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D O U B L E L E X I C O G R A P H I C P R O D U C T S 

Ivo Rosenberg 

(Received April 15, 1968) 

INTRODUCTION 

Let Q be a nonempty set with a binary reflexive relation ^ and let Nq 

be nonempty sets with binary relations $q(qeQ). The lexicographic 
product is the Cartesian product N = XNq with the relation $ defined 

qeQ 

as follows: Let n< = (n\)qeQ e N(i = 1, 2) . (n1, n2) e N iff 

V [(n\ •# nf) => 3 [(« £ ff) & (nj ^ <) & ((nj, n*) e ffuJ] (1) 

where q and u range over Q. 
Now let (I, g ) and (K, S) be nonempty sets with binary reflexive 

relations and let Zik be nonempty sets with binary relations Zik(i e J, 
k e K). We can form the double Cartesian products 

X = X(XZik), Y=X(XZik) (2) 
iel JceK keK iel 

and the Cartesian product 

W= X Zik, (3) 
(i,k)eH 

where H = IXK. In an obvious way we can identify the sets X, Y, 
and Z (namely by means of the mappings which for arbitrary zik e Zik 

carry ((zik)keK)iel onto ( ( ^ e i ) * ^ and onto ((zik)(h k)€H).The purpose 
of this note is to study the inclusion relations between the corresponding 
X, Y, and W. In this connection the fact that Zik are binary relations has 
no impact. For the case of general relations we must replace the inequality 
relation -7̂  in (1) by some general relations on Nq which will be denoted 
by Nf1. In such a way we obtain a direct generalization of the lexico­
graphic product. 

1. 

Let A, M be nonempty sets and let MA denote the set of all mappings 
from A to M. The elements of MA will be denoted by (ma)a. Any subset 
g of MA will be called an _A-relation on M (if card l - = ^ < ^ o w e agree 
to identify the A -relations on M with the ft-ary relations on Jf, i.e. 
with the subsets of Mh — MX . . . XM). The complement g' of an 
A -relation g is the A -relation MA \ Q. For any me M let m =-(W*)i', 
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where ma = m for every ae A. Further the A -relation M~ is defined by 
M~ = {m\m e M}. Let i& and M# be two .A-relations on M. For the sake 
of brevity we set /## = vl n Jf* w '# = (M')* = $ ' n M#, and 
M-*' =- ( a # ) ' = ( I n J f*) ' = M' u if*'. 

1.1. Definition, .Le£ <2 be a nonempty set with a binary reflexive relation ^ . 
Let A be a nonempty set and let Nq be nonempty sets with two A-relations Mq 

and Nf such that Nf ft NJ* = 0. The l-product of Nq over Q is the Cartesian 
product N = X Nq with two A-relations $ and N# defined as follows: 

qeQ 
Let na = (na)qeQ e N(a eA). 

(na)aeft iff V[((*f)« e N f ) => 3 [(u S q) ft ((na
u)ae$f)]], (4) 

q u 

(n")aeN*iKl[(n«)aeNfl (5) 
9 

where q and u range over Q. 
Obviously N*n N~ = 0. I t is a simple matter to check that if card A 

= 2 and (a, b) e Nf iff a -^ b, then (4) is (1) and (5) means n1 9-= n2. 
If (^a)a 6 N#', then by (5) (na)a e Nf' for every q e Q and the right 

hand side of (4) is vacuous, hence we have 

1.2. Lemma. N- s N#' c JST. 
Let w,a = (na)qeQ e N(a e A). The following assertions, that may be 

verified directly, will be helpful in the sequel. 
1.3. Lemma. 

(na)a eS' iff 3 [((na)a e ft'f) &W[(u<q)=> ((na)a e ft*')]]. (6) 
q u 

1.4. Lemma. Let (na)a e fl' and let qeQ such that (na)a e$f. Then 
there exists ueQ such thai u J q, (n%)a e N'f, and (na)a e$ff' for any 
veQ, v < u. 

1.5. Lemma. If (na)a e .## then there exists qeQ such that (na)a e Nf. 
1.6. Lemma. If (na)a e S'q u Nf' for every qeQ, and (na)a e N# 

then (na)a^Nf. 

2. 

The purpose of this paper is to study the inclusions between X, Y, 
and W, where X, Y, and W are defined in (2) and (3), Zik are nonempty 
sets with two .A-relations Zik and Z& (where Zu 0 ZTk = 0), and the 
binary relation on JET = IXK is the relation of the cardinal product 
(i.e. (i, k) <* (i*, k*) iff i ^ t* and k g k*). For further convenience 
we put 
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'Zt = XZa, Yk = XZik (iel.keK). (7) 
keK iel 

We shall denote the elements of Xi, F#, X, and Y by (z^)^, (z^)i? 

((zik)k)i, and ((zik)i)k> respectively. As in the introduction we jdentify 
X, F , and W. In this section we shall describe the inclusion F ^ W. 

2.1. Lemma. / / F c K or F c W then the following condition (a) 
is satisfied: (a) If V < k\ Z% J± 0, and Z%> ^ 0, then V £ i" 
(i', i " e / , *', F e K ) . 

Proof: Let »', i" € J; t ' , 4" e K, k' < i", and 

feUe^'V ( 4 ' * " ) * e f e . (8) 

For any (i, k) eH\{(i', k'), (i", k")} we choose an arbitrary z ^ e ^ * 
and we put zf̂  = Zik for every a e A. It is not difficult to check that in 

view of k' < k,r, (8), the definition of zf*, and 1. 2 we have *(((zf *)*)*)» G 

ef. If F c 1 , then (((«&)*),). e X . But ((zf,,*)*)„ G 1 ^ , ((zf,k)k)aeXf, 
and ((z^)jfc)«G K/5 for any jel, j ^ i', i". Thus it follows that i' <£ i". 
If F c: JV the proof is similar. 

2.2. Proposition, f c f i / / (a) holds. 
Proof: In view of 2.1 it is sufficient to prove that (a) implies F <= W. 

To prove this let (((zf j.)i)*)a e F and assume that there exists (i", k") e H 
such that (z%,,k,,)a G Z<*". Then ((z%,,)i)a e F * and therefore there exists 
k' G K, k' g 4" such that ((z*k>)i)a € 7 * . We must distinguish two cases: 
1. Let k' = k". Then from (zf„r,)« e Z n r and from ((z^„)f)a e F * it 
follows that there is i' G J, i' «£ i" such that (zf,j.,)a G 2fk>. 2. Let 4' < k". 
In view of ((z%,)i)a e Fjp1 there exists i ' G l such that (zf,*,)* G Z% 
-(see 1.5) and using (a) we see that i' g i". In both cases i' <g i", 4' <£ k" 
and (zf,A,)a G Z ^ , and this shows that F c JV. 

In order to describe W s X and F c X we need the following defini­
tion. 

3.1. Definition. The condition (b) is satisfied if there are no finite 
sequences 
i0 > it > . . . > i«-i in I with i0 S* ii(l = 1, 2, . . . , a — 2) and i0 ^ ia-i 
(a > 2) 

jfc* ^ h^k* ^ k2S
k* > • • • S K~2 > *«-i *n ^ 

or infinite sequences 

io > ii > . . • in I and i j > fa fg fc* ^ fe2 $ fcj > . . . in K 
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such that , y# , a . *'# , ,4 

2. in — im => kn £ km 

for every m, n such that in, km, im, k* belong to the sequences. 
We say that the condition (c) is satisfied if there do not exist such sequences 

satisfying 1 and 2 and the additional condition 

o. kм_i — кm => кn — кn_ 

for every m and n such that k*__1 and km belong to the sequence. 
Note that obviously (b) => (c). 
3.2. Lemma, (a) & (c) => Y cz X. 
Proof: Suppose that (a) holds and Y £ X. Then there exist zfke 

eZik(iel, keK, ae A) such that 

(»)• (((«&)«)*)•€?, {((z%)k)i)aeX\ 

We shall proceed by induction. The induction hypothesis is Vp(p ^ 1): 

There exist i0 > it > . . . > i^_x in I and k* ^ k\ z% k* > . . . ^ 
> kp-i ^ k*_x in K such that 

I. The condition 2 in 3.1 holds for any 0 < m < p and 0 S\ n < p. 
II. For every 0 _\ j < p and any r e K, r < k* 

(Ю) (za

Ш)aЄŽ$y, ( « \ e *#' 
\Zi}Г)a *= /j(jГ . 

III . For every 0 < l < p 

(П) (z?lкl)aeŽ*кl; ((za

кl)i)aЄYкl , 

(12) ЫкU)i)aeYfu => ^ = ^ř—i. 

We shall prove first that V2 holds. In virtue of (9) and (6) there exists 
io e I such that 

(13) ((zUk)a e i ; o
# ; ((za

sk)k)a e I f 

for every 5 6 1 , 5 < i0. From (13) and (6) it follows again that there 
exists k* e K such that 

(14) ( < t f ) . , s 2 & ; (-&)•«--.# 
for any t e K, t < k*. I t is easy to check that I-III hold for p = 1. 

Suppose now that Vp holds. For j = jp — 1 (10) yields («?p-1JbS_l)a e 
€ -2^,**^. We shall consider two cases: Case A. Let 

(15) ((zU-jdaefZ •Ą : 
кp-i 
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In this case we set kp ==• k*„t and (za
p_lk*^)a e Z^_xk*__x together with 

(15) shows that there exists ip e I, ip < ip~i such that 

(16) (zipkp)a eZfpkp. 

Case B . Assume that (15) does not hold. Then from {zip_lk*_x)a € Z{p_xkp^ 

it follows that {(2%*^)a e Yl*p_x and 1.2 and (9) show that there exists 
kp e K, kp < k*_! such that 

(17) (<-$.,).). e ? £ . 
From 1.5 it follows that there is ip e I such that (10) holds. From (16), 
{zaip_xk*_x)aeZ^_xlc*_xi kp < k*_x and (a) we obtain ip < ip~x. But 
ip z£ ip-1} since otherwise for r = kp < k*„x (16) would contradict (10). 
Thus in both cases ip < ip-x and (16) holds. 

As the relation $ in I generally is not transitive, we must consider 
two cases: 

a) Let i0 ^ ip. Then in view of ip~i > ip necessarily p — 1 > 0. 
We set a = p + 1. 

Using the hypothesis and (16) we can easily check that the sequences 
i0 > h > . . . > ip and k* ^ ki ^ kj ^ . . . ^ kp satisfy 1 in 3.1. Now 
by hypothesis, 2 holds for any 0 < m < p and 0 _̂  n < p. As i0 _: ip 

and i0 ^ in we see that in ^ ip for any 0 <\ n < p so that 2 is satisfied. 
Further (11) in the hypothesis, (15) in case A or (17) in case B show 
that (11) holds for any 0 < I < p + 1. To prove 3 assume that 0 < m, 

n < p + 1 and k*n_x= km. Then by (11) ( (Z^LJ*)* e ?*;_-. If n < p, 
then from (12) it follows kn = k*_x. On the other hand if n = p, then 
we have the case A and therefore again kp = k*_x. Thus 3 holds and 
we have found two sequences i0 > i\ > . . . > ip with i0 ^ ip and 
k* ^ k\ i% k* > . . . "̂  kp that 1—3 in 3 1 hold so that (c) is not satisfied, 
b) Let i0 ^ ip. From (16), (13) (for s = ip), and 1.4 we derive that there 
exists k* e K, k* ^ kp such that 

(18) fejae^j; Kv)*eZ% 

for any v e K,v < k*. Referring to (18), and Vp we see that I I holds for 
any 0 < j < p + 1. By assumption 2 holds for any 0 < m < p and 
0 <\n < p. Let in = tp-. Using (16) we have {za

inkp)a = (za
pkp)a e Z%kp = 

= %inkP', hence from (10) (for j = n and r = &̂ ) it follows k* %. kp. 
Similarly, let ip = im. By (11) (4 ,*J* = ( 4 J « e -?£*„. = Z%m and 
from (18) (for v = km) we deduce that again fc* i£ &m- Thus 2 holds for 
0 < m < p + l a n d 0 .£ n < p + 1, i.e. I holds. 

I t remains to prove III for I = p. But when I = p, then (II) becomes 
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(16) and (15) or (17) so that (11) holds for 0 < I < p + 1. Similarly, if 

1= p in (12), we have ((a&J-jOaeF*;^. Thus (15) holds, i.e. we have 
the case A and kp = k*_t as required. This completes the induction step. 

Thus we see that there are two possible cases. In the first case the 
condition (c) is not satisfied because there are finite sequences with the 
properties referred to in 3.1. In the contrary case Vp holds for any p ^ 1. 
I t is easy to check that the infinite sequences obtained in such a manner 
satisfy 1—3 in 3.1. Thus (c) does not hold and the proof is completed. 

3.3. Lemma, (b) => W c X. 
The proof is similar to the proof of 3.2 (the part I I I is omitted in Vp 

and it is not necessary to consider the two cases A and B). 

4.1. Lemma. Y __ X => (a) & (c). 
Proof: From 2.1 we know that Y __ X => (a). Suppose that (c) 

does not hold. Then there exists an ordinal 2 < oc < co (where OJ is the 
least infinite ordinal), im e 1(0 <\ m < oc), kne K, and k*_x e K(0 < n < 
< oc) such that the conditions in 3.1 are satisfied. Referring to 2 we 
see that (im, km) i- (i»-i, k*__x) for any 0 < m, n < oc. From 1 it follows 
that for every 0 < n < oc there exist 

(19) « * „ ) • e zfnkn; (zi^rja e ##*:. . , . 

If (i, k)eH, (i, k) =£ (in, kn) and (i, k) =7-= (i»-i, k*_x) (0 < n < oc) we 
choose an arbitrary ZM e _?c* and put z% = 2^ for any ae A. 

To prove that (((4)<)*)a e Y, let I e K and let ((aS)i)» e 7 * . Then 
there exists 0 < g < oc such that jfcff _J I. For, if £ =£ km for every 0 < 
< m < oc, then in view of ((z%)i)a e Yi and of the definition of ztk there 
exists 0 < q < oc such that I = k*_v and ^a <̂  &*_! = /. We shall prove 
that ((zteq)i)a€Ykg' Assume that ( 4 J a e Z | , Then obviously there 
exists 0 < r < oc such that j = ir-\, kq = k**t. Using 3 we have kr = 
= Jfc*_x = Â  and ir < ir^. Since (z*r*~)« = ( 4 0 a eZj* r = _5^ t , this 
proves that ((4-ff)*)a e 7 ^ and this shows that (((z?*)«)*)a 6 F * . 

It remains to prove that \((2&)*)i)a €•__"'. Let 0 < n < oc. By (19) 

( 4 A ) » e ^ f / » - i ^n ( l *n v* e w °-* ^ in 3.1 there is no 0 < m < oc 
such that in-! = im and k*_x ^ &m. Thus from the definiton of z% we 
see that ( ( ^ j a e i i * , From the definition of z\k it follows that 
for every j e I such that j =£ im for all 0 < m < oc we have ((%*)*) a € 

G Z ^ and therefore by 1.6 (((4*)*)*)«* e K'. Thus we have proved that 
Y £ X and this completes the proof. 
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4.2. Lemma. W ^ X => (b) 
The proof is similar to the proof of 4.L 

Now we can sumarize our results. 
5.1. Definition, (a), (5), and (C) will denote the conditions which are 

obtained from (a), (6), and (c), respectively, when the roles of I and K are 
interchanged. 

5.2. Theorem. The following assertions hold: 
1) YcWo(a); X^Wo(a); 
2) WGXo(b); Wcf o(5); 
3) Y cXo(a) & (c); X c f o (a) & (e). 

Proof : We have to prove only the first assertions (because the second 
assertions are obtained from the first by interchanging the roles of 
I and K). But the first assertions have been established in 2.2, 3.3 and 
4.2, 3.2, and 4.1. 

Combining 1,2, and 3 we obtain 
5.3. Theorem. The following assertions hold: 

4) X =W o(§) &(b); Y = W o(a) &(h); 
5) 2 = Y o (a) & (a) & (c) & (c). 

5.4. Remark. If the relation ^ on I is transitive, then i0 ^ ia_i 
in 3.1 is satisfied for no finite a, thus the sequences in 3A are infinite. 
Moreover, if there is no infinite descending chain in I, then (b) (and 
therefore (c)) holds trivially. 

We shall consider^ special case. Let Z^ — {(x, y) \ x, y e ZM, X ^ y). 
When the relations Za are binary, antisymmetric, and reflexive relations 
and card Z{& > 1 for every (i, k) e H, then 2a -^ 0. First we need the 
following definition. 

5.5. Definition. Let Q be a set with a reflexive binary relation <.. We 
say that qeQ is a maximal (least) element of Q if q* %> q(q* > q) for any 
q*eQ. 

5.6. Proposition. Let card / > 1, card K > 1, and let 2$ =£ 0 for any 
(i, k) G H. Then the following conditions are equivalent: 

(A) X czW &Y czW; 
(B) X^W = Y; 

(G)If Zii£ ?-= 0 then i and k are both maximal or both least elements. 
Proof : (A) => (C). The conditions (a) and (a) are satisfied on basis 

of 5.2. Suppose 2& =£ 0 and let k be an element of K which is not ma­
ximal. Then k < k* for some k* e K. Making use of (a) and 2$k* ¥= 0 
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we see that i ^ i* for any i* e I. Thus k is maximal or i is least. By 
symmetry, k is least or * is maximal. But card / > 1 and card K > \, 
thus k cannot be simultaneously maximal and least and i cannot be 
simultaneously maximal and least so that (C) holds. 

(C) => (B). It is easily checked that (C) implies (a) and (a). Assume that 
(b) does not hold. Then there are finite or infinite sequences i0 > i\ > . . . 
and k* ^ fa S *i > • • • satisfying 1—3 in 3.1. From (C), Z%x =£ 0 
and i0 > H it follows that both ii and fa are least elements; but this 
contradicts k* ^ fa. Thus (b) holds and, by symmetry, (6) holds as 
well. Now from 5.3 it results that X = W = Y. 

(B) => (A) is trivial. 
The following corollary gives the conditions for the equality of double 

lexicographic products of partially ordered sets. 
5.7. Corollary. Let card / > 1, card K > 1, and card ZM > 1 (isI, 

k e K). Let Z^ be partial orderings (ie I, ke K). Then for the lexico­
graphic products the conditions (A), (B) are equivalent to the following 
condition (D). 

(D) If Ziu is not an antichain, then i and k are both maximal or both 
least elements. 

I would like to thank the reviewer doc. Dr. V. Novak for his most 
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