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:ON ACLASS OF LANGUAGES . _

MIROSLAYV NOVOTNY, Brno

(Received May 6, 1969)
INTRODUCTION

In [1] I defined, for every language, configurations of order 1, 2,

By means of these configurations we can define the so called generahzed
configurational grammar for every given language. This generahzed
configurational grammar generates the given language. A language is
called finitely characterizable if the set of its strings which contain no
configuration is finite and if the set of its so called simple conﬁguratmns
is finite, i.e. if its generalized configurational grammar is a grammar.
1 studied the class of all finitely characterizable languages and compa-
red them with the well-known classes of languages of the Chomsky’s
classification.

Two other definitions of a configuration appeared in the literature
before ([2], [3]) and similar theories of configurational grammars and
finitely characterizable languages were constructed ([3], [4]). Thus, we
have three different possibilities for the definition of a configuration and
each of them can be formulated either in a weak form or in a strong one.
The definition of a strong configuration of order 1 is the same in all
these theoriest). -

In the present paper we study languages for which the set of strings
which contain no strong configurations of order 1 is finite and for which
the set of all simple strong configurations of order 1 is finite: Such
languages will be called languages of strong depth 1. These languages
form a subclass of the class of all context-free languages. The class of all
context-free languages can be built up on the basis of the class of all
languages of strong depth 1: Every context-free language is the inter-
section of a so called full language and a trace of a language of strong
-depth 1; the trace of a given language is defined to be a language which
we-obtain by cancelling all symbols which do not belong to a given set
in all strings of the given language. In this way we have obtained a new
»characteriza,tion of context-free languages. o

1) The terminology of these. papers does not coincide. In [l], “conﬁguratxon
stands for “weak configuration”, in [2], [3] “configuration” stands for “stfong
corifiguration”. In [4], “configuration” stands for “weak configuration” -andthe
.definition of a strong .configuration corresponds to the deﬁn.mon of g strong oon-
figuration i 1troduced in the present paper. : .

PR
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1. GENERALIZED GRAMMARS AND GRAMMARS

If V is a set, we denote by V* the free monoid over V,i.e. the set of
all finite sequences of elements of ¥ in which the operation of concatena-
tion is defined; we suppose that the empty sequence /A is an element
of V*, too. We identify one-element-sequences with elements of V;
thus, we have V < V* and, for every pair of non-negative integexl‘s k

and I, k <1, and for xg, Tx+1, ..., 1 € V, we write zxzg1 ... 2 or [] 24
ik

!
instead of (v, Tx+1, ..., %1). It is advantageous to define Il z; =4 if
i=k
!
0 £ 1 < k are integers. Thus, we use the symbol zx2g+1 ... 2 =II
i~k
for all pairs of non-negative integers &, 1. '
The elements of V are called symbols, the elements of V* strings.
We put |A|=0. If ze V*, = 2,2, ... ¥, where n is a natural
number and ;€ V fori =1, 2, ..., n, then we put |z | = n.
If » is a natural number and 44 = V* for: =1, 2, ..., n, then we
denote by 414, ... A, the set

{aaz ...an; ayedy, 1=12,..,n}

1.1. Definition. Let V, U be sets, let f be a mapping of the set V
into U*. We put f (A) =4; if =z, ... ¥, where n is a natural
number and zs€ V for i = 1,2, ..., n, then we put f, (x) = f(z1) f(z2) .. .
... flzn). For 8 = V*, we define f,(8) = {f,(x); xe S}.

1.2. Remark. If V, U are sets and f a mapping of V into U*, then
[.(xy) = f,(x) f,(y) for every z, y € V*.

1.3. Definition. Let V be a set, L = V*; then the pair (V, L) is called
a language.
ful}A‘ Definition. Let V be a set. Then the language (V, V*) is called
1.5. Definition. Let (V, L), (U, M) be languages. Then the language
(VN U,LnN M)is called the intersection of the languages (V, L), (U, M).

1.6. Definition. Let V, V1, S, R be sets with the properties Vo < V,
S c V* R < V* x V* Then the quadruple G =<V, Vp, 8, R) is
called a generalized grammar.

1.7. Definition. Let @ = (V, Vr, 8, R) be a generalized grammar.
We write, for x, y € V*, x — y (@) instead of (z, y) € R. For z, y € V*, we
write = y (@) iff there exist such strings u, v, ¢, z€ V* that x = ulv,
uzv =y, t —> 2 (@). For z, y € V* we write z % y (Q) iff there exists a non-
negative integer p and some strings ¢, #;, ..., {p of V* such that z = fp,
tp =y and t;y = (@) for i = 1, 2, ..., p. The sequence &, ¢y, ..., fp is
called an z-derivation of y in G. We put £ (@) =
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= {x;xz € V} and there exists some s e S with the property s X, z (@)}
The language (Vp, Z(Q)) is called the language generated by G.

1.8 Definition. Let @ = (V, Vr, S, R) be a generalized grammar.
If ¥ = Vo, then this generalized grammar is called a special generalized
grammar. We write (V, 8, R) instead of <V, V, 8, R) if <V, V, 8, R)
is a special generalized grammar.

1.9. Definition. Let @ = (V, Vp, S, R) be a generalized grammar.
Then @ is called a grammar iff the sets V, 8, R are finite.

1.10. Remark. From the above definitions it is clear what by a special
grammar is meant.

1.11. Definition. Let @ =<V, Vr, S, R) be a grammar with the
following properties: (1) There exists such an element ¢ € V — Vo that
8 = {0}. (2) For each (z,y)€ R it holds true x€ V — Vr. Then @ is
called a context-free grammar in the usual sense.

1.12. Definition. Let G = <V, 8, R) be such a special grammar that
(x, y) € R implies z € V. Then @ is called a special context- free grammar.

1.13. Lemma. Let @ = (V, S, R) be a special context- free grammar,
n a natural number, a;, a,, ..., ay elements of V, y € V* such a string that
a1a; ... an X y (@). Then there exist such strings yy, Y2, ..., Yn tn V* that
oLy @fori=1,2,...,nand hy: ... Yn = Y.

This lemma is well known.

1.14. Definition, Let (V, L) be a language. This language is called
a special context-free language iff there exists a special context-free gram-
mar generating (V, L). -

L.15. Definition. A language is called confext free iff it is the inter-
section of a special context-free language and a full language.

1.16. Remark. Our definition of a context-free language differs only
formally from the usual one.2)

Usually, a context-free language is defined as a language generated
by a context-free grammar @ = (V, Vp, {0}, R) in the usual sense.
If we put H = (V, {o}, R) then H is a special context-free grammar
with the property (Vz, Z(@) = (Vn Vr, Z(H) n V}). Thus, the
context-free language in the usual sense (Vr, £ (@)) is the intersection
of the special context-free language (V, Z(H)) and the full language
(Vr, V%) and is context-free in our sense.

If (V, L) is a context-free language in our sense, then there exist
a special context-free language (U, M) and a full language (W, W*)
such that V=Un W and L =M n W*. Clearly, we can suppose
W c U, thus V=W < U. According to 1.14 there exists a special
context-free grammar @ = (U, 8 R) such that Z(@) = M. We take
a set U’ which is equivalent to U and a bijection b of U onto U’; we

2) Bee [5], p- 10.
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suppose U N U’ = @.Let o be such an element that 6¢ U U U’'. We
put R' = {(d, b, s)) seS} u {(b(x), b,(¥)); (xy)e R} U { (b(x), ); ze U}
and ‘we define H= KUuU u{e}, 7V, {or} R) Clearly, H is a context-
free grammar in the usual sense and ¥ (H) = (G) NV*=MnV*=
= L. Thus, the Ianguage generated by H is (V, L) and (V,L) isj
a ocontext-free language in the usual sense.
in 1.17. Remark. Let @ = ¢V, Vy, {6}, R) be a context-free grammar
t the usual sense. Then we can suppose, without loss of generality,
hat @ has the following property: :
(P) If (2,y) € R, then there exist such strings ,ve V* that o %,
Indeed, if G = KV, Vr, {0}, R) is a context-free grammar that has
not the property (P), then there exists a pau‘ (2, y) € R such that there
exist no strings u, v € V* with the property o *, uav (). Clearly, £ (@) =
=2V, Vi, {0}, R—{(z,y)}>). After a finite number of such steps
we obtain a context-free grammar H =V, Vp, {6}, B> with the
property (P) such that Z(H) = £(@). Thus @ and H generate the same
language. (Compare [5], p. 19, Lemma 1.4.2.)

2. TRACES OF LANGUAGES AND GENERALIZED GRAMMARS

- 2.1. Definition. Let V, U be sets. For each ve V' we put tU(v) = v
if ¥e U and tU() = A if ve V— U. According to 1.1 we define the
mapping t7 of V* into U*. If z € V* is a string, then tU(z) is called the
trace of x in U*.

2.2. Lemma. Let V, U be sets. Then the mapping tU has the followmg
propemes

(A) For each x,y € V* it holds true tU(xy) = tV(z) tY(y).

(B) If tU(u) = 'y’ for some ue V* 2 , 0 € U*, then there exist such,
strings x, y € V* that tU(x) = o', tY(y) = ', xy = u.
(C) For each x € V* we have tU(tU(x)) = t"(x) -

Proof. 1. (A) is a special case of 1.2.

2. Let us have tr(u) = z'y’ for some u e V 2,y eU* If u=4,,
then we take x = A — y and we have tU(z) = A =2/, tU(y) =4 =y,
2y = A = u. Let us suppose u # 4; then there exnst a natural number »
and some elements u;, uz; ..., u,,'bf V such that v = wyu; ... u,. Thus,
tU(u1) tU(up) ... tU(un) = tY(u) = 2'y’. Thus, such a natural number m,
1 £m < n+4 1, exists that tU(u,) ... tU(um_l) =z, tV(up) ... tU(uy) =
=y. We put £=1u;...Up—1, ¥y = .. Up. Clearly, tU(z) =2,
tY(y) = y' and 2y = . Thus, (B) holds true

3. If z = A, then tY(tV(x)) = t7(tU(A)) = t¥(A) = tU(x). Let us sup-
posez e V*, z # A. Then there exist such a na,tural number n and such
elements z;, %2, ..., ¥n € V that = ;... 2,. Therefore, tU (x) =
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= t0(@)) tV(2) ... tV(z) and $U(8V(2)) = tU(40(21)) ¥ (80 () - .. V(40 (n))
according to (A) If tU(2;) = A, then t”(tU(@‘i)) = A = tU(xy), if tU (%) =
= a;, then tY(tU(%)) = tY(z;) = tU(xg) ‘Thus, t”(tU(x)) = tU(xl) tU(x,) ..

W) = tU( )

“We have proved (C).

2.3. Definition. Let (V, L) be a lenguage U a set. We put tU(L) =
-;; {t7(); :c e L}; the language (U, tU(L)) is called the trace of the language
(V,Lyin U

2.4. Deﬁmtlon Let @ = (V, 8, R) be a special generalized grammar,
U a set. We put 8; = tY(S), R, = {(tU(x), tU(y)); (x,y) € R}. Then the
special generalized grammar (U, 8, R;) is called the trace of the special
generalized grammar @ in U¥*.

2.5. Theorem. Let @ = (V, S, R} be a special generalized grammar,
U a set with the property that (x, y) € R implies x € U. Let H = (U, 81, Ry)
be the trace of G in U*. Then (U, L (H)) is the trace of the language (V, L (@)
i U*.

Proof. 1. Let x € Z(@). Then there exist an element s €S, a non.
negative integer p and such elements s,, 8y, ..., 8p in V* that 8 = s,
sp =x and 84—y = 8(@) fori =1, 2, ..., p. We prove. by induction with
respect to ¢ that tV(s;) € £ (H) for ¢ = 0 1,..,p.

We denote by O(n) the following assertion: tY(sn) € Z(H).

Then C(0) holds true trivially as we have s, e 8'and tU(s0) e tY(8) =
= 8 c Z(H).

: Liet m be an integer, 0 < m < p. We prove that C(m— 1) inplies
G(m). Indeed, C(;n — 1) means tU (8m—1) € L (H). We have sp—1 = sm(F),
i.e. there exist some strings u, v, t, z€ V* with the propertles Sm—1 =
= ubv, uZv = 8y, t—> 2z (@), According to 2.2 (A) we have tU(sp-1) =
= t¥(u) tU(£) tY(v), t7(sm) = t¥(u) tY(2) tU(v) and according to 2.4 it holds
true (tU(t), tU(z)) e R,. Thus, tU(.sm 1) = tY(s,) (H) and tY(sp) € ZL(H)
which is C(m )

It follows that C(m) holds true form =0, 1, 2, ..., p. Especially, we
have t?(x) = tY(sp) € Z(H). Thus we have proved that tV(#(@)) =
< Z(H).

2. Let us suppose z’ € £ (H). Then there exist an element s'el =
= tY(8), a non- negatlve mteger p and some elements s;, s;, ..., 5, in U*
suchthats_s 8y =1u' and31:>s(H)for1,—l2 , p. By
induction with respect to 7 we prove that there exist such elements
Sg, 81, ..» Spin L (@) that tU(s;) = s fori =0,1,..., p.

By D(n) we denote the followmg assertion: There exists such an
element s, € Z(G) that tU(s,) = s,

Then D(0) holds true trlvxally as 8, € tU(8S) whlch implies the existence
of an element s, € S € Z(G) with the property 8, =tY(s0).

Let m be an integer, 0 < m < p. We prove that D(m — 1) implies
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D(m). Indeed, D(m — 1) means the existence of an element 81 € L@
with the property t¥(sm-1) = s,_;. We have s;,_; = s, (H), i.e. there
exist such strings ', o', t, 2’ € U* that s,,_; = w't'y’, w'2'v' = g,
t' — 2'(H). It follows (¢, 2') € R,. Thus, some strings ¢, z € V* exist w1th
the properties (¢, z) € R, tU(t) = ¢, tU(z) = 2’. From (¢, z) € R it follows
t € U which implies ¢’ = tU(t) =t

According to 2.2 (B) such strings u, v, we V* exist that tU(u) = o/,
tV(w) = ¢, tY(v) = o', uwv = 8. We have t¥(w) =t' = t € U which
1mp11es the existence of strings a, b e V* such "that w = ath. We have
tU(w) = t7(at) = t¥(a) t7(t) tY(0) = t¥(a) tV(tV(w) )tU(b)——tU(a)tU w)tY(b)
according to 2.2 (A), (C) which 1mphes tU (@ =4 = tU(b) We pu’o
Uy = ua, v = bv. Then sy = vuww = watby = ultvl We put 8, =
= wuyzv; = uazbv. Thus, sp—; = 8,(GF) and sy, EZ(G). Further we have
t7(sm) = t7(u) t7(a) t7(2) tT(b) tU(v) = u'z'v’ =s,,

Thus, D(m—-— 1) 1mphes D(m) if0<m=p.

It follows that D(m) holds true for m =0, 1, 2, ..., p. Especmlly,
there exists an element s, € #(G) with the property 0 Usp) =8, = 2'.

Thus, we have proved Z(H) < tU(Z(Q)).

3. We have Z(H) = tU(Z(@)). It follows that (U, Z(H)) is the trace
of (V,#(@)) in U*.

3. LANGUAGES OF STRONG DEPTH 1

In the following definitions we denote by (V, L) an arbitrary language.

3.1. Definition. For z € V* we put x»(V, L) iff there exist some strings
u, v € V* with the property uxv € L.

3.2. Definition. For z, y € V* we put 2 > y (V, L) iff uzv € L implies
uyv € L for every u, v e V*.

- 3.3. Definition, For z, y € V* we put « =y (V, L) iff z > y (V, L) and
y > z(V, L)3)

3.4. Definition. Let us suppose z, y € V*. The string z is called a strong
configuration with the result y iff the following conditions are fulfilled:
ow(V,L),z=y(V,L), 1= |y| < |z|. By O(V, L) we denote the set
of all strong configurations of the language (V, L) and we put A(V, L) =
= L — V*C(V, L) V*. Further we put E(V, L) = {(y, z); xe C(V, L),
y a result of z}.4)

3) v is & unary relation, >, = are binary relations on V* which depend on (V, L);
thus, we ought to have denoted them by »w,r), > v,)» =,r), respectively.
The symbols are complicated from the typographical point of view. We have
thus preferred a simpler but less consequent way of notation in 3.1, 3.2 and 3.3.

4) We have defined strong configurations of order 1 if using the terminology of [4].
As we deal only with these strong configurations of order 1 here we call them—for
the sake of brevity—strong configurations.
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3.5. Definition. Let 2 e C(V, L). Then z is called a simple strong
conﬁguration iff, for each strings u,v e V*, 2’ € C(V, L), the condition
z = ux'v implies 4 = A = v. We denote by P(V, L) the set of all simple
strong conﬁguratlons of the language (V, L), by F(V, L) the set of all
ordered pairs (y, ) where € P(V, L) and y is a result of =

3.6. Lemma. Let.(V, L) be a language, x € C(V, L). Then there exist such
strings u,ve V*, ' € P(V, L) that x = uz'v.

Proof. There exist such strings u,ve V*, ye C(V, L) that x = uyv
(it suffices to put 4 = A = v, y = z). We take such strings », v, y with
this property, for which | y | is minimal. Clearly, y € P(V, L).

3.7. Definition. Let. (V,L) be a language. We put K(V,L) =
= (V, A(V, L), F(V, L)). The triple <V, A(V, L), F(V, L)) is called the
generalized strong configurational grammar of depth 1.

3.8. Theorem. Let (V, L) be a language, K(V, L) its generalized strong
configurational grammar of depth 1. Then (V, L) i3 the language generated
by K(V, L).

Proof. 1. By induction with respect to | 2 | we prove that z € L implies
z e L (K(V, L)).

By E(n) we denote the following assertion: If x € L and | z | = n, then
x e L(K(V, L)). .

Then E(0) holds true as zeL, |z| =0 implies ze A(V, L) =
c ZL(K(V, L)).

Let m > 0 be an integer. We prove that the validity of E(0), E(1), ...,
E(m — 1) implies the validity of E(m).

Indeed, let us have z e L, | | = m.

Ifxze A(V, L), then x € L (K(V, L)).

Let us suppose x ¢ A(V, L). Then x € V*C(V, L) V*. According to 3.8
we can suppose the existence of such strings u, v € V¥, ze P(V, L) that
z = uzv. Let ¢ be a result of 2. Then x€ L, 2=t (V, L) imply utve L.
We have | t| < | z| which implies | ufv | < |z | = m. As E(0), E(1), ...,
E(m —1) are valid, then wiv € Z(K(V, L)). Thus, such a string s A(V, L)
exists that s X, utv (K (V, L)). We have (¢, z) e F(V, L),i.e.t—z (K(V, L)).
Therefore, uty = uzv (K(V, L)) and s %, uzv (K(V, L)), z = uzv. Thus,
ze L (K(V, L)). _

We have proved that the validity of E(0), E(1), ..., E(m — 1) implies
the validity of E(m). Thus, E(m) holds true form =0, 1, 2, ....

-Therefore, L. = L (K(V, L)).

2. We prove by induction with respect to | z | that we.?(K (V, L))'
1mphes zelL.

By F(n) we denote the followmg asgertion: If x e Z(K(V, L)) and
| x| = n, then z€ L.

Then F(O) holds trme ad zeﬂ(K( V L)) l z [ = O imphes x€ A(V L) =

< L. . ,
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Let m > 0 be an integer. We prove that the validity of F(0), F(1), ...,
F(m — 1) implies the validity of F(m).

Indeed, let us have x € Z(K(V, L)), | 2| = m.

Ifxe A(V, L), then z € L.

Let us have x ¢ A(V, L). Then x € £(K(V, L)) — A(V, L). Thus, such
& natural number p and such strings £y, ¢, ..., fp in V* exist that
toc A(V, L), tp = xand #;—, = t; (K(V, L)) for: =1, 2, ..., p. Especially
we have ¢,y = 2 (K(V, L)) which means the existence of a pair (¢,2) €
eF(V, L) and of such strings u,ve V* that £, = ulv, uev = 2. It
implies |t| < |2z| and |[tpq | = |ulv| < |uzv | = |2 | = m. We have
tp—1 € L(K(V, L)) which implies, as F(0), F(1), ..., F(m — 1) are valid,
tp—1 € L. Further we have ¢t = 2z (V, L) and utv = {5, € L which implies
xz =wuzve L.

We have proved that the validity of F(0), F(1), ..., F(m — 1) implies
the validity of F(m). Thus, F(m) holds true for m = 0, 1 .

Therefore, Z(K(V, L)) < L.

3. We have (K (V, L)) = L. Thus, the language generated by K(V, L)
is (V, Z(K(V, L) = (V, L).

3.9. Definition Let (V, L) be a language, U a set. This set is called
essential with respect to (V, L) iff (x, y) € F(V, L) implies z € U.

3.10. Definition. Let (V, L) be a language. This language is called
a language of strong depth 1 iff the sets V, A(V, L), P(V, L) are finite.

38.11. Lemma. Let (V, L) be a language. Then (V, L) is a language
of strong depth 1 iff the sets V, A(V, L), F(V, L) are finite.

Proof. If the language (V, L) is a language of strong depth 1, then
the set P(V, L) is finite. As every x € P(V, L) has only a finite number
of results y, which follows from the fact that [y | = 1 and that V is
finite, the set F(V, L) is finite. — If the sets V, A(V, L), F(V, L) are
finite, then P(V, L) is finite, too, and (V, L) is a language of strong
depth 1.

3.12. Coroliary. Let (V, L) be a language. Then (V, L) is a language
of strong depth 1 iff K(V, L) is a special grammar.

3.13. Theorem. Every language of strong depth 1 is a special context-free
language.

Proof. If (V, L) is a language of strong depth 1, then K(V, L) is
a special grammar according to 3.12 and this grammar is context free.
According to 3.8 (V, L) is generated by K(V, L) and is therefore a special
context-free language.

4. SOME PROPERTIES OF SPECIAL CONTEXT-FREE
GRAMMARS

.4.1. Lemma. Let G =<V, 8, R) be a special context-free grammar.
Let Z,, Z, be sets with the following properties: there exist a bijection f,
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of R onto Z,, a bijection f> of R onto Z, and the sets V, Z,, Z, are mutually
disjoint. We put fi(r) = [, fo(r) =]y for every re R, Vi=V u Z, U Z,,
Ry ={(, [ryly); (®,y) =reR}, G = V1, 8, B} ) "

Then the following assertions hold true:

(%) Let s€ Vy, x € V7 be such elements that s %, x (G4). Then|s| < |z |.
If |z | =1,thens =z;if |2 | =2,then se€ V and s > (G4).

(¢6) Let w, v, @, be VY, (¢, 2) e Ry, (x,y) € Ry be such elements that
uyv = azb. Then either w = azby, bib, = b, b, = yv for suitable strings
by, b€ Vi or uy = a1, @102 = @, azb = v for suitable strings a,, a,e V3
oru=a,y==29=0b,

(¢18) Let u,ve V}, (x,y) € R, sV, be such elements that s %, uyv (G,).
Then s %, uxv (Gy).

(tv) Let s€ V1, x € Vi be such elements that sy, 81, ..., 8p 18 an s-dersp-
ation of x in Gy with the property p = 1. Then the first [last] symbols of s,
and s; are the same for i = 1,2, ..., p.

(v) Let s€ Vq, u, v, x, y€ Vi be such elements that 8 *, uav (Gh), s &
L uyw (Gh). If w # A or v # A, then for every s-derivation 80,81, ..., 8
of uxv in Gy and for every s-derivation by, t1, ..., tq of uyv in Gy with the
properties p 2 1, ¢ = 1 we have 8; = ¢;.

(vi) If s€ V1, x,y € Vi are such elements that s *, x (G1) and 8 %, zy (Gy)
theny = A.

(vi') If s V1, &, y € V7 are such elements that s %, x (G4) and s %, yx (Gy)
then y = A.

(vit) Let w, v, ye Vi, x € V1, 8 € V1 be such elements that s ¥, uxv (Gy),
s X uyv (Gh), |z | < |y | Then z X, y (Gh).

Proof of (¢). It is clear that (z, y) € R; implies |y | = 2. It follows
that # = y (G4) implies | # | < |y |. Thus,8 =80 = 8; = 8, = ... = gp =
= x implies | s | £ | # |. Further on, p > 0 implies s, | > 1 and p > 1
implies |8, | > 2. Therefore, s %, 2 (G4), || =1 implies p = 0 and
s=xand s % z(Gy), |2 | = 2 implies p = 1 and s »> z (G4).

Proof of (). If none of the first two assertions holds, then there
exists an element ¢ € V, such that uyv = uyicyw, azb = azicz:b, uy; =<
= azy, Y, = 2;b for suitable strings y1, ¥z, 21,22 € Vi. We have yicy, = y,
202, = 2. Clearly, y; = A implies ¢ = [, for a suitable r € R whick
implies 2; = /A a8 [r€ V1 — V and all symbols of z which are different
from the first and the last one are in V. In a similar way we prove that
z; = A implies y; = A. The conditions y; = 4, 2; = /A are thus equi.
valent. Similarly, the conditions y, = A, z; = A are equivalent, too,

(@) fyp=A,thenzy=A and g, A F#z 88 |y| =2, |2] 22
From the equality ¥.v = 2,b and from the fact that y, = wlr, 22 = w'ly
for suitable w, w' € V¥, r, v’ € R and from the fact that lre Vi—V,

s) Compare [5], p. 35, Exercice 1.6.8 and [6].
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lreVi— 7V we get w=w', r =+ which implies y, =2, and v =b.
Thus we have y = cy; = cz; = z. Clearly, 4 = a.

(B) If y; #~ A, then 2z, # A and uy; = az. It implies the existence
of w, w' € V*,r,r € Rsuch that y, = [jw, z; = [rw'. As [y, [ € V1—V
we have w = w’, r = +' which implies .y; = 2; and u = a. If y, =
then 2, =/ and v = b; further, y = yic = zic = 2. If y, # A, then
22 7 / and we get from y,v = 2z,b the conditions y, = z,, v = b similar]y
as in the case (x). It implies y = yicy, = 2z,c2; = 2.

We have proved that the negation of the dlS]unctlon of the first two
possibilities implies the third possibility. Thus, (i¢) is proved.

The proof of (its) will be obtained by induction with respect to
| uyv |. Clearly |y | = 2 and thus | uyv | = 2.

By G(n) we denote the followmg assertion: If u,ve VY, (x, y) € Ry,
s € V; are such elements that 8 *, uyv (G4), | uyv | = n, then s *, uav (¢4).

G(2) holds true. Indeed, let us have such elements u, v € V3, (x, y) € Ry,
se V, that s s uyv (G4), | uyv | = 2. Then s—uyv (G;) according to ().
It implies the existence of elements w e V*, r € R such that (s, w) =r,
uyv = [yw]y. As we have (z,y)€ Ry, then there exist such elements
" € R, w' € V* that v = (z, w'), y = [pw']y . It implies [yw]y = uyv =
= u[pw']yv. Aswe V* and [,,]yr€ Vi — V we have 4 = A = v which
implies [yw]r = [pw']yr. It follows r =1/, w=w'. Thus, (v, w)=
= (z,w') = " = r = (8, w) which implies # = s. Thus, s % s (G;) and
8 = uxv. Therefore, G(2) holds true.

Let m > 2 be a natural number. We prove that the validity of
a2), G(3), ..., G(m — 1) implies the validity of G(m).

Let u,ve Vi, (z,y) € B, s€ Vi be such elements that s ¥, uyv (G4),
| uyv | = m. Then there exists an s-derivation s, sy, ..., 8p of uyv in Gy:
As |uyv | > 2, we have p = 1. Further we have 85—, = uyv (G1). Thus,
there exist some elements a,be V}, (f,2) € R; such that sp_; = ath,
uyv = 8 = azb. According to (¢5) we have three possibilities:

(«) There exist such strings b;, b, € V} that = azb;, bjb, = b,b; = yv.
In this case we have sp_y = ath = ath,b, = ath,yv and | ath | < | azb | =
= |uyy | =m. As Q(2), ..., G(m —1) are valid, then the fact that
} atbyyv | < m implies s 4 atbl:w (@4). Clearly, atblxv = azbyzv (G4) and
azbizv = uxv. Thus s % uav (G,).

~(B) There exist such strings a@;, a;€ V§ that uy = a1, a10; = a,
azzb = v:/Similarly as in' () we prove 8 %, uzv (Gy).

“(y) Wehaveu = a,y =2, v =b. Then (¢, 2) = (¢, [,-w],.) for a suitable
r=_(,w)eR and (z,y) = (z, [,w],) for a suitable ' = (z, w') € R.
From [w], =z=y = [, w')y we have r =1', w=w’ which 1mphes
t =-x., Thus, 8p4' = atb = azxb = uxv and 8 *, 8p_,(G4). Therefore, s *,
L uav (Gy). e

In all three cases we have proved 8 %, uzv(G1). Thus. the vahdxty of
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G(2), ..., G(m.— 1) implies the validity of G(m). Therefore G(m) holds

true for m = 2, 8, .... It follows: If w,ve V}, (z,y)e Ry, s€ V; are
such elements that s %, uyv (G,), then s % uxv (G4). Thus (#¢¢) has been
proved.

The proof of (iv) will be obtained by induction with respect to the
index 4 of s;.

Let se Vy, ¢ € V} be such elements that 8o, 81, ..., 8p i8 an s-derivation
of z in G4 with the property p = 1. By H(n) we denote the fol]owmg
assertion: The first [last] symbols of s; and s, are equal.

H(1) holds true trivially.

Let m be a natural number, 1 < m <'p. We prove that the validity
of H(m — 1) implies the validity of H(m) We have sp—; = 8(G1). Then
there exist some strings u, v € V¥and an element (¢, 2) € R, such that
8m—1 = ulv, uzv = 8y,. As te V and the first [last] symbol of &, is,
according to H(m — 1), equal to the first [last] symbol of s; which is an
element of ¥V; — V, we have u £ A + v. Clearly, the first [last] symbol
of 8y = uzv is equal to the first [last] symbol of 8y, Whlch is equal to
the first [last] symbol of s,.

We have proved that for each m,1 < m < p the validity of H (m —1)
implies the validity of H(m). Thus H(m) holds true for m = 1,2,...,p.
Clearly, the conjunction of H(1), H(2), ..., H(p) is (tv).

Proof of (v). There exist some r, ' € R, w, w’ € V* such that s; =
= [aw]y, t1 = [pw']y. If u 55 A, then the first symbol of u is [, which
follows from the fact that so, s1, ..., 8p is an s-derivation of uav in @,
according to (#v). In the same manner we obtain the first symbol of «
being [,-. It implies r = ' from which it follows w = w’ and s = #;.
If v # A, then the proof can be obtained similarly.

The proof of (v£) will be obtained by induction with respect to | zy |.
We have 1 = |8| < | x| £ | 2y | according to (3).

~We denote by I(n) the following assertion: If se V,, z,y e V{ are
such elements that s %, z (G4), s X xy (G4), 2y = | n | then y = A.

I(1) holds true. Indeed, let us have s€ V;, =,y € VT such that s %
Lax(@h), sX ay(Gy); |2zy|=1. Then =2y and 1=|s| 2 |x|
according to (¢). It implies s = z and y = A.

Let m > 1 be a natural number. We prove that the validity of I(1),
1(2), ..., I{m — 1) implies the validity of I(m).

Let us have such elements se V,,x, y € V] that 8 £ = (G4), 8 & a2y (Gh),
| zy | = m. We take an s-derivation 8o, 81, ..., 8 of z in Gy and an
s-derivation f, #1, ..., t; of 2y in G;. We have |2y | =m > 1 which
implies ¢ 2 1 according to (¢).

If p=0 then {p =35 =8 =2 and |z |=1. It follows #, — ¢,(G4)
and the first symbol z of ¢, = xy is equal to the first symbol of ¢, according
to (iv). But #, — #1(G41) implies that, for the first symbol z of ¢,, we have
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z € Vi— V. Beyond, fo — #1(G4) and z = ¢, imply « € V which is a con-
tradiction.

- Thus, we have p = 1. According to (v) s; = ¢; holds true. Clearly,
[81] = 2. We put n = | s;|. Let a,, az, ..., ap € V1 be such elements
that s, = aa,...a, = 4. According to 1.8 there exist such strings
z € V3, y;e Vi@E=1,2, .., n) that a; X 2(G1), a; & %i(G4) for ¢ =
=1, 2, ,nandxm wn—x, Y1Y2 ... Yn = Y

Let us suppose that #; # y; for at least one mdex 3. We denote by o

the least index for which z, # yi,. Then 12, ... %1 %4, ... Zuy = xy =
= Y12 ... Yn = 1%z ... Tig—1Y4, - - - Yn Which 1mphes Zig . Tnl = Yi,--
It implies the existence of such a string we V¥, u #A that elther
%g, = Yi 4 O Yi, = 2;u. We have |y u| = [:vin l <|z|S|xy|l=m
in the first case and |xu | = |y, | < |2y | = m in the second. Thus,
the following conditions are satisfied in the first case: a;, € V4, y4, € V3,
ue V‘:’ ai, :> yio(Gl)’ i, *: y‘nu(Gl)’ Iyioul <m. As I(l): 1(2): cey
I(m — 1) are valid, we have u = /A, which is a contradiction. Similarly,
in the second case, we obtain 4 = A, which is a contradiction, too. Thus,
wehavex; = y;fori =1,2,..,nandz =122 ... Zn = Y1¥2 ... Y = Y
which implies ¥y = 4.

Thus, the validity of I(1), I(2), ..., I(m — 1) implies that of I(m).
Therefore, I(m) is valid for m = 1, 2, ..., which is (v7).

The assertion (vi') can be demonstrated in a similar way.

The proof of (vit) will be obtained by induction with respect to | uxv |.
Clearly, |uzv | = 1.

We denote by J(n) the following assertion: If u, v, ye Vi, ze Vi,
s€ V, are such elements that s % uxv (G4), s X uyv (Gy), 2| < |y |,
| uxv | = n, then z %, y (G4).

J(1) holds true. Indeed, if u, v, y € V¥, x € Vy, s € V; are such elements
that s %, uav (Gh), s . uyv (1), |x| < |y|, |uxv| =1, then s = uxv
according to (2). It follows s =2, u =A =v and = = s * uyv (Gy),
uyv = y. Thus, z %, y (G)).

Let m > 1 be a natural number. We prove that the validity of
J(1); J(2), ..., J(m — 1) implies the validity of J(m).

Let u, v, y e V3, x€ Vq, s€ V; be such elements that s *, uxv (&),
shuy (G, |z| < |y, |uzw | =m. Ifu =/ = v, thenm = |uav | =
= |« | =1, which is a contradiction. Thus, v #* /A or v # A. Let
S0, 81, ..., 8p be an s-derivation of uxv in G4, to, t1, ..., t; an s-derivation
of uyv in @y. As |uxv | =m > 1, |uyv | > |uav | > 1, then we have
p 21, ¢ = 1 according to (¢). According to (v) we have s; = #;. Clearly,
|81] = 2. We put n=181|, s = a8, ... a5, = t, where a;e V, for
i1 =1,2, ..., n There exist such strings «1, %2, ..., Zn, Y1, Y2, ..., Yn € V]
that a; % z(Gh), ai % yi(Gh) for ¢ =1, 2, ..., n, 212, ... %y = uaw,
Y192 ... Yn = uyv according to 1.8. By i, we denote such an index that
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there exist some b, ce Vi that bac = ¢, % =217, ... Tjab, v =
= cx¢o+1 R 7

Let us suppose that there exists such an index ¢, 1 < ¢ < 4, that
i # yi. We denote by 7, the least index with this property. It follows
Xyy o Xgy1Yi, e Yn = Y12 .- Yn = UYVY = T1L2 ... Tpo1®y, ... Tg—1byv
which implies yy, ... yn = %, ... 2, —1byv. Thus, there exists such a string
we V), ws#A, that y, = xw or x; = y,w. Therefore, we have
a, € Vi, ay & o (Gy), ag, % 2w (G4) in the first case and a4, € V,,
a;, & 94, (Gh), oy, & yow (Gh) in the second. According to (vi) we have
w = /1, which is a contradiction. Thus, z; = y; for: =1, 2, ..., {p — 1.
Similarly, by means of (vi’) we obtain z; = y; for¢ = 4y + 1, ..., n. Thus,
B1X2 oo Biy1YiLigt1 -+ Tn == Y1Y2 ... Yn = UYV = X1, ... T4, —1bYCT1 41 ... Xn
which implies y;, = byc.

We have proved the existence of sueh strings b, ce Vi and of such
an element a;, €V, that ay % bxc (Gq), as, % byc (Gl), lz| < |yl
|bxe | = |xi, | < |uaw | = m. As J(1), J(2), ..., J(m — 1) are valid, we
have x %, y (Gy).

We have proved thad the validity of J(1), J(2),..., J(m—1) implies
the validity of J(m). Thus, J(m) is valid for m = 1, 2, ... which is (v¢7).

5, CHARACTERIZATION OF CONTEXT-FREE LANGUAGES

5.1. Lemma. Let G = (V, {0}, R) be a special context-free grammar
having the property (P) of 1.17. Let Z,, Z, be sets with the following pro-
perties: there exists a bijection fi of R onto Z,, a bijection f, of R onto Z,
and the sets V, Zy, Z, are mutually disjoint. We put fi(r) = [r, f2(z) = J»
for every reR, Vi=VuUZiuZ;, R ={4I[yl) (x,y) =reR},
G] = <V1, {0'} R1>

Then the following assertions hold true:

(1) If (z, y) € By, then x =y (V1, Z(Gh)).

(¢3) G s the trace of G4 in V*.

(232) We have R, < E(Vy, L(G)).

(tv) The sets Vi, A(Vy, L(Gh)) are ﬁm'te.

() If (z,y) € B(Vy, L(@y)), then & %, y (Gh).

(vi) We have F(V,, L(G1) < R, and the set F(V,, L(Gh)) is ﬁmte.

(vit) If (x, y) € F(V1, L(Gh)), then x € V.

Proof of (¢). Let us have (z, y) € R;.

If uav e £(G,) for some strings u, v € V1, then o % wav (@,). As we
have wuxv = uyv (¢4), it follows o X uyv (Gl) and uyv € Z(G4). Thus,

x>y (Vi, Z(Gh)).

If uyv € £(G) for some strings u, v € V§, then o % uyw (G1). It follows
from 4.1 (i%1) that o %, uav (Gy), i.e. uav € £(G1). Thus, y > z(V1, L(Gh)).
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We have proved that (z, y) € R, implies 2 = y (V1, L(Gh)).

(¢2) is clear.

Proof of (s4i). According to (it) & = (V, {0}, R) is the trace of
& = (V1, {0}, R in V* and (v, y) € R, implies z € V. According to 2.5
the language (V, Z(@)) is the trace of (V1, £(@y)) in V*.

We prove that G4 has the property (P) of 1.17.

If (x,y) € Ry, then 2 € V and there exists a string y’ € V* such that
(x,y') € R. As @ has the property (P), then there exist some strings
u, v € V* with the property o X uav (@), i.e. uav € (). As (V, L (@)
is the trace of (Vy1, Z(Gh)) in V*, there exists some string w e ¥ (Gh)
such that t¥(w) = uwv. Accordmg to 2.2 (B), there exist some strings
', &', v eV*such that w'a’v’ = w, tY(u') = u, tV(z') = «, t7(v) = .
Clearly, z' A We put &’ = 2,2, ... &, for a suitable natural number
and for suitable elements z,€ V, (i = 1, 2,...,n). We have t¥(z;) tV(z3) ...

tV(x,.) = t¥(2') = x according to 2.1. It follows that there exists an
index fo (1 <4 = n) such that t¥(z;, ) = 2. It follows from 2.1 that
X, = . Thus, w = w'z; . . ®4—1® Ti41 ... 2pv'. Thus, for every (z,y) € Ry
there exist some strings wy = w ... Xy, Wp= Xi41 ... TV, Wi,
ws € V7, such that wizw, = we L(Gh), i.e. o X wirw(Gy).

Thus @, has the property (P).

Let us have (r,y)eR,. As G, has the property (P), we have
xv(Vy, £(G1)) which implies y»(V1, L(Gy)). According to (i) we have

=y(V1, L(Gh)). Moreover, we have 1 = |2 | < |y |. Thus y is a con-
figuration of (V,, £ (G4)) and # is its result. Thus, (z, y) € B(V;, L(G1))
and we have proved R, < E(V1, L(G1)).

Proof of (w). We put M = {y; (z,y) € R1}. According to (iif) we
have M < O(Vy, Z(@)). It follows L(Gh) — VIMV} o> L(G1)—
— ViC(V1, L (@) Vi = A(Vq, Z(Gh)). But clearly,?(G,) — VMV =

{a} It follows that A(Vy, L(G)) is finite.

The finiteness of V, is clear. -

Proof of (v). Let us have (z,y) € E(V,, £(G)). Thus ¢ is a con-
figuration of (V, £ (Gh)), z its result. Then y¥»(V1, L(@y)), y =z (V1,
Z(@1) and 1 = | x| < | y|. Thus there exist some strings u, v € V]
such that uyv € £(G4),i.e. ¢ % uyv (G4). From y = 2 (V;, £(G,)) it follows
uxv e L (Gy) and ¢ & uzv (G4); from |z| < |y| we have z % y(Gy)
according to (vit) of 4.1.

Proof of (vi). Let us have (z,y) e F(Vy, £(G)). Thus y is a con-
ﬁgura,tlon of (Vi, Z(@)) and z its result. According to (v) we have
z X, y (G4). Thus there exists an z-derivation s, s, ..., sp of y in G4
with » > 1. We have 8, = y (G4). Thus there exist some strings u,
ve V7 and (¢, z) € R, such that sp—; = ufv, uzv = y. According to (444)
we have z€ C(Vy, Z(G1)). From y e P(V;, £L(6))) it follows u = A = v,
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y = z and 8-, = ¢. According to 4.1 (§) we have p—1 =0 and z =
= 89 = ¢. Thus, (z,y) = (¢, 2) € R;.

We have proved F(V,, £(G41)) < R,. Since the set R is finite, then
the set F(Vy, £(G4)) is finite as well.

(vid) is an immediate consequence of the inclusion F(V,, £(G1)) < R,
and of the fact that (z, y) € R, implies zx € V.

5.2. Main Theorem. Let (U, L) be a language. Then the following
assertions are equivalent:

(A) (U, L) is a context-free language.

(B) There exists a language of strong depth 1 (V,, L), a set V essential
with respect to (V1, L) and a full language (W, W*) such that (U, L) 1s
the intersection of (W, W*) with the trace of (V1, Ly) in V*.

Proof. Let (A) be fulfilled. According to 1.16 and 1.17 there exists
such a context-free grammar H = (V, U, {o}, R) in the usual sense
having the property (P) that L = £ (H). We put @ = (V, {5}, R); thus,
@ is a special context-free grammar having the property (P). We con-
struct the grammar @4 = (¥, {0}, Ry in the same manner as in 5.1.
Then the sets V,, A(V:, L(G)), F(Vi, L(Gy)) are finite according
to 5.1 (iv) and (vi), and thus, (V;, £ (G4)) is a language of strong depth 1
according to 3.11. The set V is essential with respect to (V;, £(Gh))
and (V, Z(@)) is the trace of (Vy, Z(Gy)) in V* according to 5.1 (vit)
and (#2) and according to 2.5. We have now £ (H) = Z (@) n U*, thus
(U, L) is the intersection of (V, Z(®)) with the full language (U, U*).

We have proved that (A) implies (B).

Let (B) be fulfilled. Then (V;, L) is a special context-free language
according to 3.13 and K(Vy, Ly) = (Vy, A(Vy, L), F(Vy, L)) is a special
context-free grammar generating (V,;, L;) according to 3.8 and 3.12.
Since V is essential with respect to (V1, L;), then the trace (V, L;) of
(V1, Ly) in V* is generated by the trace @ of K(V,, L,) in V* according
to 2.5. From the fact that V is essential with respect to (Vy, L,) it follows
that @ is a special context-free grammar. Thus (V, L) is a special
context-free language. Thus, (U, L) which is the intersection of (V, L,)
and the full language (W, W*), is a context-free language.

We have proved that (B) implies (A).
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