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THE REFINEMENT OF TWO ISOMORPHIC 
GENERALIZED LEXICOGRAPHIC PRODUCTS 

Ivo Rosenberg 

(Received April 15, 1968) 

INTRODUCTION 

In a recent paper [3] M. Novotny has described a decomposition 
induced by an isomorphism of two Cartesian products. The purpose of 
this note is to introduce a generalization of the lexicographic product 
and to extend some of the results of [3] and [4] to this product. 

1. 

Without reference we shall use the terminology and notation of [3]. 
We start with a generalization of the lexicographic product. Let A, M 
be nonempty sets and let MA denote the set of all mappings from A to M. 
The elements of MA will be denoted also by (ma)aeA • A subset Q of MA 

will be called an A-relation on M. If card A = h < $0, we agree to 
identify the A -relations on M with the A-ary relations on M, i.e. with 
the subsets of the Cartesian power Mh = M X . . . X M. 

Let A, C, Q and Bq(qeQ) be nonempty sets. Let ocq be A.-relations 
on Bq and let y be a C-relation on Q. The Cartesian product of the sets 
Bq will be denoted by B = XBq. We shall consider the set 0 of all 
logical formulae which: ?e<2 

1° have exactly the free variables (fq)qeQ e B and 

2° are built up from the following atomic predicates: 

(i) the equalities: Ea'a"q = d/ /f = / f (q e Q, a', a" e A), 
(ii) the predicates denned by the relations ocq : Pvq ss df(fka)aeA e ocq 

(qeQ,v:A-*A), 
(iii) the predicates denned by the relation y : Wn ss af(j^c)Cec e y 

(fx :C ~>Q). Hence the formulae from 0 are formed from the atomic 
predicates (i)—(iii) by means of the disjunction ^9 the conjunction &, 
the negation >^, and the quantifiers 13 and V (whose bound variables 
range over Q) according to the laws of the predicate calculus. 

Example. Let card A = card (7 = 2 and let <_ q and _£ be binary 
reflexive relations on Bq(q e Q) and Q respectively. We have the following 
example of a formula from 0: 

(l) L(f\p) S*V(0}--/;M3((«^g)d>{fi&*JS> *(~(/l-=/»))). 
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It is easy to check that (1) is in fact the definition of the lexicographic 
product. 

Let Le@. The A-relation corresponding to L will be denoted by XB> 
Hence (fa)a<=A s XB iff L(fa)aeA holds. Let m = (mq)qeQeB and let KB 
satisfy the following condition (Cm): 

(Cm): I f /« G B(a eA), se Q, and f\ = mq for all a e A and all qe 
Q\{s}, then 

(fa)aeAelBi8(fa
8)aeAeocs. 

We shall call the set B with the .A-relation KB satisfying (Cm) the 
Lm-product of (Bq, ocq) over (Q, y), in symbols II Bq (shortly ^-product 

<?eQ 

only). It is a simple matter to check tha tZ defined by (1) satisfies (Cm) 
for any me B; hence the lexicographic product is an I^-product, in 
particular the cardinal product is also an Xw-product. Thus the Lm-
product is a generalization of the lexicographic product. 

2. 

2.1. Definition. Let K, K', S, and Ukk, (k e K, k' e K') be sets. Let h 
be a mapping of X Ukk into S. We define h*: X (X Ukk) ~> S by 

(k,k')eKxK' keKk'eK' 

h*{(ukk')k'eK')k€K = h(ukk>)(k,k>)eKxK> 

for any ukk> e Ukk>(keK, k' eK'). Obviously h->h* is an one-to-one 
correspondence between the set of all mappings of X Ukk> into 8 

(k,k')eKxK' 
and the set of all mappings of X (X Ukk) into 8. In the sequel we shall 

keK k'eK' 
denote both mappings h and h* by the same symbol. 

2.2. Definition. Throughout this note 8 will be a nonempty set, a an 
A -relation on 8, (U, Xu) will be a fixed jkm-produet II Uk of the sets 

keK 
(Uki Qk) over (K, K) and (£/', Afp) will be a fixed £m'-product II Uk> 

k'eK' 
of the sets (U'k>, Qk.) over (K', K') (where Qk and Qk> are ^-relations on Uk 

and U'k' respectively and K and K' are (7-relations onK and K', respectively) 
In the sequel we shall assume that / is an isomorphism of (U, Xu) onto 
(8, a) (that is / is a bijection such that (ga)aeA e Xu iff (fga)aeA e #)>/' 
is an isomorphism of (U', Xuf) onto (S, a) and/m ==/W = n. 

If this holds then (8, (Uk)keK, / , n) and (fif, (U'k')k>eK', / ' , n) are 
admissible quadruples in the sense of [3] 1.1 and the mappings qk and qk> 
can be defined as in [3] 1.2. The following conditions are equivalent 
(see [3] 4 and [4] th. 1): 
(<*): Wto = q'k'qk for all k e K and k' e K', 
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(d) There exist sets Ukk' and bijections fk: X Ukk' -> U* and bijections 
k'eK' 

fk'i X Ukk' -> l/jb' for every k e K, k' e Kf such that f(fk)keK = 
ifceif 

= / ' ( / * ' )* '6 .KS 

where f(ik)keK and/ ' f /* ' )*^ ' are defined in [3] 3.5. 
We shall prove now that if (a) holds, then there exist .A-relations 

§kk' on Ukr such that the bijections f(fk)k<=K and/'(/*')fc'ejr are isomor­
phisms of the L-product X = II (II Ukk') and the L-product Y = 

keK k'eK' 

= n (U Ukk) onto (S, o), respectively. The proof is based on several 
k'eK' keK 

lemmas. Throughout k and k' are elements of K and K'} respectively. 
We shall assume that (a) holds. We define Ukk' as in [3] 3.8 (proof part 5) 
by 
(2) Ukk- = qkq'k-S == q'k'qkS{= qkS (\ fli'-ST). 
Further let 
(3) Xk = IlUkk., Yk-=YlUkk-. 

k'eK' keK 

From [3] 1.7 and L5(i) it follows: 

2.3, Lemma. If (a) holds and Ukk' e Ukr > J&ew 

(4) qkUkk* = ^M', g^t*' = n(j eK,j^ k), 

(5) g*'*ta' = % r , g > * r = n(l e K', Z' =£ k'). 
2.4. Lemma. J/ £ e <fr$, then for every keK, k j ^ I, we have 

(6) p*/""1* = iW"1^ = Wfc. 

Proof: By [3] 1.2 and 1.5 (i)* = qtt, hence /--f = / - ^ = / ~ 1 / o ^ - ^ == 
= o\pif~H and the lemma follows. 

From [3] 3.8 (proof part 5), 3.6 and 1.2 it follows that j ^ is given by 

(?) fk(ukk')k'eK' = Pkt1f(Pk'f-~lukk')k'eK'-

Thus, 

(8) f(fk)keK(Ukk')(k>k')eKxK' = f(PktHf(Pk'f'~lukk')k'GK')keK • 

Further from [3] 3.2 and 1.2 we see that 

(9) /(/*)*** = W . 

In that what follows u%k, will be elements of Ukk'(aeA). We put 

(10) ti^(uik,)k>eK>, 

(11) Vl = (^/ ' -%f r ) r eK'. 
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Thus t% e Xk> v% e U', and 

(12) f(fk)keK(u%k,){k, k>mxK> = f(pkf-yv%)keK. 

2.5. Lemma. f'v% e qkS, i.e. 

(13) <Lkfv%=fv%. 

Proof: As u%k, e Ukk> = qkS n qk>S, it follows that gog'(u%k,\k,k>)e 

eKxK' is defined ([3] 3.3, proof part 1). From [3] 3.3, proof part 1 we 
obtain also that g'(u%k,)k>eK>e qkS. But g'(ua

kk,)k>eK< = fv% ((11) and 
[3] 1.2) and (13) now foUows by [3] 1.5 (i). 

We note that Ukk> £ S and therefore the ^.-relations £kk> on Ukk> 
can be defined as the restrictions of a to Ukk> (i.e. %kk> = {g e a | g(A) e 

2.6. Lemma. The following conditions are equivalent: 

(i) (u%k,)asAe£kk'> 
(ii)(Pkf-lu%k,)asA£Qk, 

(iii) (Ph'f-WwW-AeQr. 
Proof: It follows from 2.3, (Cm), (Cm>), £kk> c a, and from the fact 

t h a t / a n d / ' are isomorphisms. 
2.7. Lemma. If R is one of the atomic predicates and ke K, then 

(14) R(t%)aeA<>R(v%)asA-

Proof: By the definition in the section 1 we have to consider the 
following three cases: 

1) Let R = Ea>a»v(a'f a" e A, V eK'). Assume that R(v%)asA holds. 
By (11) R(v%)aeA means pif-xua

kV = pif-lua
kV. In view of (5) we have 

u%v = qi>u%{, = f'oiplf'-iuft, = foiPif-*u%, = qiu%v = ul;v\t thus by 
(10) R(t%)aeA holds. Conversely u%v= u%, obviously implies pif^u^, = 
^Pif-luM> and (14) holds. 

2) Let R = Pvv(V e K', v: A -> A). Then R(t%)aeA means (u%v)mA e 
e£ki> and R(v%)aeA means (pif'^^a^A e qi> and the assertion follows 
from 2.6. 

3) Let R = W^ju: C -> K'). Since t% e Xk and v% e U' and both Xk 

and U' are products over the same set (K', H'), both sides of (14) mean 
simply (juc)cec e H' and (14) is trivially satisfied. 

2.8. Lemma. IfkeK, then 

(15) (tk)aeA e kXk o (v%)aeA G fa>. 

Proof: L is a formula constructed from the atomic predicates. Since 
\y, &,<^, 3, and V preserve the equivalence o, it follows from (14), 
that L(t%)aeA holds iff L(v%)aeA holds, hence (15) holds. 
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2.9. Lemma. If E is one of the atomic predicates then 

(16) R((t%)keK)aeA O E((pkf^fv%)keK)asA. 

Proof: According to the definition of R we have to consider the 
following three cases: 

1. Let R = Ea>a»v(a',a" eA, leK). Then the left and right side of 
(16) mean If = tf and Pitlfvf ~~Pif~1f'vf > respectively. Since/"1 

a n d / ' are bijections and tf determines completely vf, we have tjf = tf=> 
^PittvT ^Pit1S'vT' Conversely let piM'vf ^pif^fvf. Then by 
2.5 and by the definition of qi we have fvf = qifvf = foipif^fvf = 
= f°iPiff'vf = Qif'tf" ~~ f'vf • But / ' is a bijection and therefore 
va{ =vf, By (11) we have Pk'f~x^w~~Pk'f-Xf^w f o r a n y k'eK'. 
Therefore by (5) and the definition of qk4 or each k' e K' we obtain 
< ' = <lk'Ufl>~-fok'Pk'f~lu%, =fok>p'k'f~iu%, = qk>u%, = < : , i . e . *?' == 
= ta". 

2. Let R = Pvi(l e K, v.A-> A). Then the left and right side of (16) 
mean (tf)a&A e Xxi and (pif~lfv<i)a^A e QI. According to 2.8 and in view 
of the fact that / ' and /-* are isomorphisms we have: (t\a)aeA e Xxi o 
o(vv^)aeAeXu' o (t\f'vf)aeAeku- By 2.5, 2.4, and (Cm) we have 
(tWUeA eluo (pittvT)aeA e Qi and (16) holds. 

3. Let B = Wfl({i : C->K). Since both X and U are products over 
(K, K), both sides of (16) mean simply (ftc)Cec e K and (16) is trivially 
satisfied. 

2.10. Lemma. f(fk)keK is an isomorphism of X onto S. 
Proof: f(fk) is a bijection of X onto S. f is an isomorphism, hence 

in view of (8), (10), and (11) we have to prove only that 

(17) L((t%)keK)aeA oL((pkftv%)keK)aeA> 

L is a formula constructed from atomic predicates. Since \ / , & ^ , 3, and 
V preserve the equivalence o, (17) is a consequence of (16). 

By symmetry we have a similar statement for f(fk>)k'eK'. Thus we 
have 

2.11. Theorem. Let Sbea set, a an A-relation on S, (U, Xu) and (U', Xu>) 
be an Lm-product of the sets (Uk, Qk) over (K, K) and an Lm,-product of the 
sets (Uk>, Qk') over (Kr, K') respectively (where Qk and Qk' are A-relMions on 
Uk and U'k> respectively and K and K' are C-relations on K and K' respec­
tively). Further let f and f be isomorphisms of (U, Xu) and (U\ Xuf) onto 
(S, a) respectively such that fm = fm' = n. Then the following assertions 
are equivalent: 

(a) For every ke K and k' e K' the mappings qk and qk> (determined 
by n) satisfy 

<Mk> = qwqk-
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<5*) For every ke K and k' e K' there exists a set Uw and an A-relation 
£kk' on Ujcjc'; for every ke K there exists a bisection fy : X U^' -> Ujc, 

k'eK' 

and for every k' e K' there exists a bisection /#' : X U^ -> Uk' such that 
keK 

f(fk)k<sK and f'(fk')k'eK' a™ isomorphisms of the L-product 11(11 Ujck') 
keK k'eK' 

and of the L-product II(II U^r) onto (8, a) respectively. 
k'eK' keK 

3. 

Let 8 be a set. Further let Q be a set and let s/ = {Am \co e Q} be a 
system of nonempty sets. If &° are any A^-relatios on 8, then the 
system {ai0 | co e Q} will be said to be an stf-relational structure on 8. Let 
{$% | co e Q} be an ^/-relational structure on U# for each keK. If the 
L-product of (Ufc, ok) over (K, x) is denoted by (U} Ag) for each coeQ, 
then {Xfj | co e Q} is obviously an ^-relational structure on U. We say 
that / is an isomorphism of the ^-relational structure {Ag- \ coeQ} onto 
the ^/-relational structure {a™ \ coeQ} iff f is an isomorphism of the 
relation Ag- onto the relation &* for each coeQ. 

It is easy to see that 2.11 remains valid if we replace the relations 
°"> Qkt Qk byj^-relational structures. 

Let q be an A -relation on M and let a0e A. We say that g is an opera­
tion on M iff for any (fa)aeA e Q and (ga)asA e Q we have :fa = ga for 
every ae A, a =fc a0 implies fao = gtto. Hence a finitary w-ary operation 
is a special case of (n + l)-ary relation. Our definition includes also 
partial and infinitary operations. From this it follows that universal 
algebras may be regarded as a special case of relational structures. 

In the sequel we shall restrict ourselves to the ase of (full) direct 
product of algebras. A subalgebra with a single element {n} is termed a 
trivial subalgebra (for reference see e.g. [1]). Obviously an isomorphism 
carries a trivial subalgebra onto a trivial subalgebra and (Cn) holds. 
Hence we have (see also [4] Theorem 2): 

3.1, Theorem. Let Q be an operator domain. Let 8 be an Q-algebra with 
the trivial subalgebra {n} and let Ujc(k e K) and Uk>(k' e K') be Q-algebras. 
Further let f andf be isomorphisms of the direct products H U% and II Up 

keK k'eK' 

onto 8 respectively. Then the following assertions are equivalent: 

(a) For every keK and k' e K' the mappings qjc and qj/ (determined 
by n) satisfy 

&%' = »*'&• 

(b') For every keK and ¥ eK' there exists an Q-algebra Ukk'l f07" 
every keK there exists an isomorphism fk : II U^k' -* Ujc and for every 

k'eK' 
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lc' e K' there exists an isomorphism fa : n U#r -> Uk' such that f(fk)keK 
keK 

and f (fk'h'eK'are isomorphisms of II Uw onto S respectively. 
(k,k')eKxK' 

3.2. Remark. Hashimoto has proved in [2] that if a is a binary, refle­
xive, antisymmetric and connected relation on S, then the condition (oc) 
is satisfied for eardinal products. This is not true for lexicographic 
products as the following very simple example shows. 

Let h > 0 be an integer. By h we understand the chain 0 < 1 < . . . < 
<h — l. Let K = Kf = 2, U0 = U[ = 2, Ul=U'0 = 3. Then U = 
= II Ujc and U' = U Uk are chains with 6 elements and hence both 

keK k'eK' 

are isomorphic to 8 = 6. Let n = 0, s = 3 (e 8). Then Qo3 = fo0po(l,0) = 
= /(1.0) = 3 and similarly q{3 =fo[p[(l,l) = / , (0 , l ) = 1. Thus q'tfoS = 
= gj3 = 1 and qoq{3 = q0l =/oo^o(0,l) ==/(0,0) = 0, i.e. qQq{3 ^ qlqo%-
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