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THE REFINEMENT OF TWO ISOMORPHIC
GENERALIZED LEXICOGRAPHIC PRODUCTS

Ivo Rosenberg
(Received April 15, 1968)

INTRODUCTION

In a recent paper [3] M. Novotny has described a decomposition
induced by an isomorphism of two Cartesian products. The purpose of
this note is to introduce a generalization of the lexicographic product
and to extend some of the results of [3] and [4] to this product.

1.

Without reference we shall use the terminology and notation of [3].
We start with a generalization of the lexicographic product. Let 4, M
be nonempty sets and let M4 denote the set of all mappings from 4 to M.
The elements of M4 will be denoted also by (mg)gca. A subset g of M4
will be called an A-relation on M. If card A = h < Ny, we agree to
identify the A4-relations on M with the h-ary relations on M, i.e. with
the subsets of the Cartesian power M* =M X ... X M.

Let A4, C, @ and By(q € @) be nonempty sets. Let o, be A-relations
on By and let y be a C-relation on Q. The Cartesian product of the sets
B, will be denoted by B = X B,. We shall consider the set @ of all
logical formulae which: 7¢Q

1° have exactly the free variables (f7)qcq € B and
2° are built up from the following atomic predicates:

(i) the equalities: Egqvq = ar f = f¢ (g€, @, 0" € 4),

(ii) the predicates defined by the relations o : Pyvg = af(fi*)aca € ag
(ge@, v: 4 — A),

(iii) the predicates defined by the relation y : W, = ar(uc)cec € ¥
(4 : C — Q). Hence the formulae from @ are formed from the atomic
predicates (i)—(iii) by means of the disjunction ., the conjunction &,
the negation ~, and the quantifiers 3 and V (whose bound variables
range over §) according to the laws of the predicate calculus.

Example. Let card 4 = card C = 2 and let <, and £ be binary
reflexive relations on B,(gq € ) and @ respectively. We have the following
example of a formula from @:

W) L =a¥, (¢ =fi @ < @ (fh<ufd) & (~(f3 ).
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It is easy to check that (1) is in fact the definition of the lexicographic
product.

Let L € @. The A-relation corresponding to L will be denoted by Ap.
Hence (f*)ge4 € A iff L(f*)gc4 holds. Let m = (mg)geqg € B and let Ap
satisfy the following condition (Cy):

(Cm): If foe Blae A4), se@, andfq = mq for all a € 4 and all g€

Q@ \ {s}, then

(fa’)aeA € Apiff (fg)aeA € ag.

We shall call the set B with the A-relation Ap satisfying (Cn) the
Ly,-product of (Bg, og) over (@, y), in symbols H B, (shortly L-product

only). It is a simple matter to check that L deﬁned by (1) satisfies (Cyy)
for any m € B; hence the lexicographic product is an Lp-product, in
particular the cardinal product is also an Lgy-product. Thus the Ly,-
product is a generalization of the lexicographic product.

2.

2.1. Definition. Let K, K’, S, and Uy, (ke K, k' € K’) be sets. Let A »
be a mapping of X Uy’ into S. We define 2*: X (X Up’) - S by
(k,k')eK x K’ k€K k'eK’
P* (e e i) ke ke = Pt ook ) € K

for any ugr € Uk € K, k' € K'). Obviously h — h* is an one-to-one
correspondence between the set of all mappings of X Uy into S
(kKK X K’

and the set of all mappmgs of X (X Uyg') into S. In the sequel we shall
k€K k'eK’

denote both mapplngs k and h* by the same symbol.

2.2. Definition. Throughout this note S will be a nonempty set, o an

A-relation on S, (U, Ay) will be a fixed Lm product IT Uj of the sets

keK
(Uk, ox) over (K, x) and (U’, Ayr) will be a fixed Ly-product II Up-
. k'eK’

of the sets (U, ;) over (K', x') (where g and g, are A-relations on Uy
and U, respectively and » and »’ are C-relations on K and K’, respectively)
In the sequel we shall assume that f is an isomorphism of (U, Ay) onto
(S, o) (that is f is a bijection such that (9%)qc4 € Av iff (fg*)aca € 0), [’
is an isomorphism of (U’, Ay-) onto (8, o) and fm = f'm' = =.

If this holds then (S, (Up)kek, f, n) and (8, (Ui )wex', f, n) are
admissible quadruples in the sense of [3] 1.1 and the mappings g and g¢;-
can be defined as in [3] 1.2. The following conditions are equivalent
(see [3] 4 and [4] th. 1):

(«): g1 = qigx for all ke K and ¥’ € K,
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(6) There exist sets U and bijections f;: X Ugx — Uy and bijections

k'eK
fir: X Ugg — Uy for every ke K, k' € K’ such that f(fi)kex =
keK
= f'(fleex,
where f(f)xex and f'(fi)rex are defined in [3] 3.5.

We shall prove now that if («) holds, then there exist A-relations
&xxe on Upye such that the bijections f(fi)kex and f'(fi')wexs are isomor-
phisms of the L-product X = II (Il Uyy) and the L-product Y =

keK k€K’
= IT (IT Uk') onto (8, o), respectively. The proof is based on several

Kek’ keK
lemmas. Throughout % and &' are elements of K and K’, respectively.
We shall assume that («) holds. We define Uy as in [3] 3.8 (proof part 5)

by .

(2) U = @S = qrS(= @S n qiS).
Further let

3) Xe =11 Uy, Yp=1I Up.

Kek’ keR
From [3] 1.7 and 1.5(i) it follows:

2.3. Lemma. If (&) holds and ugy € Ugyr, then

(4) ik = e, Gk = n(j € K, j # k),

(5) Q' urk = Uik, Qe = n(le K', U £ ).
2.4. Lemma. If t € qiS, then for every k € K, k # 1, we have

(6) Pef1t = prfin = mg.

Proof: By [3]1.2 and 1.5 (i)t = qit, hence f~1t = f-1qit = f~foyp;f-1t =
= oypif~1 and the lemma follows.
From [3] 3.8 (proof part 5), 3.6 and 1.2 it follows that f; is given by

(7) Selur wer = pef~f (D f ukr e -

Thus,

8 F(fke k(ir )iy erxr = f(Pef1(F (D f i Weer ek -
Further from [3] 3.2 and 1.2 we see that

9 f(fidkex = gog'.
In that what follows wf; will be elements of Uxr'(a € 4). We put
(10) b = (ufp e,

(11) v = (Ppf Wy iex-
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Thus ¢ € X v¢ € U’, and

(12) Sk (Uia )ik, krerxrr = f(0rf f Vikek -
2.5. Lemma. f'v§ € &S, t.e.
(13) qef vi = f'v%-

Proof: As u}, € U = @S n g;-8, it follows that gog'(ugy ).k
ekxk' is defined ([3] 3.3, proof part 1). From [3] 3.3, proof part 1 we
obtain also that ¢'(ufy )rex€ qpS. Bubt ¢ (uh )wer: = fv§ ((11) and
[3] 1.2) and (13) now follows by [3] 1.5 (i).

. We note that Ugrr < S and therefore the A-relations &g on Uy

can be defined as the restrictions of o to U (i.e. & = {gc o |g(4d) e
€ Ulck' .

2.6.}Lemma. The following conditions are eguivalent:

(1) (4 )aza € &k s
(i1) (prf etz )aza € Ok,
(1) (pgf' "'tz Jaca € Q- .
Proof: It follows from 2.3, (Cp), (Cw'), &k S o, and from the fact
that f and f' are isomorphisms.
2.7. Lemma. If R is one of the atomic predicates and k € K, then

(14) R(t})aea < R(v§)aza-

Proof: By the definition in the section 1 we have to consider the
following three cases:

1) Let R = Egor(@, a”"€ A, I’ e K’). Assume that R(v§)geq4 holds.
By (11) R(v%)a€ 4 means p,f ~ul;, = p,f'~ g, . In view of (5) we have
uy, = gy, — forpif i, — foipif ity — qufi, = uly; thus by
(10) R(#)ae4 holds. Conversely ul;.= uf;, obviously implies p;f'~1u%, =
= p,f'~uf;. and (14) holds. .

2) Let R = Pv('eK’, v: A - A). Then R(t{)gs€4 means (ul;)ges €
€ &k and R(v])geqa means (pf'~1uf)aca € or and the assertion follows
from 2.6.

3) Let R = W,(u: C — K'). Since t{ € X; and v € U’ and both Xj
and U’ are products over the same set (K’, %’), both sides of (14) mean
simply (uc)ecc € %' and (14) is trivially satisfied.

2.8. Lemma. If k€ K, then

(15) (t)aca € Axx < (v§)aca € Aur.

Proof: L is a formula constructed from the atomic predicates. Since
~, &, ~, 3, and V preserve the equivalence <>, it follows from (14),
that L(tf)aca holds iff L(v§)aeq holds, hence (15) holds.
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2.9. Lemma. If R is one of the atomic predicates then

(16) R((t9)ke) aca < R((Drf~f v0)kek) aca-

Proof: According to the definition of R we have to consider the
following three cases:

1. Let R = Egar(a’,a” € A, L€ K). Then the left and right side of

(16) mean £ =" and pif-if'v} = pif-if'v¥" , respectively. Since f-1
and f” are bijections and # determines completely vf, we have " =#"=-
= pif v = pif Yf'vy". Conversely let pif~1f"sf = pif-1f'v{". Then by
2.5 and by the definition of ¢; we have v} = q;f'v}’ = forpif 10}’ =
= fopif v} = qif'v}” = f'v}". But f’ is a bijection and therefore
vy =", By (11) we have ppf W, = ppf~uf, for any k' e K’
Therefore by‘ (6) and the definition of g;-f or each &' € K’ we obtain
uif, = g — Forped i, = foen'y f g = g, = i, e 1 =
= 1.
2. Let R = Py(le K, v: A — A). Then the left and right side of (16)
mean (tf)qed € Ax1 and (pif~1f'v])qs4 € ;. According to 2.8 and in view
of the fact that f' and f-1 are isomorphisms we have: (#*)qe4 € Ax1 <
< (1}%)gea € A <= (fY'v})gea € Ay. By 2.5, 24, and (Cp) we have
(fY %) aca € Av < (Pif "1f v}")qea € 01 and (16) holds.

3. Let R = W,(u:C—K). Since both X and U are products over
(K, »), both sides of (16) mean simply (uc)eec € » and (16) is trivially
satisfied.

2.10. Lemma. f(f;)xek is an tsomorphism of X onto S.

Proof: f(fx) is a bijection of X onto 8. f is an isomorphism, hence
in view of (8), (10), and (11) we have to prove only that

amn L((t)kek) a€a < L((Drf~f v))kek) aca -

Lis a formula constructed from atomic predicates. Since «, & ~, 3, and
V preserve the equivalence <, (17) is a consequence of (16).
By symmetry we have a similar statement for f'(fy)xek’. Thus we
have
2.11. Theorem. Let S be a set, o an A-relation on 8, (U, Ay) and (U’, Ay)
be an Ly-product of the sets (U, px) over (K, x) and an Ly.-product of the
sets (Uy:, o) over (K', »') respectively (where gx and gx are A-relations on
Ui and U’y respectively and x and »' are C-relations on K and K’ respec-
tively). Further let f and f' be isomorphisms of (U, Ay) and (U’, Ay+) onto
(S, o) respectively such that fm = f'm’ = n. Then the following assertions
are equivalent:
(x) For every ke K and k' € K’ the mappings gx and g (determined
by n) satisfy ’
‘ qxqr = i’k -
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0*) For every k€ K and k' € K’ there exists a set Uy and an A-relation
Epir on Upyyr; for every ke K there exists a bijection fi, : X Ukk» — Uy,

and for every k' € K' there exists a bijection fi' : X Uk — U v such that
S ke and f'(fi)wer: are isomorphisms of the L-product II(IT Uge)
keK K€K’

and of the L product H(H Uxy) onto (S, o) respectively.
K’ k<K

3.

Let S be a set. Further let £ be a set and let o ={4,|w € 2} be a
gystem of nonempty sets. If ¢© are any A4,-relatios on S, then the
system {g” | w € 2} will be said to be an . -relational structure on S. Let
{of | @ € £} be an o7-relational structure on Uy for each ke K. If the
L-product of (U, o) over (K, x) is denoted by (U, Ag) for each w € 2,
then {A% | w € 2} is obviously an .o/-relational structure on U. We say
that f is an ¢somorphism of the .o -relational structure {1% | w € 2} onto
the .o7-relational structure {¢” | w € 2} iff f is an isomorphism of the
relation A onto the relation ¢ for each w e Q.

It is easy to see that 2.11 remains valid if we replace the relations
g, Ok, @ by -relational structures.

Let o be an A-relation on M and let ao € A. We say that g is an opera-
tion on M iff for any (fa)aca € 0 and (gqa)a=a € 0 We have : fg = g4 for
every a € A, a # ap implies fq, = gq,. Hence a finitary n-ary operation
is a special case of (» + 1)-ary relation. Our definition includes also
partial and infinitary operations. From this it follows that universal
algebras may be regarded as a special case of relational structures.

In the sequel we shall restrict ourselves to the ase of (full) direct
product of algebras. A subalgebra with a single element {n} is termed a
trivial subalgebra (for reference see e.g. [1]). Obviously an isomorphism
carries a trivial subalgebra onto a trivial subalgebra and (Cj) holds.
Hence we have (see also [4] Theorem 2):

8.1. Theorem. Let 2 be an operator domain. Let S be an 2-algebra with
the trivial subalgebra {n} and let Ux(k € K) and Uy (k' € K') be Q2-algebras.

Further let f and f' be isomorphisms of the direct products H Ugand 11 Uy
k'eK'

onto S respectively. Then the following assertions are equwalent

() For every ke K and k' € K' the mappings qi and q’ (determined
by n) satisfy
Gy = G-
(0') For every ke K and k' € K’ there exists an Q-algebra Ug'; for

every k € K there exists an isomorphism fi, : 11 Ugy — Uy and for every
k'eK’
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k' € K’ there exists an isomorphism fi- : II Ugxr — Upr such that f(fi)kex
keK

and f'(fe)wek are isomorphisms of II  Upyy onto S respectively.
k)R X K’

3.2. Remark. Hashimoto has p;'ovlzd in [2] that if ¢ is a binary, refle-
xive, antisymmetric and connected relation on S, then the condition (e)
is satisfied for eardinal products. This is not true for lexicographic
products as the following very simple example shows.

Let & > 0 be an integer. By h we understand the chain0 <1 < ... <
<h—1. Let K=K =2 Uy=U; =2, Uy =Uy=3. Then U =
= Il Uy and U’ = Il U}’ are chains with 6 elements and hence both

keK FeR’
are isomorphicto S = 6. Let n = 0,8 = 3 (€ S). Then go3 = foopo(1,0) =
= f(1,0) = 3 and similarly ¢;3 = f'o;p;(1,1) = f'(0,1) = 1. Thus ¢;g63 =
= ¢;3 = 1 and qog;3 = qol = foopo(0,1) = f(0,0) = 0, i.e. gog;3 5~ g1q03.
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