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ON T H E E X I S T E N C E OF SOLUTIONS OF CERTAIN 
N O N L I N E A R EQUATIONS OCCURRING IN T H E 

TRANSFORMATION T H E O R Y OF A L I N E A R 
SECOND ORDER D I F F E R E N T I A L EQUATION 

W I T H COMPLEX VALUED C O E F F I C I E N T S 

M. R A B , BRNO 

(Received February 6, 1970) 

In the paper [1], J. B a r r e t generalized the modified Pri i fer trans­
formation to the complex differential equation 

(1) [p(x)y'Y + q(x)y = 0, 

where p(x) = Pi(x) + ip2(x) ^ 0, q(x) = qt(x) + iq2(x) and each of the 
functions px, p2, qlt q2 is a continuous real function on the half-line 
J = <a, oo). The role of trigonometric functions was played here by the 
functions s = s(x) and c = c(x) which form a solution of a system of 
differential equations 

( 2 ) *' = *(*) C, 
c' = — h(x) s, s(a) = 0, c(a) = 1, 

where h(x) eO°(I) is a suitable complex function and the bar denotes 
a complex conjugate function. Note that for h(x) real, the solution of (2) 

X X 

is s = sin f h(t) &t, c = cos fh(t) dt. This suggests an investigation of 
a a 

the corresponding complex solution (s(x), c(x)) of (2) when h is complex; 
these functions satisfy identities and inequalities analogous to those of 
the real sines and cosines, for example, the sum of the squares of the 
magnitudes is identically one. This boundedness property is useful 
in the applications. 

Now, suppose y(x) to be a nontrivial solution of (1) such that y(a) = 0 
and there exist complex functions Q(X) 7*= 0, w(x) =£ 0 of class C1 and h(x) 
continuous, such that 

n) y(x) = Q(x) 6(X), 
[6) p(x) y'(x) - w(x) Q(X) e(x). 
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Then the functions Q, W and h satisfy 

(4) ^ ( ± - ± ) - * c c Q , M=mm*o, 
\p wj w w(a) 

k = ±(±tíi + ±M) + 
Q \ p W f 

w 
(5) ћ = -^- j ~ cč + -^- 55) + — sc. 

In the paper [1], the existence theorem for this system is proved for 
each non-zero function w of class C1. The method is that of successive 
approximation and in several lemmas establishes a Lipschitz condition 
for the system. The main result guarantees that every solution y(x) of (1), 
y(a) = 0, y'(a) =fi 0 can be considered in the form (3) where Q and h 
are suitable solutions of (4), (5). 

In a similar manner it can be shown that every solution y(x) of (1), 
y(a) ^ 0, y'(d) = 0 is 

( 6 ) y(x) = o(x) c(x), 
p(x) y'(x) = a(x) v(x) s(x), 

a(x) -^ 0, v(x) -7-: 0; a, v eCx(I) if and only if the functions a and h 
satisfy the equations 

(?) 

(8) 

( V ů \ v' 1 a8$t a(a) = ^ ( a ) -^ 0, 

_ - a l q . v \ v' 
ji = i — ca -| s$\ se, 

a \ v p I v for all x ^ a. 
Furthermore, by analogy with the real case it can be easily verified 

that the fundamental system of solutions of (1) is 

(9) yx = r(x) s(x), y2 = r(x) c(x), 

r(x) -7-0,r6 Cl(I), pr' € Cl(I) if and only if the functions r and h satisfy 
the equations 

(10) (pryr + q { x ) r 2 = l 9 

( П ) 

pr2 

1 
pr2 

for all x "̂  a. 
The following theorems guarantee the existence of solutions of the 

systems (4), (5); (7), (8); (10), (11). The proofs are simple and will be 
omitted here. 
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Theorem 1. Let w(x) -7̂  0 be an arbitrary complex-valued function of 
class Cl(I) and let Q0 be any non-zero constant. Let y = y(x) be a solution 
of (I) defined on I and satisfying initial conditions 

Define 

y(a) = 0, y'(a) 
w(a) Q0 

p(a) 

X 

( / • 

лм - P° w ( a ) <>™ í f (wy)'Щ ~ » ' 
Q\X) — ЄXp | 

гv(ж) 1 
Mŵ íZ + 2 W 

ф ) = 

ф ) = 

У(s) 

e(*) ' 
fl(aQ g'(g) 
г#(#) £(#) 

TAew £&e function Q(X) is of class C1, satisfies (4), Q(a) = g0 and (5, c) is 
a solution of the system (2), where h(x) is defined by (5). 

Note that 
WWQQ = wwyij + ppy'§', 

so that 
12 

Ѓ I2 = I У I2 + 
2>У 
w 

Theorem 2. £e£ v(a:) -?-= 0 be an arbitrary complex-valued function of 
class CX(I) and let a0 be any non-zero cdnstant. Let y = y(oc) be a solution 
of (I) defined on I and satisfying initial conditions 

y(a) = a0} y'(a) = 0. 
Define 

, ч a0v(á) 
Ф) = — Г T " e x P v(x) 

x 

1C (yyY n - §ypy' \ 
\) vvyg + ppy'g' ] 

s{x) = ?ЏШ, 
v(x)a(x) 

c(x) УW 
a(x) 

Then the function a(x) is of class Cl> satisfies (7), a{a) = a0 and (s, c) is 
a solution of the system (2) where h(x) is defined by (8). 
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Note . The real generalized Priifer transformation is investigated 
in [2], [4]. 

Theorem 3. Let rQ =fi 0, r'0, x =/-= 0 be arbitrary constants. Let u, v be the 
solutions of (I) satisfying initial conditions 

x 
u(a) = 0, u'(a) = r0p(a) 

v(a) = r0, v'(a) = r0. 

Then the function 

(12) r(x) = r0 exp 
í f u'u + v'v \ 
\] UU + VD \ 

is a solution of the differential equation (10) on I satisfying initial conditions 

r(a) = rQt r'(a) = r'0. 

uix\ vix\ 
The pair of functions s = ——, c(x) = —— represents a solution 

x 
of (2) where h(x) = pr2 

Note . If the functions p, q are real, the existence of the solution of 
the equation (10) defined for all x ^ a is proved in [3], [5]. In this case, 
the formula (12) simplifies to 

Ңx) = ГQ]/ U2(X) + v2(x). 
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