to every f there exists a vector c¢(f) such that (47)
and (48) hold, then it follows necessarily from (57) and (58) that :
b4
(60)  b,(<(0),0) =J‘zﬂ](1:)r*(r, x*(7,0, ¢(0)),0)dr =0 r=1...,0).
0 ,
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We use now (49) and (60) together as a system of equations to determine the vector
¢(0). By virtue of (49), the vector ¢(0) is uniquely determined up to the components
¢,)0) (¥ =1, ..., g), which remain here arbitrary (see [4], §3 or [6]). The indices
(v) denote those indices of the first corresponding column in (52), i.e.

61) ) =Y m, +1.
1

Setting the just determined constants c,(0) in (60), then (60) will represent another
system of equations in the p constants ¢(,)(0). Let us assume now that (49) and (60)
have a common vector solution ¢(0), that will be fixed. Thus the system of equations
(69) for § = 0 is considered to be solved.

If we assume also that the functional determinant

oby,(c, B) ] | Bby,(<(0), 0) |

62 SR P S RO R co=1,....

(62) e R s e (v, 0 . 0)
c=c(

is different from zero, then it will be proved in § 4, that the system of equations (11)
rossesses, for sufficiently small values of §, a unique solution ¢ = ¢(f), which con-
verges to ¢ (0) as f approaches to zero.

The elements of this functional determinant (62) can be calculated as it follows:
From the expressions (57) with 4 = [v], B = 0, we obtain

P
(63) by,,(€(0),0) = f 20 (t) r*(z, x¥(z, 0, €(0)), 0) d7 =
0

»
l.m 2 .
=12| X %" PG T) o

, T.
a’u,, 8ul v

Further we obtain from (42)
) t
#(t, 0, €(0) = Y. yu,x() ( f 2, 1(7) fu(t) AT + cx),
i,k H
from which it follows that
oz, (%, 0, c(0
J%H = ?/l,(o)(T)‘ -

Hence we obtain for the derivatives of (62)

0%g,(uo(v), 7) . A
2 D)y g, a® 0,€(0) -

8,1, 4

(64)

' P

3by,(€(0), 0) _

e
0

Yy, @rdt (vo=1,...,0)..

Then it can be tested whether the functional determinant (62) vanishes or not.
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§4. THE EXISTENCE OF PERIODIC SOLUTIONS x(t) OF (11)
WITH PERIOD »p OF ORDER || IN THE EXCEPTIONAL CASE

Theorem 2. Under the hypothesis (34) and the existence of a vector ¢(0) such
that (49), (60) and (62) hold, there exists to every sufficiently small values of f
a vector solution ¢(f) of (41), which converges to ¢(0) as § tends to zero, such that
the solution x*(t, 8, ¢(f)) has the period p.

To prove this theorem, we need the fundamental theorem of implicit functions,
which will be formulated as the following
Lemma: Let the vector

vic, B) = v(c, . .-, tn, B)
possess in a certain neighbourhood of the values
c1 = ¢1(0), c2 = ¢2(0), ..., cp =1¢u(0), f =0

continuous first derivatives w.r.t. ¢,, and let it be continuous in all its n 4- 1 vari-
ables. Further let.

(65) v(c(0), 0) = 0;
and finally let the functional determinant

(66) i aVu(cl(O)’ 02(%)07. R cﬂ(0)7 O) i i 0 (,LL, A =1 .. . n)

Then there exists, to every sufficiently small 8, a unique small vector solution ¢ =
= ¢(f) of the system of equations

(67) - W(e, p) =0,
which converges to ¢(0) as f§ tends to zero.

(For the proof see e.g. [8], §7.)

Proof of theorem 2. Let the system of equations (41) be written in the form (59)
We examine now the validity of the assumptions of the preceding lemma. Referring
o (54), (49) and (60), we get for § = 0

5,(€(0), 0) = v,(c(0), 0) = () =0 (u=1,...,ndp#[lforv=1,...,0)
| )
v,(€(0), 0) = by,(€(0), 0) :fz[”;}(r) r*(z, x*(z, 0, ¢(0),0)dt =0 (v = 1, ..., o).
0

Thus the condition (65) in satisfied. '
Further we obtain from (59) for u #= [v](» =1, ..., )

- 0b(e, B) Oy, ﬂ
~ dc, oc .

Since by virtue of (45) and (55), v(c, ) satisfies the equation
’  X*0, B, ) —x*(p, B, 0) = Y(0) Pv(c, B).
then it can be written, by using (35) and (36)vfor t : 0, in the form
<, B) = Z7(p)(x*(0, B, €) — x*(p, B, €)).

19



Thus the assumptions of the preceding lemma of the continuity of the partna] deriv-

0v,(¢, B) ,,(p, B, c)
T 0,

which follows from known theorem on the dependence of the solutions on the initial

values and the parameters (see e.g. [2], §17). For u=[»](» =1, ..., ), it can

be easily shown by virtue of (59), (57) and (27) that the derivatives 'u[,,a,(c h)
Ca

atives —*-———can be reduced to the continuity of the derivatives —*-

also continuous.

It remains only to show, that the condition (66) is satisfied, i.e. it is required to
prove that the system of equations (59) for f = 0 & ¢ = ¢(0) possesses a regular
functional matrix

3v,(c, B) _(95,(<(0),0) B
(68) ( - ),,,, —(T) wA=1, ... n)

c=¢(0)
Referring to (59) with 8 = 0, we obtain for (68):

0dy,1(€(0), 0) by, (<(0), 0) (w=Dlfory—1,... 0.

(69) o 0
9,(<(0), 0) = oL, {<(0) (for all other indices u).
oc; oc;
We see that the functional matrix (68), in all the rows with indices u # [v] (v =
1,...,0) coincide with the matrix (P-! —1I). These rows are linear independent

(see (53)). In the rows with indices u = [v] (v =1, ..., @), for which the elements
of the matrix (P-! — I) are all zeros, there exists instead of them the partial deriv-
atives

0by,(<(0), 0)
oc,

Thus we obtain the following representation:

Since the triangular submatrices of (P-1 —1I) for v =1, ..., g of order m, — 1,
which are obtained by eliminating the (v)-th column and the [»]-th row, are regular
and since the other triangular submatrices for » =g + 1, ..., s of order m, are
also regular, then by using row-combinations we can replace all derivatives (70)
by zeros, with exception of the derivatives

(72) (@-‘—"—g:((%(n) rno=1,...,0).

(70) A=1,...,8).

~

It follows easily that the functional matrix (71) is regular if the submatrix (72) is
regular, which is exactly the assumption (62). By virtue of the preceding lemma,
there exists to every small sufficiently small 8, a unique vector solution ¢ = ¢(f)
of (59), which converges to ¢ (0) as f — 0. Since the system of equations (41) follows
directly from (59), then the solution x*(t, 8, ¢(B)) of (20) is periodic with period p.

It follows also that x = fx*(t, B, c(B)) is a periodic solution with period p of the
system of differential equations (11) of order | 8 |.

We summerise our results.
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(1) (

(—p)m 1

R 1]
0, —p
dbpy(<(0), 0) abyy(<(0), 0) dbyy by | by dbq) obyy dby(<(0), 0)
dcqy 7 oo dogy ~ 7 Bege) l 0oy 7 Doy doy " e
(—p)me!
0,—p, ..., 2
P (Mg — 1)!}
' |
diu(<(0), 0) ) _ 0, —p
963 0biei(<(0), 0) 0big(<(0), 0) 0bie) 0bye) Oy b db)  erey(€(0), 0)
dcqy U Gem U O T Oege dogry ~ T Octgrn doey ~ T Oerg

.oy

(m‘H_l _ 1)’

“e—% i1 — 1

—p)Mesr-1
e—lo+)P—1 . S__.)_PL_

e~ % 1P

Rahmi I. I. A. K., On the exceptional case in system of non-linear differential equations

(—p)ms !

—0y D R

NN 1 (ms — 1)!
R — 1

e“d, 4




-

L)

Let all with p periodic solutions z(,(t) (v =1, ..., @) of the adjoint system (32)
satisfy the exceptional conditions (34), and let ¢(0) be a vector solution of (49),
so that the corresponding vector solution x*(t, 0, ¢(0)) of (20) has the period p.
Further let all with p periodic solutions zp,(t) of (32) satisfy also (60), and finally
let the functional matrix (72) be regular. Then there exists, for sufficiently small
values of § a periodic vector solution x*(¢, 3, c(f)) with period p of the system of
differential equations (20), which goes over in the vector solution x*(t, 0, ¢(0)) as
B — 0 where at the same time ¢(f8) converges to ¢(0). Consequently, it follows simul-
taneously the existence of a periodic vector solution x(¢, §) = x*(¢, £, ¢(8)) with
period p of the system of differential equations (11) which is of order | 8 |.
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