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ON T H E R O L E OF C O N F I G U R A T I O N S I N T H E T H E O R Y 
O F G R A M M A R S 

MIROSLAV NOVOTNY, B m o 

(Received May 19, 1969) 

INTRODUCTION 

In [1] I found a new characterization of context-free languages: Every 
context-free language is the intersection of a full language and a trace 
of a language of strong depth 1. A full language over the set V is a lan­
guage containing all strings over V. Languages of strong depth 1 can be 
defined by means of strong configurations of order 1: They are languages 
over a finite vocabulary for which the set of strings containing no strong 
configuration of order 1 is finite and the set of all so called simple strong 
configurations of order 1 is finite, too. The trace of a language in a free 
monoid U* is the language which can be obtained by cancelling all 
symbols not belonging to U in each string of the given language. 

The aim of the present paper is to find a similar characterization of 
languages of the type 0 of the classification of Chomsky. We prove that 
every language of the type 0 is the intersection of a full language and 
a trace of a language finitely generated. A finitely generated language 
is a language over a finite vocabulary for which a natural number n 
exists such that each string of this language of length >n contains 
a weak configuration of order 1 of length ^ n. 

Thus we see that finitely generated languages form a kernel from 
which the class of all languages of the type 0 can be obtained by means 
of two operations: trace and intersection. In the theory of finitely 
generated languages the main concept is that of a weak configuration 
of order 1 which appeared in the literature earlier; this concept was 
studied in [2] under the name of the configuration of order 1. The idea 
of using configurations to construct grammars is due to Gladkij [3]. 

1. G E N E R A L I Z E D GRAMMARSjAND GRAMMARS 

If V is a set, we denote by V* the free monoid over V, i.e. the set of 
all finite sequences of elements of V in which the operation of con­
catenation is defined; we suppose that the empty sequence A is an element 
of V*, too. We identify one-element-sequences with elements of V; thus 
we have V c V* and for every natural number k and for xx, x%, .,., % 
we write X\X% ...## instead of (xi9 x%, ..., xjc). The elements of V are 
called symbols, the elements of V* strings. 
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We put | A | = 0. If x€ v*f x = xix2 ...xn where n is a natural 
number and x{e V for i =* i? 2, ..., n, then we put | x | = w. 

If w is a natural number and ^ c V* for i = 1, 2, ..., n, then*we put 
. A i ^ .. . An = {aia2 ... an ; a(E Ait i = 1, 2, ..., n}. 

1.1. Definition. Let V, U be sets, let / be a mapping of the set V 
into U*. We put /^(/l) = A; if x = XxX2 ...xn where n is a natural 
number and x% e V for t = 1, 2, ..., n, then we put / (x) = f(xi)f(x2)... 

1.2. Remark. If V, U are sets a n d / a mapping of V into U*, then 
fjw) = !Sx)fSv)for e v e r y *> y e F*-

1.3. Definition. Let V be a set, L £ V*; then the pair (V, £) is called 
slanguage. 

\A\ Definition. Let V be a set. Then the language (V, V*) is caUed 
full. 

1.5. Definition. Let (V, L), (U, M) be languages. Then the language 
(V n U, L n M) is caUed the intersection of the languages (V, L), (U, M). 

1.6. Definition. Let V, VT, S, R be sets with the properties VT £ V, 
S c V*, R c V* x V*. Then the quadruple G =-= <V, Vr, fl, i*> i» 
caUed a generalized grammar. The elements of R are caUed rtdtas. 

1.7. Definition. Let G = <V, Vr, #, JR> be a generaUzed grammar. 
We write, for x,y e V*, x-+y(G) instead of (x, y) e R. For x, y e V*, 
we write x =>y (G) iff there exist such strings u, v,t, ze V* that x = utv, 
uzv = y,t->z (G). For x, y e V* we write x%>y(G) iff there exist a non-
negative integer^ and some strings t0, tt, ...,tpofV* such that x = t0y 

h = y and ^- j => ^((?) for i === 1, 2, ..., p. The sequence t0, h, ..., tp is 
caUed an x-derivation of y in G, p is caUed the length of this x-derivation. 

We put 
<£(G) -=^{x\xeV% and there exists some seS with the property s % x (G)}. 
The language (VT, &(G)) is called the language generated by G. 

1.8. Definition. Let G = <V, VT, S, R} be a generaUzed grammar. 
If V SB VT, then this generaUzed grammar is caUed a special generalized 
grammar. We write <V, 8, R} instead of <V, V, 8, R} if <V, V, 8, JR> 
is a special generalized grammar. 

1.9. Definition. Let G = <V, VT, $, R} be a generaUzed grammar. 
Then G is caUed a grammar iff the sets V, 8, R are finite. 

1.10. Remark. From the above definitions it is clear what is meant by 
a special grammar % 

1.11. Definition. Let (V, L) be a language. This language is caUed 
a special language iff there exists a special grammar generating (V, L). 

1.12. Definition. Let G -= <V, VT,8,R} be a grammar. This grammar 
is caUed a phrase structure grammar iff the foUowing conditions are 
satisfied: (1) There exists such an element aeV— VT that 8 =-= {a}. 
(2) If (x, y)eR then A ^ x e (V — VT)* (see [4], [5]). 
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1.13. Definition. Let (V, L) be a language. This language is called 
a language of the type 0 iff there exists a phrase structure grammar 
# = <JV, V, {o}, R} which generates (V, L). 

1.14. Definition. Let G = (V, VT> {&}> R} be a phrase structure 
grammar. Then G is called a grammar having the standard form iff the 
following condition is satisfied: If (x, y) BR then | x \ g | y | + 1. 

1.15. Lemma. Let (V, L) be a language of the type 0. Then there exists 
a grammar (W, V, {o}, R} having the standard form which generates (V, L). 

Proof. Let G = <U, V, {o}, Q} be a phrase structure grammar 
generating (V, L). If G has not the standard form then there exists 
a rule (x, y)eQ having the following property (S): | x | > | y \ + 1. We 
$ut\x\ =m,\y\ =n,x = xtx2 ... xm,y = yxy2 ... yn where ̂ e U— V 
for t = 1, 2, ,.., m, yj e U for J = 1, 2, ..., ». We have m > w + 1; we 
put q = m — n — 1. We take new and mutually distinct elements 
Ci,i, C\,2, ..., Ci,m_i, c2,i, c2,2, ..., c2,m-2> •••> cq,\, Cq,2, ..., cq,n+\ and we 
define W\ = U u {ct,f, i = I, 2, ..., q, j = 1 , 2, ..., m — * } , Q0 = 
= {(%> C\,\CU2 ,.. Ci , w - i ) , (Ci,iCi,2 . . . Ci , w _i , C2,\C2,2 ... C2 ,w_2), . . . , (Cq,\Cq,2... 
... cq,n+\, y)}, Qx = (Q — {(x, y)}) u Q0, G\ = <W\, V, {<r}, &>. 

Clearly x \ y (G\). It follows &(G) £ J^((?i). 
Let us suppose a \ z (G\), ze V*. There exists a a-derivation o == t0, 

t\,..., tp = z of z in G\. If no rule of the set Q0 has been applied then 
we have o \ z (G). Let us suppose that a rule of Q0 has been applied in 
the above derivation; let us suppose that r, 0 < r <; p is the least index 
such that tr has been derived from tr~\ by means of a rule of Q0, Then 
tr~\ = «m?, £r = ^Ci,iCi,2 ... C\,m-\v for some w, v e 17*. I t is easy to see 
that we can construct such a a-derivation o = t0, t[,..., tp = z of zin G\ 
that t[ = ti for « = 0, 1, ..., r, t/

r_1 = uxv, t'r = uculcli2 >.. clm-iv, 
t'r+1 =-= wc2,ic2,2 ... c2}Wl_2t;, ..., tr+q_t = ucq,iCq,2 . . . cr,n+it?, ^ + f = w t̂;. 
Thus, a \ t'r+q(G). By repeating this argument we prove a%z (G). Thus 
&(G\) s JS?(0). 

We have proved «Sf (G) == -fif^i). The number of rules in Q\ having 
the property (S) is less than the number of such rules in Q. By repeating 
this procedure we construct, after a finite number of steps, a phrase 
structure grammar H = <Pf, F, {er}, R} such that &(H) = J&(G) and 
that no rule of H has the property (S), i.e. if has the standard form. 

J. 16. Lemma. £e£ (F, i ) 5« a language. This language is of the type 0 
iff it is the intersection of a special and a fuU language. 

Proof. If (V, L) is a language of the type 0, then there exists a phrase 
structure grammar Q = <TT, V, {o}t 2fc> generating (F, L), We put 
H = < Wf {a}, R}; then H is a special grammar and &(G) = jSf (£T) n F*. 
Thus, (F, Z) = (F, -£?(#)) = (W r» F, JgP(J?) n F*). Thus (F, £) is the 
intersection of the special language (W, £P(H)) and the full language 
<F,F*). 
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Let (V, L) be the intersection of the special language (U, M) and the 
full language (W, W*). We can clearly suppose that W £ U; therefore 
V=TVnU=TV£U. There exists a special grammar G = (U, S, R) 
generating (U, M). I t follows that H = <JJ, V, S, R} is a grammar 
generating (V, L). I t is well known (cf. e.g. [2], p. 95) that for every 
grammar there exists a phrase structure grammar which generates the 
same language. Thus (V, L) can be generated by a phrase structure 
grammar and therefore (V, L) is of the type 0. 

1.17. Lemma. Let G = <V, VT, {a}, R} be a phrase structure grammar, 
U an arbitrary set. Then there exists such a phrase structure grammar 
H = <TV, VT, {r}, P> that g(G) = &(H) and (W—VT)nU= 0. 

Proof. Let A be an arbitrary set equivalent with V— VT with the 
properties An U = 0, A n VT = 0 ,b a bijection of V — VT onto A; 
we put b(t) = t for each £ e Vy. Thus b is a bijection of V onto i u f y . 
W e p u t If = i u VT, r = b(a) and P = {(b^x), bm(y)); (x, y)eR} 
where b is defined according to 1.1. We define H = <TV, VT, {t}, P}. 
Clearly, >(<?) = &(H) and (TV — VT) n U = A n U = 0 . 

1.18. Remark. Let (V, L) be a language of the type 0, Vi an arbitrary 
finite set. Then (V u Vi, L) is a language of the type 0. — Indeed there 
exists a phrase structure grammar G = <TV, V, {a}, i?> such that 
J§?((?) = L. We can suppose (W— V) nVi = 0 according to 117. We 
define H = <TV u Vi, V U Vi, {cr}, J8>. Clearly, JS?(<?) £ .§?(#). Let us 
have x e $e(H). Then xe(V u V^)*,a%x (H). It implies x e (V u Vi)*, 
<r 2> # (G), thus # G TV*. Therefore, x e W* n (V u Vi)* = ((W — V) u 
U V)* n (V u Vi)* = V* and xe&(G). Thus, £ = jSf(O) = JS?(#) and 
(V U Vi, J-?(#)) = (V u Vi, £) is a language of the type 0. 

1.19. Remark; The intersection of a language of the type 0 with a full 
language is a language of the type 0. 

Indeed, if (V, L) is a language of the type 0, then there exists a special 
language (U, M) and a full language (TV, TV*) such that (V, L) is the 
intersection of (U,M) and (TV, TV*) according'to 1.16. Let (Z, Z*) be 
a full language. Then the intersection (TV n Z, TV* n Z*) is the full 
language (TV n Z, (TV n Z)*) and we have (V n Z, Ln Z*) = 
= (U n TV n Z, M n TV* n Z*) = (U n (TV n .2), Jf n (TV n .2)*) 
which is the intersection of the special language (U, M) and the full 
language (TV n Z, (TV n .2)*). Thus the intersection of (V, £) and (Z, .2*) 
is a language of the type 0 according to 1.16. 

1.20. Definition. Let P be a linearly ordered set, V a set, let us suppose 
VT <= V, S £ V*, .RA s V* x V* for each X e P . Let us suppose that 
the sets Rx are mutually disjoint. Then the quadruple G = <V, TV, # , 
(-BAWO* *S called a generalized grammar with a linearly ordered decompo* 
siiiori on the set of rules (a generalized o-grammar). If the sets V, S, \J Rx 
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are finite, then the quadruple <V, VT, 8, (Rx)xeP> is called a grammar 
with a linearly ordered decomposition on the set of rules (an o~grammar). 
The pairs (x, y) e Rx are called rules. 

1.21. Definition. Let Q= <V, Vy, 8, (Rx)xep) be a generalized 
o-grammar. Let us have A0 e P. Then for x,yeV* we put x -> y iff 

(#,«/) eRxQ. For a ; j e F * we put x => y iff there exist such strings 
**. 

w, v, t, z 6 V* that # = Mft;, uzv = y9t->z. For a;, y € V* we put # % y 

iff there exist an integer q ^ 0 and some strings t0, ti9 ..., tq in V* such 
that x = t0,tQ = y and £$_i => ̂  for i = 1, 2, ..., q. 

**. 
For x, y e V* we define # ^ t/ iff there exist such an integer p *> 0, 

(*ji);fep 

such a finite increasing sequence X\ < Xi < •.. < Xp of elements of P 
and such elements t0, h, ..., tp of V* that x = t0, tp = y and £|_:L %• î 

for i = 1,2, , , ] ) . 
We put 

££(G) = {x; x e V% and there exists such s e 8 that s % x}. 
(*/.)A€P 

The language (VT , &(G)) is called the language generated by the generalized 
o-grammar Q. 

1.22. Definition. Let Q = <V, Vr, 8, (Rx)xep) be a generalized 
o-grammar. This generalized o-grammar is called special iff V = Vy. 
Wewrite <V,^,(i?A)A6p> instead of <V, V,^(i?A)A6P> if <V, F , 5 , ( E A W > 
is a special generalized o-grammar. 

1.23 Remark. I t is clear what is meant by a special o-grammar. 
In [6] we proved the following theorem: 
1.24. Theorem: Let Q be a special o-grammar. Then there exists such 

grammar H that &(Q) = &(H). 

2. TRACES OF LANGUAGES AND GRAMMARS 

2.1. Definition. Let V, U be sets. For each v e V we put tu(v) = v 
if v G U and tv(v) -= A if v e V — U. According to 1.1 we define the 
mapping iP of V* into U*. If x e V* is a string, then t®(x) is called the 
frace of x in U*. 

2.2. Lemma. Let V, U be sets. Then the mapping t® has the following 
properties: 

(A) For each x,yeV* it holds true t?(xy) = tf (x) t&(y). 
(B) If t f (u) = a?y for someue V*9 x\ y* e U*9 then there exist such 

strings x, yeV*that t& (x) = x', t f (y) == y'9 xy^u. 
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(C) For each xeV*we have t f (tf (x)) = tf (x). 
The proof can be found in [1]. 
2 .3. Definition. Let (V, L) be a language, U a set. We pu t t f ( i ) = 

= {tf (x); xeL}; the language (U, tf (L)) is called the trace of the language 
(V,L)inU*. 

2.4. Definition. Let G = <V, 8, E) be a special generalized grammar, 
U a set. We put St = t f (S), Et = {(if (*), t f (y)); (x, y) e E}. 
Then the special generalized grammar <U", Si, E%y is called the trace of 
the special generalized grammar G in U*. 

2.5. Theorem. Let (V, L) be a language of the type 0, U an arbitrary 
finite set. Then the trace of the language{ (V, L) in U* is a language of the 
type 0. 

Proof. There exists a phrase structure grammar G = (W, V, {a}, E} 
such that J§?(G) = L. We can suppose, without loss of generality, that 
(W—V)nU = 0 according to 1.17. We define the o-grammar 
H = (W, U, {a}, (Ex)xep} where P = {1,2} with the natural ordering, 
Et = E, E2 = {(a,A);aeV— U}. 

Let us have xeJj?(H). Then xeU* and one of the following three 
possibilities occurs: 

(a) There exists a string t0 G W* such that a = t0 = x. But a e W— U 
and x e U wich is a contradiction. Thus, the first possibility cannot 
occur. 

(b) There exist a natural number kx and some elements t0, tif ..., 
tkl € W* such that a = t0, tkl = x and ^_x =>• ti for i = 1, 2, ..., fa or 

* i 
ti^i => ti for i = 1, 2, ..., i i . In the first case, we have xeU* and 

R2 

# 6 .£?((?) which implies x = tf (x) e t^(^(G)). In the second case we have 
tQ = a and £0 => ti, thus o* -> £i which is a contradiction as a e W — V 

Ma Ra 
and £ -> z implies t e V — U. Thus, the second case cannot occur. 

Ra 

(c) There exist such integers 0 < fa < k2 cmd such strings t0, tXi ..., 
h%€ W* that a = £0, foa = # and t^i => £* for i = 1, 2, ..., fa and 

£{-i => U for t = fcj. + 1, ..., &2- Thus, we have a %, tkl(G). We have 

**i e V*; indeed, if ^ € Tf * — V*, then at least one of the symbols 
of tkl belongs to W —- V. But this symbol occurs in tk% as the symbols: 
of jf — y cannot be removed by means of the rules of the set E% .Thus, 
ht e W* — V* implies x » feg e W*—17*, which is a contradiction, 
^therefore tkl e V* and a % tkl(G) which implies tk%e£?(G). The rules 
of E2 transform all symbols of tkl belonging to V— U into A; thus 
a r « % = ^ 

We have proved &(H) ^^(^(G)). 
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Let us have x e tl[(Jg(Q)). Then there exists such a string ye&(G) 
that tu(y) = x. Thus we have a % y (G). It implies a %y. Clearly, y % x. 

* II R 

Thus, a %> x,xeU*. I t follows x e &(H). 
{Rk)XeP 

We have proved tf (&(G)) s &(H). 
Thus we have tu(&(Q)) = &{fl). 
We put Ht=\w, {a}, (Rx)xsP>. Clearly, &(H) = &(Hi) n U*. 

According to 1.24 there exists such a grammar (?' = <F', V'T> S', JS'> 
that J2?(0') = Se(Hx). It implies that (V'T, &(HX)) is a language of the 
type 0. I t follows that (V'T n U, SPifld n U*) = (V'T n U, &(H)) is 
a language of the type 0 according to 1.19. It implies that (U, S£(H)) 
is a language of the type 0 according to 1.18. Thus the trace of (V, &(G)) 
in U*, namely the language (U, £(H)) = (U, t?(&(Q)))> is a language 
of the type 0. 

3. F I N I T E L Y GENERATED LANGUAGES 

In the following definitions (V, L) is an arbitrary language. 
3.1. Definition. For xeV* we write xv(V, L) iff there exist such 

strings u,ve V* that uxv e L. 
3.2. Definition. For x,yeV* we write x > y (V, L) iff, for every 

u,ve V*, uxv e L implies uyv 6 L. 
3.3. Definition. For x, y e V* we write x ==. y (V, L) iff x > y (V,L) 

BJidy > x (V,L). 
3.4. Definition. Let x, y e V* be strings. The string x is caUed a weak 

configuration of order 1 of the language (V, L) with the result y iff the 
foUowing conditions are satisfied: xv(V, L), x==y(V, L), \x\ > \y\. 

For the sake of brevity we say "configuration" instead of "weak 
configuration of order 1" as no other configurations will be studied in the 
present paper. 

By C(V, L) we denote the set of all configurations of the language 
(V, L); we put E(V, L) = {(y, x); xeC(V, L), y a result of a}, B(V, L) = 
= L—V*C(V,L) V*. 

3.5. Definition. Let (V, L) be a language. This language wiU be called 
a language with bounded configurations iff there exists such an integer n 
that, for each string we L with the property \w\ > n, there exist such 
strings x, y, u, ve V* that w = uxv, (y, x) e E(V, L) and | x | | n . 

If (V, L) is a language with bounded configurations, then we denote 
by i(V, L) the least integer n with the above mentioned property. We 
put D(V,L) = {(y,x); (y,x)eE(V, L), \x\<i(VyL)}, K(V,L)~ 
= <F, B(V, L), D(V, L)). Then K(Vt L) is caUed the generalized bounded 
configuratkmal grammar of depth 1. 

3.6. Theorem. Let (V, L) be a language with bounded configurations, 
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K( V L) 'ite generalized bounded configurational grammar of depth 1. Then 
J?(l£{V,L))=L. 

Proof. 1. Let E(n) be the following assertion: If xeJ?(K(V, L)) and 
| x | r= n, then xe L. 

Clearly, E(0) is valid as xe£?(K(V, L)) and | x \ = 0 implies xe 
eB(V,L) s £. 

Let m > 0 be an integer and suppose that E(0), E(l), ..., E(m — 1) 
are valid. Let us have #eJS?(K(V,.I/))> | #. | = m. Then there exist an 
integer p £ 0 and such elements s0, 8i, ..., sp of V* that $oe B(V, L)> 
sp = x and 3i-i => s*(K(V, L)) for i = 1, 2, ..., p. If p = 0, then a; = 
=a ô 6 i?(V, £) £ i . If p > 0, then we have sp-i => x(K(V, L)) which 
implies the existence of such strings u, v, t, zeV* that utv = sp-x, 
x = uzv and (t, z)e D(V, L). Thus, | sp-i | = | utv | < | wzt? | = | x | = m 
and 5p_i e JSP(K(V, £)). According to E(0) or K(l) or .. . or E(m — 1) we 
have 8p-i € L. We have t ~z(V,L) as (t, z) e D(V, L). Thus t̂ t? = 
= Sp-i e L implies a; = uzv e L. 

We have proved the validity of E(m). 
Thus E(n) is valid for every integer n ^ 0. I t follows &(K(V, L)) c £ . 
2. Let .F(T&) be the following assertion: If xe L and \x\ = n, then 

*e-S?(K(V ,£)) . 
Clearly, F(0) is valid as a; e L and 1 a; | = 0 implies x e B( V, L) £ 

eJ*?(K(V ,£)) . 
Let m > 0 be an integer and suppose that F(0), F(l), ,.., F(m—1) 

are valid. Let us have x e L, | x \ = m. If x e B( V, L), then x e <£(K( V, L)). 
Let us have xe V*C(V,L) V*. Then two possibilities can occur: 
(a) If m ^ i(V, L) then there exist such strings u, v, zeV* that 

ar=-=- %zv, zeC(V, L), We have | z | S I uzv | = | x \ = m ^ i(V, L). 
(ft) If m > i(V, L), then there exist such strings u, v, zeV* that 

x = uzv, zeC (V, L) and \z\ <£ i(V, L) according to the definition of 
i(V,L). 

Thus, in both cases, there exist such strings***, v, z e V* that x = uzv, 
ze C(V, L) and | z [ S i(V, L). Let t be an arbitrary result of z. Then 
(t, z) e D(V, L) which means t ~ z (V, L), \t\ < \z\. Thus, uzv = xe L 
implies utv e L; moreover, we have | utv | < | uzv \ = m. According to 
F(0) or F(l) or ... or F(m — 1) we have utv e «JS?(K( V, L)) which implies 
the existence of such a string seB(V,L) that s % utv (K(V, L)). As 
tUv => uzv(K( V, L)) we have s % uzv (K( V, L)) and x = uzv e J£?(K( V, L))f 

We have proved the validity of F(m). 
Thus, F(n) is valid for every integer n ;> 0. It follows L £ <£(K(V ,L)): 
3. We have proved L = J§?(K(V, £)). 
H.7. Definition. Let (V, L) be such a language with bounded con­

figurations that V is a finite set. Then (V, L) is called a finitely generated 
language: 
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3*8. Lemma. Let (V, L) be a finitely generated language, then the sets 
B(V, L), D(V, L) are finite, :. .-: ••• 

Proof. The fiMteness of D(V,X) foUows from the fact that there 
exists only a finite number of strings x e V* with the property \ x \ g 
^ i(V, L). Thus, there exists only a finite number of ordered pairs of 
such string^; all rules of the set D(V, L) are contained in the finite set 
of such pairs. 

I t foUows.from the definition of B(V, L) that seB(V,L) implied 
j s | % i(V, L). Thus, B(V, L) is finite. 

3.9.Theorem. Every finitely generated language is a language of the 
type 0. 

Proof. It foUows from 3.8 that K(V, L) is a grammar for the finitely 
generated language (V, L). 

4. CHARACTERIZATION OF LANGUAGES OF THE TYPE O 

4*1. Lemma Let G = <V, Vr, {a}, B} be an arbitrary grammar having 
the standard form such that ££(G) ^ 0. We put Gx = <V, {a}, B}. Let 
Zx, Z2, Z3 be sets with the following properties: there exists a bisection fx 

of B onto Zx, a bisection f2 of B onto Z2, Z3 has precisely two elements : 
and—and the sets V, Zx, Z2, Zy are mutually disjoint. We put fx(r) = 
= tr, Mr) = ]rfor each r e B, V0 = V u Zx u Z2 u Zs, Bx = {(x, [ry]r)\ 
r =.(#, y) eB}, B2 = {(a[r, : [r — a);reB,ae V}, B3 = {(a]r, : ]r — a); 
reB, aeV}, B4 = {(a:,. : :a); a e V } , j£5 = {(«—, - a); ae V}, 
BQ = Bx uB2 u B3 u B4UB5,GO = <VQ, {a}, 'i?0>. 

Then the following assertions hold true: 
(i) Ifx,ye V*, x %y(G0), then \x\^\y\.Ifa %y(G0) and \y\ = 1, 

then y = a, if a => y (Go) and \ y | = 2, then (a, y)eBx. 
(ii) The language (V, &(GX)) is the trace of (V0, &(GQ)) in V*. 

(Hi) If (x, y) e B0, (t, z) e BQ and u, v, p, qe V* are such elements that 
uyv = pzq, then either u = pzqx, qxq2 = q, q2 = yv for suitable strings 
qx,q2 e V* or uy = px, pxp2 = p,p2zq = v for suitable stringspx,p2 e V* 
or u = p, y = z, v = q. 

(iv) If(x,y)eBo,theny > x (V0, &(GQ)). 
(v) (VQ, 3?(Go)) is a finitely generated language. 

Proof of (t). Clearly, (x, y)eB implies | x | g | y | + 1, thus, (t, z) e BQ 
implies \t\ < \z\. I t follows the first assertion. As | z \ > 2 for each 
(t, z) eBQ, then a%y (G0) and | y | = 1 imply y = a and a%y (Go) and 
] y\ = 2 imply (a,y)eBx. 

Proof of (ii). 1. Let C(n) be the following assertion: If weJ2?(Go) 
and I w I = n, then t*(w) e&(Gx). 

Clearly, we3?(Go) implies | w \ g> 1 according to (£). 



180 

0(1) is valid, as we^(Q0), \ w \ = 1 imply w = a according to (i) 
and tv(w) = tv(a) = a e&(Qi) according to 2.1. 

Let m > 1 be an integer, let us suppose that 0(1), (7(2), ..., C(m — 1) 
are valid. Let us have weJe(Q0), \ w \ = m. Then there exists a <r-
derivation s0, sx, ..., sn of w in Q0 and n }z I. Especially, we have 
%-i => w (G0). Thus some strings u, ve V* and a rule (t, z) eB0 exist 
such that sn~i = utv, uzv = w. We have \utv\ < \ uzv \ = | w \ =* w, 
wto == %-i €-if ((?0) according to (t). According to O(l) or G(2) or ... or 
G(m—1) we have tv(utv) eJe(Gi), thus — according to 2.2 (A) — 
tv.(u)tv(t)tv(v)e<e(Gi). 

If (t, z)eBi, then t e V* which implies tv(t) = t and z = [rw']f for 
a suitable w' e V* where r = (£, w') e i?; it follows tF(z) = w'. Thus we 
have tv(u) ttv(v) e&(Gi) which implies tv(w) = tv(uzv) = tF(^) tF(z) tv(v) = 
= t » ^ ' t » e J S ? ( G i ) . 

If (t, z)eB2uB3uB4uB5, then, clearly tr(*) = tv(z). Thus tF(w) = 
= t?(uzv) = t » t » t » = t » tF(*) t » = t>fc>) 6 J2?«W* 

We have proved G(m). 
Thus C(n) is valid for n = 1, 2, . . . . I t implies tv(£>(G0)) c &(QX). 
2. Let D(w) be the following assertion: If x e£f(Qi) and if there exists 

an or-derivation a = s0, sx, ..., sn = x of x in (?i of length n, then there 
exists an element w e je(G0) such that tF(w) = x. 

D(0) is valid as x e JS?(#I) and n = 0 imply a = s0 = x and tF(<r) = 
= a = x. 

Let m > 1 be an integer, let us suppose that D(0), D(l), ..., D(m — 1) 
are valid. Let x €je(Gi) and let us have an (/-derivation a = s0, sif ..., 
sm = x. Then sm-i e3?(Gi) and a = s0, sx, ..., «m~i is an <r-derivation of 
«m-i of length m — 1. According to D(m — 1) there exists an element 
w' eje(G0) such that tv(w') = sm^x. As we have sOT-i => x (Qi), there 
exist a rule r = (t,z)eB and some strings u, v e V* such that sm-x = uJtv, 
uzv = x. I t follows the existence of u', t', v' e F* such that u't'v' = w't 
tv(u') = u, tv(t') = t, tv(v') = v according td* 2.2 (B). If *' ^ *, then 
applying some rules of i?2 U i?3 U B4 u B5 we get t' ^ ^ (#o) where 
ye(V0— V)*. I t follows tF(^) = A. If *' = t, then «' ^ t (G0) holds 
trivially. Thus, in both cases there exists a string y e (V0— V)* such 
that t' %, yt (G0). I t implies u't'v' %. u'ytv'(Q0). As (t, [rz]r) e -Bo we have 
u't'v' % u'y[rz]r v'(G0). The fact that u't'v' = w' e&(G0) implies 
u'y[rz]rv'e&(G0). We have tv(u'y[rz]r v') = t » ) z tv(v') = uzv = x. 

We have proved D(m). 
Thus D(n) is valid for n = 0, 1, 2, . . . . I t implies Jg?(#i) <= tF(.jS?(#0)). 
3. We have ^(Qi) = t\(^(G0)), V ^ V0. Thus, (F, &(Gt)) » 

= (F, tF(JSf((?0))) is the trace of (F0 , -2?(#o)) in F*. 
Proof of (Hi). Let us have (#, y)eB0, (t,z)eRo> % v, p, qe FJ, 
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uyv z& pzq. Let us suppose that there exist such strings yi, 2/2, zt, z2 e V*, 
ceVo * n a t V = y&yi* z = zxcz2, uyx = pzi, y2v = z2q. 

(a) If (x, y)eRi, (t, z)eRi, then y = [rw;]r, z = [r'w']r- for suitable 
r,r< eR, w, w' e V*. I t follows r = r',w = w' as [r, [r>, ]r» ]r' e F0 — V 
I t implies y = [rw]r = [r't#']r' = z, u = jp, v = q. 

(b) If (#, y)eRi, (t, z)eR2, then the above mentioned situation is 
impossible a s ^ = yicy2, z = ztcz2 imply c 6 V or c = [r for a suitable 
reR. In the first case we have yi 7-= A -?-- 2/2, % = : [r — , ^2 = / l . From 
the fact that uyi = pzi it follows that the last symbol of yx is —, which 
is a contradiction. In the second case we have yi = A, y2 -7-= A, zx = : , 
z2 = — a for a suitable ae V. Froim the fact that y2v = z2g it follows 
that the first symbol of y2 is —, which is a contradiction. 

(c) If (x,y)eRi, (t,z)eRz, then the above mentioned situation is 
impossible as y = yicy2, z = Zicz2 imply c e V or c = ] f for a suitable 
r e -R. In the first case we have yi 9-- A 7-= 2/2, Zi = ' ]r — , 22 = /I . From 
the fact that ^2/1 = pzx it follows that the last symbol of yx is —, which 
is a contradiction. In the second case we have «/i 7-= A, y2 = /I , 21 = :, 
z2 == — a for a suitable ae V. From the fact that uyx = pzx it follows 
that the last symbol of yi is :, which is a contradiction. 

(d) If (x,y)eRi, (t,z)eR4, then the above mentioned situation is 
impossible as y = t/iCi/2, z = zicz2 imply c 6 V. Thus, c e F, y\ 7-= ./l 7-= y2, 
Zi = ::, z2 = A. From the fact that uyt = >̂Zi it follows that the last 
symbol of 2/1 is :, which is a contradiction. 

(e) If (x,y)eRi, (t,z)eR$, then the above mentioned situation is 
impossible; it can be proved similarly as in case (d). 

(f) If (x, y)eR2, (t, z)eR2, then clearly y = z, u = p, v = q. 
(g) If (x, y) e R2, (t, z) e i?3, then c e V or c = : or c = —, If c e V, 

then yi = : [f —, yi = A, zx = : ] r , z2 = zl for suitable r, / e i?. I t 
follows from uyi = 2>zi that [r = ] r ' , which is a contradiction. If c = :, 
then yi = zl, 2/2 -= [r — a, zx = A, z2 = ] r a for suitable r, r' e R, 
a, a' e V. From the fact that y2v = z2q it follows that [r = ] r ' , which is 
a contradiction. If c = —, then 2/1 = : [r> 2/2 = a e V, Zi = : ] f ' , z2 = 
= a e V for suitable r, r' e i?, a, a' e V. From the fact that uyi = pzi it 
follows that [r = ] f ' , which is a contradiction. Thus the above mentioned 
situation is impossible. 

(h) If (x, y)eR2, (t, z)eR4, then c e V or c = :. In the first case we 
have yi = : [r —, tfe == zl, Z\ = ::, z% = / l for a suitable reR. From the 
fact that uyi = pzx it follows — = :, which is impossible. In the second 
case we have yt = A, y2 = [r — a, «! = / l , z2 = : a' or zi = :, z2 = a' 
for suitable reR, a,a' e V. Thus [r = : or [f = a' e V, which is im­
possible. Thus the above mentioned situation is impossible. 

(j) If (x,y)eR2, (t,z)eR$, then the above mentioned situation is 
impossible; it can be proved similarly as in the case (h). 
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(k) If (x, y)e By, (t, z) e .R3> then clearly § = z, u =::p, v- === q. 
(1) If (x, y) e R3, (t, z) 6 B4i then e e V or c = :. In the first case/we 

have y\ = : ] r — ,y2 = A, Z\ = ::, z2 = A. From the fact that uy\ ===) pz\ 
it follows — = :, which is impossible. In the second case we have 
y\ = A, y2 = ]r — a, z\ = A, z2= : a' or z\ = -:, z2 = a' for suitable 
a,a' eV. Ftom the fact that y2v = z2q it follows ] r = : or ] r = a' e V, 
which is impossible. Thus the above mentioned situation cannot 
occur. 

(m) If (x, y) e B$, (t, z) e B5, then c e V or c = —. In the first case 
we have yx = :]r—,y2 = A, z\ = , z2 = A for a suitable r e B. 
From the fact that uyx= pz\ it follows ] r == —-, which is impossible. In 
the second case we have y\ = : ] r , y2 = a and simultaneously Z\ = A , 
z2 = —a' or Z\ = —, z2 = a' for suitable reB, a, a' e V. The first 
possibility cannot occur as y2v = z2q implies — = aeV, which is im­
possible; similarly the second possibility cannot occur as uy\ = pz\ 
implies ] r = —, which is impossible. 

Thus the above mentioned situation cannot occur. 
(n) If (x, y)e B4, (t, z)eB4, then clearly y = z, u = p, v = q . 
(o) If (x, y)e B4, (t, z)eB5, then ceV. It implies y\ = ::, y2 = A, 

Z\ = — —, z2 = A. Thus uy\ = pz\ implies : = —, which is impossible. 
Thus the above mentioned situation cannot occur. 

(p) If (x, y) eB5, (t, z)e B5, then clearly y = z, u = p, v = q. 
From the above analysis it follows that (x,y)eB0, (t, z) e B0 and 

u,v,p,qe V* and uyv = pzq imply that either z is a substring oiu and y 
a substring of q or z is a substring of v and y a substring of p or u = p, 
y = z, v = q. 

Proof of (it;). Let E(n) be the following assertion: If (x,y)eB0, 
u, .v e V*, uyv e ££(G0), | uyv \ = n, then uxv e £?(G0). We have | y | .7> 2, 
thus | uyv | .•*> 2. 

We prove E(2). Let us have (x, y)eB0, u, v e V*. uyv e£(G& 
| w/t; | = 2. As | y | ;> 2, we have u = A == v. We have cr 5> uyv (G0)t 

thus or ̂  y (G0). According to (i) we have (a, y) e B\. It implies the 
existence of an element r = (a, w)e B such that y = [rw\r. As 12/1 = 2 , 
we have w = A and (cr, t/) = (cr, [r]r). Now, (#,?/) e B0, \y\ = 2 implies 
(x, y)£ B\. Thus an element r' = (#, w') e B exists such that t/ = [f'w']r'. 
But [r]r = y = [r 'w']r ' implies r = r', t#' = A It follows (#, A) = f' = 

. == r =. (cr,yl) and # = a. Thus cr t , cr (Go) and <r -=Ma?0. I t implies 
uxve&(Go). 

Let m > 2 be a natural number. Suppose that E(2), ..., E(m—tl) 
are valid. . „ ^ 

Let us have (x, y)eBQ,M,ve F*, uyve£?(G0), | uyv | = ^ t ^ye h a y e 

0 t> ttye (G0). Thus an cr-derivatidn %, #i, ..;, $i of teg/t; in/Ga exist$=>nd 
we have I *> 1. ^specially we have 8i„\ e -.^((^o); *j-i =>• tcyt? (QU) Thw& 
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such strings p, q e V*, (t, z) e R0 exist that ty-i .== j % , p i q =. uyv. 
According to (Hi) the following three cases can occur: * 

(a) There exist such strings ql9 q2 e V* that u = ptqi, q%q2 = q, 
qt = yv. Then (a:, y) e P 0 , # % € V* t? e V*, I>%2/t? = ptqxq2 = ptq = 
= si-ie^(G0), \ptqiyv \ < \pzq\yv \ = | j?£g | === [uyv | == m according 
to (i). According to K(2) or ... or E(m — 1) we have ptqxxveJ£(G0), 
which implies uxv = pzqixve^(00). 

(b) There exist such strings piy p2 e V% that uy = p\, P\p2 = p, 
p2zq = v. We prove uxv £ j£? ($0) similarly as in the case (a), 

(c) We have u = p, y •= z, v = q. Then there exists a natural number *, 
1 <; i £ 5, such that (x, y) e Ri, (t, z) e Rt. If i = 1, then there exist 
such elementsr, r' e R, w, w' e V* that r — (x, w), r' = (t, w')9 y = [rw]r, 
z'— [r,iv']r,.. From y = z it follows that r = r', which implies # = L If 
-f == 2 or 3 or 4 or 5, then clearly y = z implies x = t. 

,Thus uxv = piq = si~i e£?(G0). 
We have proved that E(n) holds true for n = 2, 3 , . . . . Thus, (x, y) e R0, 

u, v e V*, uyv e 3?(G0) implies uxv e 3?(G0). Therefore, (x, y) e R0 implies 
y > x(Vo,&(G0)).' 

Proofof(v) .As Vis finite and G is a grammar, then V0 is finite, too. 
We have to demonstrate that (V0, <5f(Go)) is a language with bounded 
configurations, 

Let P be the set of all (x, y) e R0 with the following property: There 
exist such strings u, v e V* that a%uxv (G0). Clearly P s R0 and P is 
a finite set. 

We have x > y(V0, ££(G0)) for each (x, y)eR0. According to (iv) we 
have y>x(V0, &(Qo)) for each (x,y)eR0. Thus, x=.y(V0, Sf(G0)), 
\x\ < | y | for each (x, y) £ R0. If (x, y) e P, then xv(V0, JSf(6?0)), which 
implies yv(V0, ^(G0)). Thus (x, y) e P implies (x, y) e E(V0, &(<h>)) and 
we have P c E(V0, &(G0)). 

If P = 0., then a % uxv (G0) for no ufve V* and no (x, y)eR0. 
Thus 3?(G0) = {a}, which implies j£?(#i)• = {a} according to (ii), and 

''^(G) = 5£(Gl) n V% = 0 , which is a contradiction. Thus P =£ 0 . 
We put n = max {| y |; (a;, ^) e P}. Clearly | j / | jg 2 f or each (x, y) eP, 
thus n ;> 2. Let us have weJ&(G0), \w\ > n. Thus | w | > 2 and 
a ?> w(Go)- According to (i) there exists a a-derivation &0, s\, ..., sp of w 
in Go with the property p ^ 1. We have spi{ =>w(G0). Thus there exist 
such strings w, i> e V* and such rule (t, z) GR0 that sp-i = utv, uzv ==' t^. 
As a % utv (G0), we have (t, z) e P, thus \z\ ^ n. We have thus found 
such an integer n that for each string w e £P(G0) with the property 
I w I > n there exist such strings t, z, u, v€ V* that w = uzv, (t,z)e 
eE(V0,^(G0))md \z\£n. 

We have proved that (V0, 3?(G0)) is a language with bounded con­
figurations; thus it is finitely generated. 
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4.2. Theorem. Let (U, L) be a language. Then the following two assertions 
are equivalent: 

(A) (U, L) is a language of the type 0. 
(B) There exist such a finitely generated language (V0,£o), such a finite 

set V and such a set W that (U, L) is the intersection of the trace of(V0, L0) 
in the set V* with the full language (W, W*). 

Proof. Let (A) be satisfied. If L = 0 , then (U, 0) is a finitely gener­
ated language in a trivial way; we put V0 = V = W = U, L0 = 0 . 
Then (V0, L0) = (U, 0) is finitely generated, (V, 0) = (U, 0) is the 
trace of (V0, L0) in V* and (U, 0 ) is the intersection of (V, 0 ) == 
= (U, 0) with (W, W*) = (U, U*). 

We can suppose L =fc 0. According to 1.15 there exists such a grammar 
H = <V, U, {a}, R> having the standard form that 0 -^ L = &(H). 
We put (?i = <V, {or}, i?> and we define Q0 = <V0, {<r}, i?o> according 
to 4.1. Then (V0, &(G0)) is a finitely generated language and (V, J£?(#i)) 
is the trace of (V0, &(QQ)) in V* according to 4.1 (v) and (ii). Clearly, 
&(E) = ^(G^) n U*, thus (U, jSf(H)) = (V n J7, jgf(fl^) n U*) is the 
intersection of (V, j£?(#i)) with the full language (U, U*). 

We have proved that (A) implies (B). 
Let (B) be satisfied. Then (V0, L0) is a language of the type 0 according 

to 3.9, the trace (V, L\) of (V0, L0) in the set V* is a language of the 
type 0 according to 2.5 and the intersection (U, L) of (V, L\) with the 
full language (TV, W*) is a language of the type 0 according to 1.19. 

We have proved that (B) implies (A). 
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