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ON THE EXISTENCE OF GRAPHS WITH A CERTAIN
ORDERING OF VERTICES

Jikf Rosicky

(Received July 15, 1968)

1. PRINCIPAL NOTIONS OF THE THEORY
OF GRAPHS

A non-empty set ¢ with a symmetric antireflexive relation ¢ on G
(i.e. 0 < (@ X @) is called a graph. We write & = (G, ¢). Elements
of the set G' are called vertices of the graph ®&. If there holds zoy for
vertices =, y € G, we may say the vertices z, y determine the edge xy
of the graph ®. The edges xy, yx are considered as identical and we say
the vertex x, or y resp., to be incidating with the edge xy. The set G
being finite, the graph ® is called finite as well.

If@ <@, o = (@ xG)n o, it is said (¢, ¢') to be a subgraph of
the graph (G, o), (see [3] p. 23.) It is denoted (&, o') < (G, o).

Sequence ag, a1, ..., a, of mutually different vertices of the graph &
is called a path of length n between the vertices ao, @, when a;oa:+1 for
i=20,1, ..., » — 1. The vertex ao is the initial vertex of this path,

the vertex a, an end one. The graph is called connected if there exists
the path between each of its two different vertices. Provided the path
exists between the vertices x, y, then there exists between them a path
of the smallest length. The length of this path is called the distance
of vertices x, ¥ and is denoted g(z, y). If the graph ® is connected,
o(x, y) is a metrics on G.

An order of a vertex is called the number of different edges which

n

the vertex is incidating with. In an finite graph there holds Y, s; = 2h,
i=1

where n = | G|, | G| = card G, h being the number of edges of the

graph ® and s;, ..., s, being orders of individual vertices of G.
The sequence ag, a4, . . ., a, is called a circle of the length =, if ¢y = a,,
the vertices ao, ..., ay_1 are mutually different, a;oa;_; fors =1, ...,

...n—1,nand n = 2. A tree is a finite connected graph without circles
containing at least two vertices. An arbitrary tree contains at least
two vertices of the first order. Let z,, ..., x, be all vertices of the
first order of tree . Put Gf = G — {x, ..., ;}. The subgraph ®; =
= (@1, 01) < G is a tree. If it is being continued in the given course,
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we come after s steps to the subgraph &, = &, where &, = ({¢}, @),
or 6, = ({a, b},{(a, b), (b, @)}). Then G, is called the centre of the tree 6.
The vertices of graph & are going to be demonstrated as points in
a plane and by an abscissa be connected those vertices that are incidating
with the same edge.
Next, the graph is going to mean always a finite and connected graph.

22.FORMULATION OF THE PROBLEM

A classic task of the theory of graphs is the problem if a Hamilton
line exists in the given graph (G, o), i.e. if the set G is possible to be
ordered into the sequence a;, ..., a, such that g(a;, @;+1) =1 for
i=1, ..., n— 1.

This problem can be generelized. The articles [1], [2], [4], [5] deal
with the ordering into the sequence a,, ..., a, such that p(a;, a;41) < k
for 1 =1, ..., n — 1. We investigate the ordering of the set G into
the sequence ay, ..., ay such that g(a;, @;11) =kfori =1, ..., n —1,
where k is the given positive integer. In this study we are not going to
investigate the problem if in the given graph (@, o) such an ordering
exists, we are going to study, however, the following problem. The
existence of the described ordering of the set G evidently enforces
a certain condition for its order. This condition is going to be searched,
i.e. the necessary and sufficient condition for n will be studied in order
that the graph of » vertices with the described ordering may exist.
This problem is going to be solved partly in a general case, partly for
trees. The author would like to express his thanks to Doc. M. Sekanina
for his valuable assistance in this article.

3. THE SOLUTION OF THE PROBLEM
IN AGENERAL CASE

Definition: Let & = (G, o) be a graph, | G| > 1, k a positive integer.
Say the graph © to be k-ordered if there exists the sequence ay, ..., ajq
of all its vertices such that g(a;, aiy1) = k for i = 1, , |G| — 1 I f (5
18, in addition to it, a tree, then we call it a k-gmph.

First we prove some auxiliary assertions.

Lemma 1: Let & = (G, o) be a graph which does not contain a circle
of an odd length. Let x, y € G and let a path C of an even length exist between
the vertices z, y. Then the arbitrary path between the wvertices x, y is of
the even length. _

Proof. Let C ={x =ao, a1, ..., an =y}. Let C' ={& = by, by,

, bs = y} be an arbitrary path between the vertices x, y. Let D =
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=Cn C' and let x,, x; € D. Then x; = a; = b;, x, = a, = by, where
0Z4r=m 0=jp<s Suppose for an arbitrary ax, 1 <k <r
to hold ax € C' and for arbitrary bx, j < k < p to be by € C. For such
vertices z;, x, define A(x;, 22) ={axeC|i <k <r}, A1, z3) =
={bz€C"|j < k < p}. The subgraph in G formed by the set of vertices
{21, ®2} U A(x1, 22) U A'(21, x;) evidently contains a circle and each
point of this set lies on the circle. Then according to the supposition
the number | A(z;, ;) | + | 4'(x1, x;) | is even. Denote S, or S’ resp.,
the union of all A(z;, x,), or A’(x;, %;) resp. Evidently C =Dy 8§,
C'=DU 8 so that |C|+|C'|=2|D|+|8|+ |8 According
to the previous statement, however, | § | 4+ | 8’| is an even number so
that the path C’ is of the even length.

Lemma 2: Let G = (G, o) be a graph that does not contain a circle of
an odd length, let k be an even number. Let ao, ay, . . ., ay € G, 0(a4, @41+1) = k
fori=0,1,...,n — 1. Then g(ao, a;) forj =1, ..., nisthe even number.

Proof. The proof is done by induction. For j = 1, according to the
supposition, g(ap, @;) = k is an even number. Let g(ao, @;5) be an even
number for 0 < s < n — 1. First we go through the case of lying the
vertex as.+; on a path C between the vertices ay, as. Because of g(ao, a;)
being an even number, there exists a path of even length between the
vertices ao, as and according to the lemma 1, the length of the path C
is even. Denote C, or C, a path between the vertices as+1, @5, or @y, @s+1
resp. such that €, O, < C. The length of the path C, is even,
as o(as, as+1) = k being an even number. In view of the sum of the
lengths of paths C; and C, being the length of the path C, the length
of the path C, is even as well, so that g(ao, as+1) is the even number.

Let now a vertex @41 do not lie on any path between the vertices
ao, as. There are two possibilities then, according to the fact, if one of
the vertices ao, a, lies on a path between the remaining vertex and the
vertex as1, or not. In a positive case let the vertex a; lie on a path C
between the vertices ag, as; (for the vertex a, the proof is done quite
analogically). Let C;, or C; be the path between the vertices ao, as,
or as, asy resp., such that Cy, C; = C. Numbers g(ao, as), 0(@s, @s+1)
are even so that the lengths of the paths C,, C, are even as well. The
length of the path C is then even like their sum; thus g(ao, @s+1) being
an even number.

Let finally any of vertices ag, as do not lie on a path between the
remaining vertex and the vertex asi; and nor the vertex as+; lie on
a path between the vertices ag, as. Then the situation may evidently
occur as is illustrated in the figure 1.

Let Cy, C;, C5 be paths between vertices ao, b; b, as; b, @s+1, according
to figure 1. The sum of the lengths of the paths C; and C; (C; and C5)
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is an even number. From that it follows that the sum of the lenghts
of paths C; and C} is even so that g(@o, @s+1) is an even number as well.
* And so the proof is finished.

alfq
l
1 Cs
- - - - —l— —————— —0
a, ¢ b ¢, n,
Fig. 1.

Lemma 3: Let k be an even number and the graph & = (G, o)
be a k-ordered one. Then ® contains the circle of an odd length.

Proof. Let z;, 2; € G, (1, 22) = 1. Considering the graph & to be
k-ordered, the sequence @y = z1, @1, ..., an = %, exists such that
olas, agy1) = kfors =0, ..., n — 1. Because of the distance of vertices
z1, x; being odd, ® contains, according to Lemma 2, the circle of an
odd length.

Lemma 4: Let k, m, n be positive integers, m > n. If there exists
a k-ordered graph of n vertices, then a k-ordered graph of m vertices exists
as well. .

Proof. Let ¥k > 1, ® = (G, o) be a k-ordered graph, |G| = n.
There exists then the sequence ay, a2, . . ., a, of mutually different vertices
of the graph ® such that g(a¢, ag+1) = kfori=1,2, ..., n — 1. Since
0(@n-1, an) = k there exists the path C between the vertices a,_1, an
of the length k. Let a, b be vertices of this path such that g(as-1, a) =
= g(@n, b) = 1. Such vertices exist, since k£ = 2 (for k = 2 there is
a =b).

The graph 6’ = (', ¢’) is constructed in such a way: G' = G U
U {@n+1, @niz, - .., am}; 6' = 0 U {(@, @un1), (@n41, @), (B, @n+2), (An4z, D),
-+ s (%, @m), (am,x)} where z = a, or b, according to the parity of number
m — n. There is | @’ | = m. The vertices of graph &’ be arranged into
the sequence a,, a,, .. v Gp_1, A, Bpt1, -+, Oy

There is @(as, a;4y) =k for i =1, ..., n — 1. According to the
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construction there is o(a, ai11) = k for i =m, ..., m — 1. Then the
graph is k-ordered.

For k =1 there is @ = G U {@n+1> ---> Om}, o' = 0 U {(@n, Gn+1),
(an+1, an)’ LIRS (am—la am): (U'm; a’m-l)}‘ EVIdently IG, | =m a‘nd the
graph (¢, ¢’) is k-ordered.

am a'"’ an'!

9
q
|
!
1
1
1
q

e,., Q ) e,
Fig. 2.

Definition: Let G = (G, o) be a graph, k a positive integer. Define
the relation T on G so that z, y € G, xry just when o(x, y) = k. Evidently
the relation T is symmetric and antireflexive so that (G, t) is a graph (it
need mot be connected). Denote the set of edges of this graph as F(®).
Elements of the set F(®) will be denoted [z, y], what means the edge in
(@, 7) determined by vertices x, y € G. An arbitrary subset V of the set S (®)
with properties:

v) If [z, y], [x, 2] € V and y  z so from [z, t] € V there follows either
t=yort==z.

v2) If V contains the subset {[21, 2], [%2, 3], ..., [®n-1, Tn], [Tn, 2]}
so it holds [x1, ] = ... = [®n, ®1], t.e. this subset consists of the only
element.

ts called a selection in &. In order to stress V being a selection in ®,
we are going to write V(®).

An arbitrary subset {[x1, %2], [%2, %3], ..., [®n_1, Zul, [, 1]} of the
set L (®), which has at least three elements, be called a cycle in &. We also
say that this cycle is determined by the vertices x,, %z, . . ., Zn. The selection

V(®), as the set of edges, determines the graph (G, Tv) without circles
and whose arbitrary vertex has an order extremely of two.

Let xe@, X <« L(6) and (G, tx) be a graph with a set of vertices G
and a set of edges X. The order of a vertex x in the graph (G, tx) be called
the degree of the vertex x in the set X and denoted sx(x). If there is X =
=L (®) we write only s(x). Say the vertex x incidates in X with an element
€L (®), if € X and o = [z, t] where t € G is an arbitrary vertex.

The selection V(®) is called complete if for an arbitrary selection W(®),
W(®) 2 V(®) there is W(B) = V().

Let $ = (H, o') be a subgraph of the graph 6. The restriction Vu(®)
of the selection V(®) to a subgraph $ be defined as the set Vg(®) =
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={[z, y]1| [z, y] € V(®), x, y € H}. Evidently Vu(®) is a selection in
® and 9 as well.

The set of all selections in & be denoted ¥ . Evidently ¥y is finite.
There are mentioned now some necessary properties of the selection.

Lemma 5: Let ® = (G, o) be a graph, V a selection in &. Then it holds:
1°|V]|=1% Y& 6| -1
TEG

2° The set W = V U {[x, y]} — 4, where ([x, y] eFL(G)—V, A<V
is a selection in ® just when sw(x), sw(y) < 2 and W does not contain
a cycle into which [z, y] belongs.

Proof. 1° The equality follows from the fact, that in the finite graph
1ed]
(G, o), according to chapter 1, there holds Z 8; = 2h, where h is the

=1
number of edges of the graph (G, ¢) and s; are orders of its separate
vertices. According to the selection definition, in graph (G, ty) there

16|

ish=|V]|] Y si= ) sp(x)sothat ) sy(z)= 2] V|.Since according
i=1 TEQ ze@

to v;) there is sp(x) £ 2 and according to v,) the graph (G, tv) does not

contain a circle and so it contains at least two vertices of the first order

and then it holds ) sp(x) < 2|6 | — 2.

xEQ
2° The necessity of the condition is evident. The sufficiency follows

from sw(z) £ sp(z) for ze W, x # z # y and from the fact that V,
as a selection, does not contain a cycle.

Lemma 6: The graph ® = (G,.0) vs k-ordered just when a selection
V(®) exists such that | V(®)| = |G| — 1.

Proof. Let ® = (@, o) be a k-ordered graph. There exists then the
sequence @, ..., &G of all its vertices such that 3(a;, ai+1) = k for
i=1, ..., |G| — 1. The set V < £ (®) be defined in this way: V =
= {[a1, 2], [a2, as], ..., [@jg1-1. @c)]}. Evidently V is a selection in
Gand V[ =|G|—1.

Let a selection V in G exists such that | V| = |G| — 1. First we
prove the vertex of the degree of zero not to exist in V. Suppose the
contrary;t € @, sp(t) = 0. According to 1° of lemma 5 thereis |G | — 1 =
=|V|=tYsw@)=4% 3 (@ = 32(6G -] =1[6¢]—1

xe@ ve@, r=t
since sy(r) < 2 according to v,). Then, however, Z sv(z) = 2(| G| —
re@, v+t
— 1) so that sy(x) ='2for z € G, x # t. This means, however, the elements
of the set ¢ — {t} determine the cycle in ¥, what is a contradiction
with ;).
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Since ) sp(x) =2|G| —2, 1 Ssp(x) <2 for each 2€@, then

TG
there exist just two vertices of the order one in V. Let x; be one of
them. Construct the sequence a,, a,, ..., e in this way: a; = 71, a2

is the vertex of G for which [a;, a;] € V, a3 # a, is the vertex of G
for which [a;, as] € V etec., as far as ay, is the vertex of G for which

[@m—1, @m] €V, am #asfor i =1, ..., m — 1 and the vertex am1 € @
does not exist such that [am, am+1leV, apy1 #a; for i =1, ..., m.
Ifm < |G|,soforxe@ —{ay, ..., am} # o there is sp(x) = 2 because
sy(ai) = sv(am) = 1. According to the construction of the sequence
ay, ..., apy for each xe G —{a;, ..., an}, y€ G, [z, y]e V there is
y€@ —{a1, ..., an}. Then the vertices of the set G — {ay, ..., am}

determine a cycle in V. This is not possible so that m = | G | and the
graph ® is k-ordered.

Lemma 7: Let ® = (G, ¢) be a k-ordered graph, § = (H, o) its subgraph.
Then the inequality |G| 2 2| H| — 1 — max {| V |} holds.
Vev

Proof. If there is § = ® then, according to lemma 6, there exists
the selection V($) such that | V($) | = |H| — 1.Then | @ |=2|H | —1
—|H|+1=|H| and the lemma holds.

Let $ 4 ® i.e. H < G, H # Q. There exist then vertices a;, ..., a,
such that ¢ = H U {a,,. .., an}. From lemma 6 there follows the existence
of a selection W(®), for which | W(®)| = |G| — 1. Let N = W(G) —
— Wg(®). There is N = N; U N, where N, = {[z,y]e W\, y € H},
N, = {[z, y] € W\_just one of vertices z, y does not lie in H}. There is
Nin N= 3.

It holds |G| —1 = | W | = } Y swle)= %) swlx) +
ze@ 2eH
+ 3 Z sw(z). From the definition of sets N;, N, there follows

2eG—H
Znsw(x) = 2|N;| + |N;|. Thus ) sw(x) = 2(G| — 1) —
reG—H

zeH
— Y swlw) = 2|G|—2—2|Ny|—|N;|. Since Wu(®) is a

xeG—H
selection in § so there is max {|V [} 2 | Wa(®)| = } Y sw,(@) =
Vev, xeH
=3 (Y swl@) — | N2 ) =3 2G| —2—=2|N1|—[N:| = |N;|)=
xeH
=|G| —1—|Ny| —|Ny|=]|G| —1— |N| Each element of
the set N incidates in W with the element of the set {a;, ..., as}. Since
swla;) £ 2fori=1, ..., n there is | N| £ 2n. According to up to

this time proved inequality it holds max {{ V|} 2 |G| — 1 —|N| 2
Vey
L

2G| —1—=2n=|G|—1—-2(G|—-|H)=2|H|—-1-|G|
Hence it directly follows the assertion of the lemma.
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In the previous two lemmas we have shown the continuity between
the properties of selection and that fact the graph being k-ordered.
The criterion of lemma 7 will be especially useful.

Lemma 8. Let & = (G, o) be a k-graph. Then ® contains as a subgraph
the tree § = (F, o') of 2k vertices such that § contains just two vertices
of the first order (see fig. 3).

Fig. 3.

Proof. According to the definition of k-graph, ® is a tree. In chapter 1
the notion of the centre of tree was introduced. First suppose the centre
of the tree ® consists of one vertex ¢ only. Because of ® being a k-graph
there exists the vertex z € @ such that g(c, ) = k. From the definition
of the centre of tree it is easily to be deduced the vertex y € G exists
such that g(c, ¥) = k and the vertex ¢ lies on the path between the
vertices z, y. Hence it immediately follows that.® contains a subgraph &
of required properties.

Let the centre of the tree ® be now a couple of vertices a, b connected
with an edge. From the supposition ® being a k-graph there follows
the existence of vertex z € G, g(x, @) = k. Then there are two possibilities;
either p(x, b) =k — 1, or g(x, b) = k + 1. In the same way as in the
first case we are going to show ® always contains a required subgraph §.

Now we can come to solving the problem in a general case.

Theorem. A necessary and sufficient condition for the existence of
a k-ordered graph of n vertices is n = 2k + 1 for k > 1 and n = 2 for
k= 1. For an arbitrary k > 2 there exists just qne k-ordered graph of
2k + 1 vertices, viz. the circle of 2k + 1 vertices. For k = 2 such graphs
exist three, the circle of five vertices and the graphs from fig. 4 (with indicated
ordering of vertices).

Q, Q,

as a ay a,

Fig. 4.



" 97

Proof. The case k = 1 is a trivial one, because the tree of two vertices
is 1-ordered and from lemma 4 there follows the existence of 1-ordered
graph of n vertices for all » = 2.

Let k > 1. First prove the sufficiency of the condition in the theorem.
Let & be a circle of 2k 4 1 vertices, K the set of its vertices. Describe
the set & (R). To an arbitrary vertex x € K there exist just two different
vertices y, z € K so that p(z, y) = o(x, 2) = k. Then no vertex has the
degree one in & (R) so that to an arbitrary vertex from K there exists
a cycle in & (R) including this vertex. Let this cycle be determined by

vertices @y, 3, ..., ;. We easily verify that it successively holds
ox1, 22) =k, o1, x3) =1, o(@1, x) =k —1, o(x1, 5) =2, ...,
—1 —2
o(x1, ) = s 3 provided s being odd, or g(z1, ;) = k — s 5
s being even, ..., o(2;, ). Since the vertices z;, ..., ;; form a cycle
m—1 m— 2

,or k=Fk — viz.

there is g(x1, #m) = k, i.e. either k =

2 2
according to the parity of number m. Because m = 3, the second case

then cannot occur so that k = i.e. m = 2k + 1. We have shown

FL(R) consists just of one cycle. Then the set V =L(K) — {[=, y]},

where [z, y] € S(R) is an arbitrary element, is a selection in & and

V=LK —1=4%) s@x) —1=]|K|— 1. According to lemma
reK

6, K is a k-ordered graph. From lemma 4 it follows there exists a k-ordered

graph of n vertices for each n > 2k + 1.

We pass to the proof of the necessity of condition. Let & = (G, o)
be an arbitrary k-ordered graph. Let ® be first a tree. According to
lemma 8 there exists the subgraph & of 2k vertices in ®, in the there
described form. To an arbitrary vertex x € F there exists just one

vertex yeF such that o, y) =~k Then |F(F)|=1Y srlx)=
2el

=4 |F|=k.According to lemma 7, |G| 2 2| F| —1-——max{|V|} 2
VG‘VE

=4k — 1 — | L(F) | = 3k — 1. Because ® does not contain a circle,
according to lemma 3, the number kis odd,i.e. k = 3. Then |G| = 3k —
— 1 > 2k + 1. If there exists then a k-ordered graph of less than or
equal to 2k + 1 vertices, it must contain a circle.

Let K, be a circle of m vertices, K, a set of its vertices, ® = (G, o)
a k-ordered graph, &, < &. Provided | ¢ | < 2k 4+ 1 and ® not being
identical with the circle of 2k + 1 vertices, so m < 2k + 1. If m = 2k
there exists just one vertex of K,, to an arbitrary vertex of Knp

m
having from it the distance equal to k. Therefore & (8m) = o= k
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and according to lemma 7 there is |G| 2 2| Kp| — 1 — | L(8) | =
=4k —1—k =3k — 1. If k = 2, K, is a circle of four vertices and
the only 2-ordered graph of five vertices containing such a circle is
evidently the graph from fig. 4b. For k > 2 there is |G| = 3k —
—1>2k4 1.

Thus we can suppose m < 2k; further suppose k > 2. Denote dy =
= max {o(z, y)}. Evidently d, is the greatest positive integer such

z,yeK,,
that dp = m — dp,, ie. dy =1;— for even m and d,, = —7!&--2——1 for
odd m. Since m < 2k so it is dp, < k and therefore ¥ (Kn) = . From
lemma 7 there follows |G| 2 2|Kpu| —1=2m — 1. In order to
hold |G| = 2k + 1 it must be m < b + 1.

Define the decomposition B on the set @ — Ky in such a way:
x, ye @ — Kp, lies in the same class of decomposition B just when
there exists a path all lying in G — K, between them (i.e. B is the
decomposition of the graph G — K, into connected components).
Let A be an arbitrary class of decomposition R. Denote 4o = {z € Kn\_
there exists a vertex x € 4 so that g(z, ) = 1}. Further denote 4(z) =
={ze A\ o(2, x) £ k — dn — 1}, where x € Ao is an arbitrary fixed
chosen vertex. Evidently @ # Ao < Kp, A(z) < A. Let x € Ay, y € A(z),
2€ K. Then oy, 2) S o(y, ) +ol®, 2) S (b —dp —1)+dn <k
so that S (Km U A(z)) = S (A(x)) as we have thus early proved that

Next we are going to consider only such classes of the decomposition R,
which contain at least one vertex having the distance & from a vertex
of the circle K&,.The set of such classes be denoted R*. There is BR* £ &
because in the opposite case the graph ® would not be k-ordered.

First suppose R* is composed of the only class A. Select a vertex
ze dy. A vertex ye G exists so that p(z, y) ="%. Evidently ye 4.
Let z € 4, o(z, x) = 1. According to the definition of the decomposition R
there exists a path C' between the vertices z, y, (" < G — Kp,. Let C
be a path between the vertices z, y arisen by adding the vertex x to the
path C’. Since g(z, y) = k, the length of the path C is greater than or
equal to k. Let § be a subgraph of the graph ® determined by the set
of vertices H =K, U C. There is |H|=|Kn|+|C|zm+k If
teC, o, ) £ k — dym — 1, then according to the previous s(t) =0
in £(9); further s(y) = 1.

Show that k& — dp — 1 2 0. Really k—dm~1;k~—§~—lg
k41 E—3 m '
zk—-~~—2-—-1=--é~z O,asdmég, m<k+1, k3.
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Therefore we can state that the number of vertices ¢t € O such that
s(t) =2inF(H)isatmost k — 1 — (k — dpy — 1) = dp. Since F(Ry) =
= ¢ an arbitrary element #($) incidates with the vertex of C. Then
|L(H)| =, s(x) £ 2dm + 1 and according to lemma 7 there is | ¢ | =
xeC

22|H|—1—|F®)| 220k +m)—1—2p —1=2k+2m —
L;'—and[Gl 2% 4+ m—2>
> 2k + 1 because m = 4(m = 3 and m is even). For an odd m there
is|G|22k+m—1>2k+1.

Thus as far as |G'| £ 2k 4 1, R* contains at least two different
classes A, B. Then there exists the vertex x e 4, (% € By) such that
|A(x) | 2k —dm—1(B(#)| =2 k—dpn — 1) as far as the sets 4(z),
B(z) are defined, i.e. in respect of ¥ — dy — 1 > 0. This occur, however,
always except the case of m being even and k = 3. By the application
of lemma 7 to this special case it is easily to be ascertained that it holds
init |G| >2k+ 1. Let H= Ky, U A(x) U B(z), < G a subgraph
with the set of vertices H. Thereis | H | = m + | A(x) U B(®) |. Further
L(H) = F(A(x) U B(x)), because L (Km U A(x)) =F(4A(x)), F(Km U
U Bx)) = L (B(z)), F(Km) =o. Let V be an arbitrary selection in
A(z) U B(#). According to 1° of lemma 5 there is | V| < | A(z) U
U B(z)| — 1. According to lethma 7 there is |G| 22| H|—1—
— max {| V |} = 2m + 2| 4@@) U B@) |~ 1 — (4(z) U B&)| — 1) 2

— 2d,, — 2.For an even m there is d,, =

22m -+ 2(k —dp — 1) > 2k + 1 as has been proved in the pre-
vious case.

For k > 2 the necessity of condition is so testified and at the same
time it is proved the only k-ordered graph of 2k + 1 vertices is a circle
of 2k 4 1 vertices.

For k = 2 thereism < k 4+ 1 = 3, i.e. m = 3 and we get the graph

from fig. 4a. The proof of the theorem is now finished.

It is seen the existence of k-ordered graphs being linked with the
existence of the circle in a graph. A question may arise if there exist
k-ordered graphs without circles, i.e. k-graphs. We are coming to the
problem to which this paper is dedicated.

4. k-GRAPHS

According to lemma 3 there exist k-graphs only for odd k. Because
of the case £ = 1 having been dealt with in the previous theorem, in
the next it will be always supposed £ > 1 an odd number.

Definition. Let ® = (G, o) be a tree, z, y € G. By an interval {z, y)
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we call the set of all vertices on the path joining vertices x and y. Intervals
{x, ¥), (x, y> and (x, y). are deduced from {x, y)> in a usual way.

v Tk—5
Lemma 9. There exists a k-graph of —5 vertices.

Proof. Let be ®; = (G, ox) a tree constructed in this way:

|

|
R B B

where o(¢, d) = -, 0, a) =0, d) =k — 1, o(a, a) = g(b, b) =

—El e, @) = oty @) = k——l—-.Thean’“' o, d) + 1 +

2
+ o(a, a) + o(b, b) = 7—’“—2— . We are going to prove (ﬁk to be a k-graph.

Denote G0 = <a, b>, G1 = (d, d), G = (b, b), = (a, ¢, G4 =
= {d, b), G5 = (a, ay, G5 = (¢, ¢). The sets G for i = 0, 1, ..., 6 are

6
two by two disjunctive and there holds Gy = U Gt. There is p(¢, ¢) =

= o(d, d) = o(b,d) — o(b, d) = k ;-——1- From these two distances and

the distances mentioned in the definition ®; it follows that | G| =
1

—}‘-:—:*2:—1—,|G‘]—Zc—~2~—4 fori=1, 2, , 6.

Let y; € G be the vertex defined in this way: (¢ = (z, '), or G =
= {2,72'), or G = (2, 2'), then y; = z, or y; = z, or y; = 2" resp., where 2"
is the vertex for which 2" € (2, 2’) and (2", 2) = 1. To an arbitrary
vertex x € Gy we put a couple of indices ¢, j, like this: z has the first
index ¢, if z € G*; x has the second index j, if p(z, y;) = j. Arra,nge the
vertices of the tree ®; into the sequence xg,0, 21,0, 2,0, - -+ %6,0, %0,1,

X1,05 ¢ o5 X6,15 0,25 <+« X6,25 =y L k-8 L k-85 +++» L k-3, & k-1 -
05 LTy b5 0%




101

From the earlier mentioned ease it follows to be the matter of arranging
all vertices of the graph ®;, where each vertex occurs only once in
this sequence. Show the distance of neighbouring vertices in this sequence
to be equalled to £ and so prove that G is a k-graph.

Let jo be an arbitrary second index. Show that g; = g(24.5,, ®s+1, 5,) =k
fori = 0,1, ...,5. The proof is done for ¢ = 0, in other cases is analogical.
There is go = g(a, d) — 0(%o,5,, @) — 0(21,5,, d) = o(@, d) —jo + jo+ 1 =
= k. Further on there is 9 = (6,7, %o, j4+1) = 0(6, @) —jo + jo + 1 =%
forj=0, .. .,lté——m. Since the distance of arbitrary neighbouring
vertices in the sequence being of the one of types go, 01, ..., o5, 0.
lemma 9 is being proved.

Definition. Let & = (G, o) be a k-graph. According to lemma 8 ®
includes a subgraph § = (F, o’) from lemma 8. The vertices of the set
G — F are called compensation vertices of the graph & with regard to
the subgraph §. Select the subgraph § firmly once for ever. Let V be an
arbitrary selection in ®. Denote M(V) = {[x, yle VN z€e F,yec @ — F}.
Define on the set G — F a decomposition into classes T, U, P in this
manner: T(V) ={xe G — F\ sy(x) =2}, U(V) ={ze G — F\ su(x) =
=1}, P(V) = {&e @ — F\_su(x) = 0}. Denote further (V) = k —
— | Vr(®) |. There is d(V) 2 0, for | L (F) | < k. We call the selection V
to be good if A(V) = 0. Denote pV)=4k —2 — | T(V) | + | P(V)| +
+ 2d(V).

Lemma 10. Let & = (G, o) be a k-graph. Then | G| 2 min {u(7)}.

VE‘V@
Proof. From lemma 6 there follows the existence of the selection
V e¥’g for which Y sp(x) =2|V |=2( G| —1). Then there exist
el
at most two vertices of the degree less than two in V so that Z sy(z) =

zeF
= 2(| F| — 1) =4k — 2. Next according to the preceding definition

thereis |G | = | F |+ |T(V) |+ | UV) |+ | P(V)|.Itholds ), sp(x)=

veF
=2|Vp| + | MV); | Vel =Fk —d(V), | M(V)| =2|T(V)| +
+ | U(V) |. From these inequalities there follows 4k — 2 < Z sy(x) =

zeF
=2k —d(V)) + 2| T(V) | + | U(V) |so that | G| = | F | + | T(V) |+
+ 10| + l PV)| z 2k + |T(V)| + |POV)| + 2k — 2 —
—2|TN)| + 24(V)) = 4k — 2 — |T(V)| + | P(V)| + 24(V) =
= p(V) z min {u(V)}.
=

Lemma 11. Let & = (G, o) be a k-graph, V a selection in & Then
a good selection W in ®& exists such that u(W) = u(V).
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Proof. The proof be done by induction to number d(V) = | L(F) —
— Vr|. For d(V) = 0 the selection V is good and the lemma holds.
Be supposed d(V) > 0. Then there exists an element [z, y] € L(§) — V.
Denote Dy(z, y) the set of elements of a selection U, incidating just
with one of vertices , y. According to v,) there is | Dy(x, y) | < 4. Show
that a selection W, in & exists such that [z, y]e€ W, and | Dw (x, y) | 2
2 | Dy(x, y)| — 2. If Dy(x, y) =@ then W, =V U {[z, y]} is the
selection according to 2° of lemma 5. Provided 0 < | Dy(z, y) | < 3
we choose a € Dy(, y) and the set W, be defined as W, = (V U {[z, y]}) —
— A, where A = Dy(z, y) — {&}. There are sy (v) < 2, sw,(y) < 2 and
in W; a cycle containing [z, y] does not exist since the degree of at least
one of vertices z, y being less than two. According to 2° of lemma 5
W, is a selection in ® and | Dw,(», ¥) | = | Dy(x, ¥) | — 2.

The case | Dy(z, y) | = 4. Denote a;, az, or Bi, 2 the elements of
the set Dy(z, y) incidating with a vertex x, or y resp. in V. A choice
of indices 4, j (1,j = 1, 2) exists such that Wid = V U {[z, y]} — {ou, s}
being the selection in 6. It holds sy, (y) < 2, swr(x) < 2 for arbitrary
indices ¢, j. Further suppose that for an arbitrary choice 1, j the set W¢?
contains the cycle C%J including [x, y]. Then oy, f2 € C1-1, oy, By € C2.
Then the elements of the set ¢ = CL1y C22 — {[z, y]} form a cycle
in #(®) and C < V, which is a contradiction (see fig. 6).

Fig. 6.
Let 40, jo be that choice of indices ¢, j for which the set Win/o does
not contain a cycle to which the element [x, y] belongs. According to 2°
of lemma 5, Wi 7o is a selection in & and denote it W;. There is [z, y] €
e W1, | Dwx, y) | = | Dv(z,p) | — 2.
There is | M(W\)| — | Dw,(e, 9) | = | M(V) | — | Dy(z, 9) | 2
2 | M(V)| — | Dw,(x, y)| — 2. Hence it follows that | M(W,)| 2
ZIMV) | —2,ie2[T(W) |+ |UW)[22|TV)[+]|UF)|—2.
Since |U(V)| = |G| — | F| — |T(V)| — | P(V)| and an analogical
relation holds for the selection W, as well, thereis | T(W,) | — | P(W1) | 2
2 |T(V)| — | P(V)| — 2. Since d(W;) = d(V) — 1 there is u(W1) =
=4k —2 — [T(W)) | + |P(W)) | + 2d(W,) < 4k — 2 — [ T(V) | +
+ 1 P(V)| + 2 4 2d(V) — 2 = u(V). We have constructed the selection
W1 such that u(W,) < u(V) and d(W,) = d(V) — 1. And so the proof
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of the lemma is finished for after s steps we get a good selection W,
such that u(Ws) £ u(V).

Definition. Let R be a decomposition of the set @ — F such that two
compensation vertices lie in the same class of the decomposition R just
then if at most one vertex of F lies on the path between them. A class of
this decomposition R is called a compensation, if there exists a vertex lying
tn it and having the distance k from two different vertices of F.

Let e, f be vertices of the first order in §. We are going to define certain
characteristic vertices for an arbitrary compensation K. Denote by a this
vertex acF for which there exists a vertex x € K such that g(a, z) = 1.
Because of ® being a tree there exists, according to the definition of de-
composition R, just one vertex of this property.

Further denote by b this vertex of the set F for which g(a, b) = k — 1 and
b € <a, >, or b € a, f> according to the fact if p(a, e) > o(f, a), or p(e, a) <
< e(f, a).

The set of vertices of the path between the vertex a and an arbitrary
vertex x € K, taken without the vertex a, is called a chain in the compensa-
tion K. The length [(K) of the compensation K is meant the number I(K) =
= max {0(x, a)}. Denote by g, g’ these vertices of the set F for which o(g, a) =

zeK

= olg’s a) =k — YK), provided (K) <k and g=¢' =a as far as
UK) = k.

Verify the existence of vertices b, g, g'. The vertex b always exists because
ole, f) = 2k — 1. Further on, as long as to the vertex x € K there exist
two different vertices of F being in the distance k from the vertex x, then
this property is shared with an arbitrary vertex y € K for which k > o(y, a) >
> o(x, a). According to this fact and the definition of compensation the
vertices g, g’ exist.

To the compensation K put an index ¢ such that i = k — min {o(a, €),
o(@,f)}. The compensation K be called the i-th compensation and 1is
going to be denoted by K;. The characteristic vertices of the compensation K
defined before will be denoted by an index i below, i.e. a;, by elc.

If ole, a;) > olas, f) then it holds gle, bi) = 1. Really according to
the definition of vertex by and index 1 there is by (ay, ¢) and 1 =k —
— ola, f). Thus i = k — (ole, ) — ole, ar)) = 1 — k + ole, a1) because
ole,f) =2k — 1. Then gle, az) =k — 1 + ¢ and g(e, b)) = ole, as) —

—(k—=1)=1. Analogically we venfy that, under the supposition of
ole, ag) < olas, f), there is o(f, bs) = .

Denote Oy(e) = {z € K¢\ 0@, @) = g}. The sets Oi(01) and Oo2)
be called associated if there 18 o1 + o, = k. Arbitrary vertices x, y € K;
be called associated if x € Oi(01), ¥ € O4(02) and the sets Oi(01), O(gz)

are assoctated.
Let K| be an arbitrary chain in K;. Denote by s(K{; x, y) the set formed



104

by associated vertices x, y and by these vertices of set F which are in the
distance equalled to k from some of the vertices. Evidently there is
|s(Ki;2,y)| < 6.

Lemma 12. Let G = (G, o) be a k-graph, K; a compensation in ®
such that (K;) < k, K{ a chain in K;. Let § be a subgraph of the grapk ®
determined by the set of vertices H = F u K. Then it holds
1° Let x € K. Then for the degree of the vertex x in F (D) it holds: s(x) = 1
if oz, a;) < ¢ and s(x) = 2 if o(z, ag) = 4.
2° An arbitrary set s(K[;x,y) for which |s(K];x,y)| = 6 determines
the cycle in L (D) and any cycle in F(9H) is determined by this set.
3° Let V be an arbitrary selection in . Then |V | £ k+1 —

—i+2|K;|-min{"J2“1—i,iK;|_Z“._T2—.1_}.

Proof. 1° Since we suppose {(K;) < k thereis | K/ | £ k and therefore
an arbitrary vertex of H being in the distance k from some vertex of
the chain K| belongs to F. Let x € K, o(x, a;) < ¢ and suppose p(a;,e) <
< o(as, f). According to introducing the index ¢ there is p(as.e) =
=k—1i<k—olx,a), ie. g, e) = p(x, a;) + g(ai, ) < k. To the
vertex x there exists then at most one vertex of F being in the distance k
from it. Because at least one vertex like this always exists there is
s(x) = 1. Provided p(a;, ) > p(as, f), the consideration is analogical.
Letnowz € K/, p(x, a;) = i. Thereis g(as, e) =2 k — i = k — olx, az), i.e.
oz, e) = k and analogically g(x, f) = k. Therefore s(x) =2 holds,
2° Let z, y € K; be associated vertices such that | s(K{; =z, y) | = 6.
Then there exist mutually different vertices 2’, z”, y’, y” such that
oz, 2') = o(x, a") = o(y, ¥') = oy, y") = k. There is s(K;; z, y) =
={x, y, ', 2", y', y"}. Without a loss in generality we can suppose
z',y e, a), 2", y" €ay, f>. Thereis o(z’, y") = o(’, &) + o(a;, y") =
=k — o(x, a;) + &k — p(y, a;) = k since the vertices x, y are associated.
In the same way we prove that g(z", ¥’) = k. Then” the elements of the
set s(K;; x, y) determine the cycle {[z, '], [«', ¥"], [¢", ¥]. [v, ¥'], [¥', ="],
[2", ]} in F(H).

Let C be an arbitrary cycle in #($), denote by C’ the set of vertices
determining C. Then ¢’ must contain & vertex of K[; be it designated
by z. Because, according to 1°, there is s(z) £ 2 it must be s(x) = 2.
Let o/, 2" € F, g(x, ') = o(x, ") = k. Then ', 2" € C". Let y’, y" € F,
oy’ ") = o(y", ') = k. There is y’, y" € (’. Suppose ' e (e, a),
2" € {ay, f>. Then y' € (e, ai>, y" € {ay, ). Thus if it were not like this,
e.g. for the vertex y', then s(y’) = 1, which is not possible. Thus g(y’, a;) =
= o(y", as) and C’ contains besides vertices z, 2’, 2", ¥, y" only the vertex
y € K, such that o(y, ¥') = ey, y") = k. Then the vertices z, y are
associated and ¢’ = $(K;; %, ¥).
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3° Let V be an arbitrary selection in $. First form an estimate of

the order of the set & (H). There is |F(H) | = |L(F) |+ Y. slx) =
weK,’

=k+2|K;|— (s —1) according to 1°. Since for x€ H there is
s(x) < 2, an arbitrary subset in (%), which does not contain a cycle,
being a selection in §. An cardinal number of this subset differs from
1 L(9) | at least of the number of cycles in.#($), because in an arbitrary
cycle there must be at least one element, which does not belong into
this subset. According to 2° the number of cycles in #($) is equal to
the number of couples of associated vertices x, y for which o (z, a;) = 7,
o(y, a;) = 1. Because at least one of arbitrary two associated vertices

k—1

has the distance greater than 3

from the vertex a;, the number

. N , E—1
of couples of associated vertices is equal to the number | K; | — 5
If «, y are associated vertices and g(z, @;) > k — 1, then it is p(y, a;) < 1.
From the preceding fact it follows that the number of cycles is

equal to min {Zc_g_{ —i,[K{]-k%l} . Thus | V| £ £(9) —

— rnin{k-;_l —1, | K| _10%1_} =k+1 -7+ 2| K]| —
. (k+1 . , E—1).

__mln{_r—@, | K. | ——~—§»~} .

Lemma 13. Let G = (G, o) be a k-graph, | G| gZ%E, K;
a compensation tn ®. Then it holds: B
1°2 —1 < UKy) <k —1
k—1
5
3° For an arbitrary good selection V in G there is |T(V)n Ki| <

2° 0 =

S —— —u

Proof. 1° According to the definition, K; must contain a vertex
being in the distance k from two different vertices in F. According to 1°
of lemma 12 there is {(K;) > ¢ — 1.

Let I(K;) = k — 1. Then K; contains the chain K of k — ¢ vertices.
Let $ be a subgraph of the graph ® determined by the set of vertices
H=Fy K;. There is | H| = 3k — i. According to 3° of lemma 12
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thereismax{lV|}§k+1—i+21K{[—min{k+l —1,| K| —
VGV@ 2

;k—ly_%+1

— 2¢. According to lemma 7 there is |G| 2

5k + 1 ) Tk — 3 Tk — 5
— %) = '~

2 2
;m%~a-1~(

= > ; a contra-
2

2 2
diction with the supposition.

k+1

2° According to 1° there is ¢ —1 < k — ¢, ie. i < 5 > ie.

. _k—1
1 < 5

3° Let V be a good selection in ®, i.e. | V¢ | = k. From the definition
O4(p) and T'(V) it follows that O;(g) contains at most one vertex of the
set T(V). From 1° of lemma 12 it follows that O;(¢) n T(V) = @, provided
o < i. We are going to show that if the sets Os(p1), O(g:) are associated
there is | [Oi(01) U Oi(pz)] N T(V)| £ 1. Suppose the contrary, i.e. let
there exist vertices z, y € T(V), z € 0;(01), ¥ € Oi(p2). If the vertices z, y
lie on the same chain K; of the compensation K there is | s(K[; z, y) | =
= 6. Let C be a cycle in.#(H) determined by the set s(K;; «, y) according
to 2° of lemma 12. Since z, y € T(V) and Vr(6) =L (F), C is a cycle
in ¥V, which is a contradiction. The same cycle exist in ¥ although the
vertices z, y do not lie on the same chain of compensation K;.

From the preceding it follows that on K; there are so many vertices
of the set 7'(V) how many mutually different sets O;(g;) are such that
9; = ¢ and at same time between O;(p;) any two mutually associated
sets do not exist. According to 1° there is I(K;) < k — ¢ so that a set
O;(p) associated with O;(p’) does not exist, if o’ < 4. Therefore | (V) n

kE+1 . .
nkK;|l = 3 2.

Definition. Let & = (G, 6) be a k-graph, K;, K; its two mutually different
compensations. Let y € Kj. As y, denote the vertex y, € F such that o(y, y1) =
=k and y e e, a;) or yy €<ay, f> according to that if a; e ay, f> or
a; € e, a;}.

Let now x € K;, y € K;. Say that x — y just when there exist the vertex y;
and a vertex & associated with x and it holds o(2, y1) = k. From now on,
an index one below and a stripe above will designate exclusively the above
designated vertices.

Lemma 14. Let ® = (G, o) be a k-graph, K, K; its two different
compensations such that there exist vertices x € Ky, y € K; with the property
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Tk — 5
5

Tk — 5
2

x—>y. Then | G| >

hold.

Proof. Let | @ | £

(1) Show some relations between vertices z, y, £, y1. According to the

previous definition a; € {ay, ¥1). Therefore o(y:, a7) = pla¢, a;) +

+ olay, y1). Designate 6 = o(as, ay). Since g(y1, a5) = k — o(y, o)

there is (%, a;) = k — o(aq, ¥1) = o(y, a5) — 0.

(2) Denote by Y the set ¥ = {t € K;\ there exists z; € K; 8o that

z¢ —t}. Further let &' = min {o(t, a;)}. Let ¢’ € Y such that o(t', a;) = &'.
teY

E—1
5
For an arbitrary ¢ € Y there is 0 < g(%¢, a5) = o(t, a;) — J according

to (1). Thus 6’ — 6 > 0. Suppose &' — 6 > 5 - Show that then

not even one of the relations o(%, e) =k, o(2, f) =k, o(2, b)) =k
holds. Provided it would be p(2¢, e) = k then ¢’ — 3 = g(&, a;) =

=k—ole,m)Sk—(k—d)=is -

There is Y # & because y € Y. We shall prove 0 < 8’ — § <

, according to 2° of lemma 13.

E—1
5 -
Here we used the relation ¢ = k — min {o(e, a¢), o(f, a)}. Analogically
for the vertex f. If p(2;, bs) = k then according to the definition of the
vertex by there is p(2, @;) = 1, what again resists to the supposition

This is, however, a contradiction with the supposition §' — § >

6 —6>—2~~.

Since 2zy — ¢’ then p(%, ¢;) = k and according to the preceding
t' #~e, f, by. Hence it follows that for the vertex u € K; such that
o(#, aj) = &’ — 1 there exists the vertex 2, € K; for which g(2,, w1) = k.

It holds o(Zy, &) = 0(Zr, ) — 1 =6’ — 6 — 1 = —k_;—i If o(Zy, a1) >
k —

, then there exists a vertex z, € K; associated to the vertex

. k— . .
%y. Provided g(%,, a;) = , the vertices 2,, %y are associated.

2
In both cases the vertex u has the property of existing the vertex.
2y € K¢ such that 2z, — u. This is a contradiction with the definition of

vertex ¢'. Thus §' — § < k—1 .
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(8) The vertex z; is associated with the vertex z;-, for which there
holds g(zy, a;) = 6’ — 6. Therefore p(2¢, a;) =k — 6"+ 6 and the
compensation K; contains the chain K; of k — ¢’ 4 § vertices. Since
o(t’, a;) = &', the compensation K; contains a chain of §’ vertices.

Let H be a subgraph of the graph ® determined by the set of vertices
H=Fuy K;u K, where K; being a chain in K; such that | K} | =

Ic —1 1
= min {6', —2—} . There is | H | = 3k — 0’ + 0 + min {6’ VT}

(4) Let u, ve H be vertices of these propertieb u, veFu K/,
a; € {u, vy, g(u, v) = k. Then a pair of vertices «’, v’ € K does not exwt
such that o(u. u') = o(v, v') = k.

Assume that the assertion does not hold.

Since thc number £ being odd there is u’ = ¢". E.g. let o(u/, a5) <

< o(v, Then it holds o(u, a;) > o(v, a;). Since g(u, v) = k and
k _ .
a;y € {u, vy then it is p(v, a;) =< -- 5 1 ,le. v, a5) > k. 2‘1— This is
—1
a contradiction with the supposition of | K | = mm{ 0, %—} .

(5) Let V be an arbitrary selection in §. Denote by B(V) a set of
these vertices x € K; with properties: sy(z) = 2, g(z, @) < ¢’ and if
there exists the vertex z; then exists the vertex z, € K., p(2z, 1) = k.

Let Vy be an arbitrary and firmly determined selection in §. Show
a selection W in § exists such that | Vo|=| W | and B(W)=0@.

The proof be done by induction to the order of the set B(V,). Let
x € B(V,). First suppose the vertex z; exists and [z;, 2] € V. According
to the definition of the set B(V,) there exists the vertex z; € K, for
which g(2z, #1) = k. Denote by x; this vertex of F for which p(x,, x3) = k.
Such a vertex exists only one. Further denote by a such of elements
[®1, @3], [%1, 22] which does not belong to ¥V,. Since, according to v),
there is sy (x;) < 2 and [xy, ] € Vo, then such an element exists.
Define the set W, in this way: Wi = (W U{a}) — {[z, 21}]. Show the W,
to be a selection. According to 2° of lemma 5 we must verify sw (2;) < 2,
sw,(25) 2, or sw,(x3) = 2 according to this if a = [z, 2;], or & = [21.
x3] resp., and show that a cycle containing o does not exist in W,.
The relation sy (z;) < 2 holds according to the definition W;. Furtker
on, according to (4), a vertex z € K does not exist such that g(2z, z) =
because g(2;, ;) = kand a; € (24, :1:1> since a; € {a;, 1) and g(z;, x) = lc
and z € K;. Thus sw,(2;) < 2. As far as a vertex z € K; exists such that
o(z, x3) = k, then the vertices 2, %2z are associated and consequently
it holds z — x. With regard to the supposition o(, a;) < d’ there is
a contradiction. Therefore s(z;) < 2 '
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The first part of condition 2° is being verified. Suppose now that
there exists a cycle C in W, such that a € C; denote by C the set of
vertices determining the cycle C. Since x, € C, [z, 2,] € W, it holds that
[21, 22], [%1, 23] € C. As we have proved that there does not exist a vertex
z € K}, for which g(z, x3) = k, a vertex u € K ; exists such that o(xs, w) =
= k. A necessary supposition of the existence of such a vertex is a; €
€ {3, 1) so that we get a contradiction with (4). Thus W, is a selection
cand | B(Wy) | = |B(Vo) | =1, | Wi| = | Vo .

A case remains of existing the vertices z,, ¥, such that x; € F, 24 € K;
and [xz, ], [z4, x] € Vo, where z;, # 24, i.e. a; € {ai, ;). Denote by x5
the vertex zs e F, p(x4, xs) = k, where a; € (x4, xs). Show this vertex
really exists. Suppose e.g. o(a;, €) <p (aj, f). There is p(a;, ) =k —j 2

k

1 —1
= - ; according to 2° of lemma 13. Further on, o(r, a;) < 5

according to the definition of the chain K. There exist then two different
vertices of F such that their distance from the vertex a; equals to
o(a;, ). One of these vertices is the vertex xs. Since p(x, xs) = o(x, x;) =
=k, then it holds a;e{(x;, ). Therefore g(x,, xs) = o(xs, a;) +
+ olas, aj) + olar, =2) = olx, a) + ola, @) + e(ai, %) = o(x, 74) = k.

Let [(174, :1:5] € Vo. Define the set W1 = (Vo U {[x4, xs]}) — {[x, x.,]}
Considering the fact there is sy (r4) < 2. As the vertices x4, zs fulfil
the suppositions of assertion (4), a vertex being in the distance & from
the vertex zs does not exist on K; Therefore s(xs) < 2. Suppose W,
containing the cycle C such that [z,, 5] € C. Because s(zs) < 2, there is
[zs, z2] € C. Let Cy = [C — {[24, 5], [%5, 23], [22, «]}] U {[24, 2]}. There
is 0y < V, and C; is the cycle in Vy; a contradiction. Then according
to 2° of lemma 5, W is a selection in.#(9) and at the same time there
holds | B(Wy) | = | B(Wo) | — 1, | Wi| = | V.

Let [@4, 2s] € Vo. Since [24, ] € Vo, [, 2] € V, then if follows from v,)
that [z,, zs] € V. Define Wy = (Vo U{[22, #5]}) —{[*, x2]}. Quite analogical
as in the previous case we are going to show W; to be a selection and
| B(W,) | = | B(Vo)| — 1, [ Wy| = | Vol.

We went through all possible cases so that we may conclude
a selection W in & ($) exists such that | W | =|V,| and B(W) =g .

(6) According to (5) it is sufficient in estimating max {| V |} to
. Vey,
consider only the selections V for which B(V)=g. Take such an

arbitrary selection. There is |V | = | Vruk, | + | V — Vruk, | =
=|Vrug,| + 2 8y(x). The restriction Vryk, is a selection on the
:ceK;

graph that is determined by the set of vertices ¥ U K . According to 3°

NEES
oflemma 12 there is | Vey g, | S k+1 —i+ 2| K | mm{ _g N
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— 14, | K; I——k—z“—} If| K; i—k—2—l>£—_—*2;—l— — i then | K] | >

> k — ¢ and we get a contradiction with 1° of lemma 13.

k1 by k=11 ;o k-1
Itholdsmml 3 1, | K; | —5 = | K; | 5 -

Consequently | VFyk; | < bk ;— 1
then it holds sy(x) = 2 for z € K; only for one of these supposition:
either g(z, a;) = d', or there exxsts the vertex z; € F and does not exist
the vertex z; € K; such that o(x1, 2;) = k. Thereis | K] | =k — ¢ +
+62 k_;_l > | K; | because, according to (2), ' —d < k 3 ! .
Let g4, g; be previous defined vertices, i.e. such vertices that o(g;, a;) =
= 0(9,, @) =k — | K; |. If the vertex x € K; exists such that =z, €

€ (9¢, g:) then it holds a; € (g4, g;), because a; e {ai, x1). Accordingly,
however, | K; | 2 o(z, aj)>k——(lc—|K ) = | K; |, which is a
contradlctlon Thus for a vertex ze K, j» for which there exists the
vertex x; and does not exist 2, € K; , o(2z, #1) = k, it holds 2; € (e, b;),
or x; € (b;, f) according to the fact if g(e, a;) > o(f, ai), or o(f, &) >
> p(e, a;) resp. Without loss of generality it may be supposed g(e, a;) >
> o(f, a;). Then g(e, b;) = ¢ so that the number of vertices x € K such
that z; € {e, b;) is at most <.

Thus the number of vertices z € K}, for which sy(z) = 2, is at most ¢

k—1

— & + 6 — 4. Since B(V)=g

for 6’ > ; and at most ¢+ 1 for § < . Therefore
Y sp(x) < |K;|4+i+1lastod < —1 and Y sp(z) £ | K|+
zeK; 3 1 _;reK}
+ 1, 1f‘6 > 3
, _k—1 ,
Letd’ < .Then]Kjl=6’and}H]=3k+6,max{l Vi s
VG‘V@ .
1
§§I_c_;—__ —6’+6—i+(6’+i+1)_§1‘:’-—3+6 According to
lemma 7 there is |G| = 7k —l— é> —12—2—3 , which is a contra-
diction.
—1 — . . _
Let § > ,i.e.lK}]:’c 1.Then|H|=—7k——l———

2 2
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— - dand max (| V |} < 5@_{}___ & 4 8—i+ (f:é"_l» +i)=
=3k — ¢ + 6 A%cordmg to Iemma 7 there is |G| = 4k — 2 — &' +
poz k= _s < i;-l .
Thus again |G| > Zk——z_~§« This is a contradiction and the proof of

lemma is finished.

Now we can come to the proof of the final theorem.
Theorem. Let k > 1 be an odd number. Then a k-graph of n vertices
. Tk —5
exists just when n = I
" Proof. The sufficiency of the condition follows directly from lemmas 9
and 4. We prove the necessity. Let ® = (@, o) be a k-graph and suppose

|G| < Tk 5 ~5v. We must come to a contradiction.

Let V be an arbitrary good selection in &, K; a compensation in &
such that for an arbitrary compensation K; there holds {(K;) < U(K;).
Without loss of generality it may be supposed that g(e, a;) > o(as, f).

Define the decomposition of the set T'(V) onto the classes T, T,, T
in this way: ={weT(V)\ 22" € (b, e>} T,={xeT(V\ 2 e
el{f, b, x e(b,, e>} T, —{xeT(V)\x z" € {f, b>}, wherez', x" € F
being such vertices that [z, x'], [x, "] € V. Estimate from above the
numbers | T |, 1 =1, 2, 3.

(1) Lety € T',. Let K; be this compensation for which y € K;. Evidently
K; # K;.Sincea; € (y', y"> and y', y"-€ (b, e) then a; € (by, e), o(b, a7) >
> 1. There is o(b;, e) = 4 so that g(a;, ¢) < ¢+ — 1. According to 2°

of lemma 13 there is ¢ < k:2; ! and therefore p(a;, ¢) < 5—2‘—3*
: k+3 o
Because j = k — o(a;, €) > - 5 , then according to 2° of lemma 13
. Tk — 5 Lo EPU
there is | G| > g which is-a contidgdiction. Thus 7'y = &.

(2) From the equality g(b;, ¢) = ¢ it follows that the interval (b4, €)
contains of ¢ vertices. Because of the selection V being good, then to an
arbitrary vertex x € F' there exists a.t most one vertex y € G — F such
that [z, y] €. V. Therefore |T,| < 3. = =~ o
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(3) With regards to the definition of the set T'; there is T(V) n
n K¢ € T3. From 3° of lemma 13 it follows that |7T(V)n K;| <

< k ;ﬁl — i. Denote by A(V) a set of these vertices z € K; with

properties: o(z, a;) = i, x € T(V), and the vertex £ associated with z

does not exist. It holds E—;——l— —t—|T(V)n Ki| 2 |AV)|.

We are going to show there holds | 75| < | P(V) | —{——’f——zﬂ—- <.

Let yeTsn (@ — K;). Let K; be this compensation for which
y € K;. Let y; be one of vertices ¥, y” in the sense of definition before
lemma 14. Show to hold y,; € (9:, ¢;). In the opposite case there is a; €
€ (g1, g;) and thus UK;) 2 o(y, @) =k — o(y1, a5) > k — o(ai, gi) =
= [(K;), which is a contradiction. There exists then the vertex {e K;
such that o(, ;) = k since according to the previous fact and definition
of the set T3 it holds that y, € {f, b;> — {gi, ¢g;>. There are these pos-
sibilities:

«) o(f, ;) < ¢. Because of the selection V being good and [y, y.]e V
there is [{, ;] € V. Then { € P(V).

B) o, a;) = ¢ and there is no vertex t € K; associated with the vertex f.
Similarly as in «) there is [, y,]€ V. Then { € A(V).

y) o, a;) 2 ¢ and the vertex ¢ e K; associated with the vertex &
exists. Then, however, ¢ —  and according to lemma 14 there is | G| >

Tk —5

2

In the preceding we practically intreduced a mapping ¢: T5n
N (¢ — K;) - K; such that ¢(y) = 1. Let y, § € Tan (G — Ky), y # 7,
where @(y) = @(§j) = 2. There is y; 7 §, since the selection ¥V being
good. Since [z, y;] € V, [2, §1] € V there is k > o(z, a;) = <. Therefore it
holds ze A(V) n T(V).

Define the decomposition of the set ¢[T3n (G — K;)] onto the
classes R, R,, R;in this way: R, = {x e ¢[T3 N (G — K;)]\ | ¢~(z) | =
=10 a) < i}, R ={xeg[Ts n (G — K)] | ¢7'(2) | = L, o2, ) 2
24}, By = {weg[Tsn(G—K¢)]\\ | p7(z) | = 2}. There is | Tyn
N (G —Ki)|=|Ry|+|Ry| + 2| Rs| and at the same time | P(V) | 2
2 |R| + |Rs|, |A(V)| 2 | Bz| + | Rs|. By substituing we get

T30 @ — K| S| PV) |+t —i = | T(F) 0 K.

Since T(V) n Ki < Tsand Ts < T(V) thereis Ts n K¢ = T(V) n K;.

>

, which is a contradiction. The case ) then cannot occur.
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Then it holds | T3] = | T3n (G — Kq) | + [Tsn Ki| = [Tsn (G —
—K)| +1TV)n K| = |PV)| +- j;l-—— i, which we wanted

to be proved.
Because of the selection V being good there is d(V) = 0. Then

wyV) =4k —2 —|T(V |+|PV)|+2d(V) 4k —2 — | T(V) | +
+|PV)|Accord1ngto(1)()( thereis | T(V) | =Ty |+ | T, | +

E+1 . k41
TS i POY A Ty i = [PV |+ g After
- Tk —5
substituing we have u(V) = 5 - From lemma 11 and the fac? Vv
Tk —5

being an arbitrary good selection it follows that min {u(W)} = -

b
Wey, [} -

. Tk
According to lemma 10 thereis | (/| = i—o-w , which is a contradiction.

By this assertion the theorem is being proved.

It remains a problem how to find out the description of k-graphs

1.

—5
of ——k—éfA vertices. No other such graphs than the graphs from lemma 9

have been found by the author. There is a probability these graphs are
determined univocally.

REFERENCES

[1] Neuman F.: On a certain ordering of the vertices of a tree, Cas. pro pést. mat.,
89 (1964), 323—339.

[2] Neuman F.: On ordering of infinite trees, Cas. pro p&st. mat., 91 (1966),
170—177.

[3] Ore O.: Theory of graphs, Russian translation, Moscow 1968.

[4] Sekanina M.: On an ordering of the set of vertices of a connected graph, Publ.
Fac. Univ. Brno, No. 412, 137—142 (1960).

[5] Sekanina M.: On an ordering of the vertices of a graph, Cas. pro pést. mat., 88
(1963) 265—282.

Department of Mathematics
J. E. Purkyné University, Brno
Czechoslovakia



		webmaster@dml.cz
	2012-05-09T14:07:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




