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MONOTONIC PROPERTIES OF ZEROS AND EXTREMANTS
OF THE DIFFERENTIAL EQUATION y" 4+q(t)y =0

JaroMiR VOSMANSKY, Brno
In honour of the 70t birthday anniversary of Prof. O. Bordwha.
(Received January 23, 1969)

1. The question of the distribution of zeros of solutions of the linear
differential equation of the 2nd order plays an important role and has
been studied by many authors. At the last time, by means of methods
elaborated by O. Boruvka ([1], [2]), several problems of this kind have
been solved. There are given certain properties of the distribution of
zeros of oscillating solutions of the linear differential equation

(0.1) ¥y +qt)y =0

and all differential equations of the form (0.1) (thus all continuous
functions ¢(t)) the solutions of which having the required properties are
to be determined (see e.g. [7]). The already mentioned methods, however,
are not suitable enough for the investigation of sequences of zeros of
solutions of the concrete equation (0.1).

Lee Lorch and Peter Szego have deduced a simple, sufficient condition
for the monotonicity of order » in the sequence of differences of zeros
of any solution of the equation (0.1) ([5]), which they later formulated
on the basis of Hartman s paper [3] directly for the function g¢(t) ([6]).
In the paper [10] it is shown that the same condition is a sufficient one
also for the monotonicity of order n — 2 of the sequence of differences
of extremants of any solution of the equation (0.1).

This work studies more completely the sequences {ty} of zeros of
solutions of the equation (0.1), compares it with the equidistant sequence
in the case of the equation (0.1) being oscillatory and the function ¢'(¢)
being monotonic of order n. Further there are studied sequences
{Tx —tx}, where {Tx} or {tx}, respectively, denotes the sequence of
consecutive zeros or extremants of any solution of

0.2) Y Q)Y =

in the case of function [g(¢) —@(t)] being monotonic of order n + 1.
The mentioned results enable to divide all equations of the form (0.1)
onto the classes consisting of the equations which have “asymptotically
equal” distribution of zeros.
In §6 the achieved results are then applied to the Bessel equation
for || 2 1/2. In spite of these results being possible to be applied to
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a number of equations of the similar type, in this case the Bessel
equation was chosen from this reason that its theory was considerably
worked out and application is thus sufficiently telling. Besides the
number of new results for the Bessel functions, some known properties
of the Bessel functions, the direct derivation of which reaches far to the
theory of the Bessel functions, follow from the particular theorems,
whereas they are deduced, in such a way, relatively simply as the
properties of solutions of the equation (0.1).

2. The extremant of the function y(¢) € (', is meant each number #;
where the function y(t) assumes the locally extreme value (only proper
local extremes are considered).

The function F(t) is said to be of the class My(a, b) or monotonic
of the order » in (a, b) (see [3], p. 164), if it has n (» = 0) of continuous
derivatives F©@, F', ..., F" satisfying

(0.3) (—1)i FO(t) = 0 for te(a,b) i=0,1,.., n

If the preceding inequalities are fulfilled for ¢ = 0, 1, ... then the function
F(t) is called a complete monotonic in (a, b) and is denoted by F(t)e
€ M,(a, b). The symbol M,, denotes My(0, c0).

The function F(t) is called the function of class My m(To, o) if there
is F(t) e Mp(To, ) and F(t) has for ¢ > T, m derivatives for which
there hold

(0.4) F@ () -0 for T — oo, 1=0,1,..,m
(Evidently F € Myo(To, ) implies F e Mpyn_1(To, 0) for = = 1.)
Analogously My, = Mpym(0, 00).

Further let {tz} denote the sequence and A47#; an n-th difference of the
sequence {f}, so that

(0.5) A%, =t Aty =ty — g, ..., A" = Ay — A7t
k=0,1,2,...,2=12,..

The sequence {f} is called monotonic of order = if

(0.6) (—1)i Al = 0 k=01,..,:=12,..,n

If there is n = oo then the sequence {t;} is called a complete monotonic.

The notion of the sequence of zeros, resp. of extremants of the solution
y(t) is understood any increasing sequence of consecutive zeros, resp. of
extremants of the solution y(¢). In all the work, provided it is not
explicitly mentioned otherwise, we suppose ¢ > 0.

3. If z(t), y(t) denotes a pair of independent solutions of the equation
(0.1) and w = xy’ — 2’y = const £ 0, it is possible, by the transforma-
tion
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0.7)  yit) =[O u(s), () =v(t),  v(t) =at) + y3(),

to transform the equation (0.1) onto the equation with constant coef-
ficients

(0.8) w"(s) + wu(s) =0

([21, p- 229; [5], p. 59.)

Further it is known that, under the supposition of 0 < g(o0) < 00,
q' € M, (n = 0), the equation (0.1) has such a pair of solutions z(t),
y(t) to any constant ¢; > O that for v(t) = 22 + y2 there holds [v(}) —¢i] €
€ My, ny2- The function v(t) is determined uniquely. The triad 22, zy, 32
denotes then a fundamental system of solutions of Appel’s equation

(0.9) v 4 4q(t) v +2¢'(t)v =0

which has a unique solution v(¢) of the already mentioned properties
([3], p. 182).

4. In this work there is substantially made full use of theorems proved
by P. Hartman, Lee Lorch and P. Szego, which we mention, even
though in a little adapted form.

Lemma 0.1. ([3] Theorem 12.1,, 12.2,,, p. 171)

Letn = 0, k = 1 and let the following conditions are fulfilled

«) q(t) possess a derivative q'(t) of class My, 0 < g(o0) < o0, f(t) €
€ Mp,1,0 and g;(t) € My, forj =0,1,...,k—1

Further let there exist positive continuous functions &(t), ..., ex(t) such
that for t — o0 and m =1, ..., k there holds

) J sm=1[q(s)]t F(s)ds=0(em(?))
) 5; [ smfg(s)] giene) ds=o(em(®)
j=01
Then the differential equation
k—1
(0.10) v(&+2) |- q(t) o) — 2 (—1)7+E gy(t) v = (—1)E f(2)
j=0

has a unique solution v = v(t) of class Mn k,nik+2, satisfying

0.11)  v(t) = O(exy(t) as t>o00, J=0,1,..,k—1

Remark 0.1. If we choose g(t) = t/-* for j =1, ..., k then the condi-
tions f), y) turn into the conditions
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B) | [y [T dt | < oo

Y) [ 1g0 [g+H) | < o for j =0, k—1.
The solution v(t) satisfying v(t) € My, k,n k.2 is, in this case, unique.

Lemma. 0.2. ([5], Lemma 5.1, p. 64)

Let an open interval I of the wvariable s be mapped onto an open
interval Iy, resp. I by a mapping t'(s) = v(t), resp. T'(s) = V(T'), where
o(t), V(T') are the given positive functions such that v®(t), V&)(T) exist
tn an open interval Iyp = I, 0 Ip. Further suppose that the inequalities

(0.12) (—1)t VO(T) 2 (—1)i o0(t) > 0 i=0,1,...,n

are fulfilled for t, T € Iy, where t, T in (0,12) correspond to the same
value s. Then

(0.13) (—1)¢ TG+ (s) = (—1)¢ t<i+1>-(s) >0 1=0,1,...,n
for sels.

Remark 0.2. ([4], p. 70, Lemma 2.2, p. 58)

Lemma 0.2. remains valid if we replace, in the right part of the
inequalities (0.12) and (0.13), the sign ‘>’ simultaneously by the sign
“>". Similarly the sign “=" in the left side of the inequalities (0.12)
and (0.13) may be replaced at the same time by the sign *“> ", resp. “="".

In addition to it we mention some simple properties of the monotonic
functions of the order », more often used in the following.

. Lemma 0.3. Let [f(t) —cle Mno (n = 1), where 0 £ ¢ < 0 and
f'@t) £ 0 for t e (0, c0). Then

(0.14) (—Lifo@) >0 i=0.1,...,n—1

Proof: Suppose that there exist the integer N < n —1 and the
number & > 0 such that f™)(&) = 0. Because the function (—1)@).
fN(¢) is non-negative and non-increasing, f(N)(¢) = 0 holds for ¢ > &.
Consequently, on the interval (&, oo) there is f(t) polynomial of the
degree maximum N — 1. Because of [f(t) —c] e Mp,o there is f(o0) =
¢ < o0. Therefore it is necessary f(t) =c¢ for ¢ 2 & which is in
contradiction with the supposition f'(f) 7 0. This proved the lemma.

Remark 0.3. If there is » =0, ¢ € M,, ¢'(§) =0 (£ > 0), then
equally ¢'(t) = 0 for ¢ > & and for the solution v(t) € My, of the equation
(0.9) there holds v(t) = const. for ¢ = £. Similarly if there is v(t) =
— 22 + y? = const. 5 0 fort = &, then ¢(t) is also a constant ([5], p. 72).
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I. FUNCTION o)

As it was stated, if z(t), y(t) denote two linearly independent solutions
of the equation (0.1), then 22, zy, y? form a fundamental system of
solutions of equation (0.9). We prove now the existence of the integral
v = v(t) of equation (0.9), which is of the form v = 22 4 y2 and fulfils
the second part of the inequalities (0.12). From the properties of the
function »(t), namely with regard to the transformation (0.7) it is
possible to deduce the distribution of zeros of solutions of (0.1).

Lemma 1.1. Let g(t) possess a derivative ¢'(t) of class My (n = 1),
q'(t) #0 for te(0,0)0 < g(0) < 0 and c¢; >0 be an arbitrary
constant. Then the equation (0.1) has a pair of solutions z(t), y(t) such
that

(L.1) v(t) = 2%(t) + y2(t) > O
satisfies

(1.2) [o(t) — 1] € Mn,ns2

(1.3) (—1)f o@D > 0 1=0,1,...,n —1.

The pair of solutions (x ,y) is unique up to their replacement by (ax -+ by,
cx + dy), where a, b, ¢, d are constants such that a?> + ¢z =02 +d? =1,
ab 4+ c¢d = 0.

Proof: The equation (0.9) fulfils the suppositions of Lemma 0.1 and
P. Hartman has shown ([3], p. 182) that this unique solution v(t) € M,
of the equation (0.9) is of the form (1.1) inclusive of uniqueness and
conditions for a, b, ¢, d. It remains to prove the validity of the inequality
(1.3). This, of course, directly follows from (0.9) and lemma 0.3 because
q'(t) # 0. :

It is necessary to know the value of the Wronskian w = zy’ — 'y for
every transformation function v = a2 + ¢2 in order that we may study
the transformation (0.7) in more details.

Lemma 1.2. Let q(t) possess a derivative q'(t)e M, (n = 1) and
0 < g(o0) < 0. Let (x, y) denote a pair of solutions of the equation (0.1)

satisfying
(1.4) i v =2a% 4 y2, [v(t) —c1] € My pi2-

If w(x,y) = xy’ — 'y denotes their Wronskian, then for all pairs of
solutions (x1, y1) of the equation (0.1) which satisfies

(1.5) Byt =a2 +y? =vt)eMn
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there hold
(1.6) |w(x, y) | = | w(@:, ¥1) | = w (= const)
(1.7) w = v(o0) [g(0)]! 2.

Proof: Solutions z, y form a fundamental system of solutions of
equation (0.1). Thus there hold

T = an® + a1y, Y1 = a0 + Gy
Therefore

w(@y, Y1) = Ty, — T Y1 =
= (@au® + @12y) (@218 + azy’) — (@’ + a12y’) (@217 + a2y) =
= (11022 — @12021) (Y — 2'Y) = (@11022 — @12021) W(Z, Y).
The first equality in (1.5), with regard to Lemma 1.1, implies
afl + a§1 = a,fz + aiz =1, @102 + G21022 = 0.

Under these conditions the expression (@116, — @12a;1) can assume only
the values +1, and therefore (1.6) holds.

Denote now p(t) = 22 + y2, where (z, y) denote any pair of indepen-
dent solutions of the equation (0.1). Then ¢ complies the differential
equation

(1.8) ¢" = —q(t) ¢ + w3

where w = zy’ — yx’ denotes the Wronskian of a pair (z, y). ([1], p. 201.)
Let now v(t) = g*(t). From (1.8) it follows that v = o(t) fulfils the
identity (Mamman’s identity)

(1.9) v”v—é— v'2 4 2g(t) v? = 2w2.
For the integral v(t) satisfying (1.4), however, there hold v(o0) = ¢y,

v'(00) = 0, v"(00) = 0 and therefore from (1.9) there follows (1.7).

Lemma 1.3. Let q(t) possess a derivative ¢'(t) € M, and 0 < g(o0) < o0.
If v(t) denotes the solution of (0.9), for which [v(t) — ci] € M3 holds, then

the integrals
0

(1.10) [ la(e0) —a®1dt, [ [w(t) —v(c0)] s
converge or diverge at the same time.

Proof. The identity (1.9) is possible to be written in the form

(1.11) qmwm~W=§me—%wmw»



43

By the integration (1.11) we get, for »(f) € M, and ¢, sufficiently large

oo}

= f [g(s) v2(s) —w?] ds = % [v(s) v' ()] — % /v(s) v"(s) ds
¢ t

(1.12)

Because [v(t) —¢;] € M ;3 we have

(1.13) 0= [ o(s)v"(s) ds £ o(t) fco v"(s) ds = —(t) v'(f).
t t

From (1.12) and (1.13) it follows that | J(¢) | £ —wv(¢) v'(f) < oo that is
integral J(¢) is convergent.
On the other hand there identically holds

(1.14) q(?) [02(t) —v*(00)] = [g(00) —q(#)] v*(00) +- q(t) v2(t) — g(c0) v*(c0)
Hence using (1.7) we get

(1.15) v(t) — v(00) = v2(00) [g(c0 )——q ]{q [v(t + v(c0)]}1 4
+ [q(t) v2(t) — w?] {q(?) 00)]}-1.

Since for t > ty, to sufficiently large

(1.16) 0 = 2q(to) v(c0) = q(¢) [v(t) + v(0)] = 29(00) v(to) < 0
holds, by the integration (1.15) in the interval (¢, o0) we get

0= tf [v(s) —v(c0)] ds < [2g(f0)]~1 v(c0) tf [q(00) — gq(8)] ds +
(L.17) + [2q(to) v(0)]7* | J(¢) |.
If there is 0 = f [g(c0) —g(s)] ds < oo, then with regard to the fact

that the lntegr&l J(t) converges, also the integral f [v(s) —v(o0)] ds
converges.
Similarly

J [v(8) —v(00)] ds 2 v¥(c0) [2q(e0) v(to)]* [ [g(o0) —g(s)] ds —
(L. 18) — [2g(00) v(to)]* | J(?) |.
If f [g(c0) — gq(s)] ds diverges, then with regard to the convergence of

the integral J(¢), the divergence of the integral f [v(s) —v(o0)] ds follows
from (1.18). This proved the Lemma.
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1I. THE DISTRIBUTION OF ZEROS OF SOLUTIONS
OF THE EQUATION (0.1)

We compare now the sequence {tx} of zeros of any solution of (0.1)
with an equidistant sequence. To this purpose we first deduce the lemma
proving necessary properties of the mapping (0.7).

Lemma 2.1. For the functions s(t), S(T), let S(To) = s(to) =0 hold,
where 0 < Ty < ty < 00 and
(2.1) o S@) >s(t) >0 &E)>8@E)>0 s"(t) = 0forte(0,0).

Let further hold
0 £ lim [S() —s(t)] =4 < oo, 0 < §'(0) =8'(0) =a < ©

8—> 0
and let t(s) = s(t), resp. T(S) = S—YT) denote an inversion function
to the function s(t), resp. S(T). Then

(2.2) t(s) > T(s) >0 for se(0,00)

2.3) lim [t(s) — T(s)] = — lim [S(T) — s(T)] = %
s—00 a T a

holds.

Proof. Since 0 < s'(c0) = 8'(0) < 0 and consequently s(c0) =
= S(00) = 0, the functions #(s), 7'(S) are defined for s, S € (0, o0).
Since S(T) = s(to) = 0 there is Ty = T'(0), t, = #(0) and with regard to
the fact that ¢, > Ty > O there holds 0 < 7'(0) < £(0). From the con-
tinuity of functions 7'(S), t(s) it follows that T'(s) < t(s) for s € (0, &)
where & > 0 is a suitable number, or £ = co. Suppose that such £ <
exists that T'(§) = (&) =n (n < oo, because 0 < t'(00) = T"(00) < 00).
Then it holds & = S(T'(§)) = s(£(£)), thus there exists the number# < oo
such that S(n) = s(), which is in contradiction with the supposition
S(t) > s(¢) for t € (0, 00). Because T(0) = Ty > 0 and 7'(S) is increasing,
(2.2) holds.

Let ¢, T correspond to the same value s, resp. S. Since s"(t) = 0,
fors 2 0andt¢ = ¢y, T = T with regard to (2.1), it holds

(2.4) s'[T] = [S(T) —s(T)] [4(S) —T(9)]* = '(8).
Since ¢, T' — oo for s - oo and s'(00) = a, from (2.4) there follows
(2.5) [S(T) — (T [#(S) — T(S)]t - a for s > o0 |

and hence (2.3). By that the lemma is proved.

Now we prove the first result concerning the distribution of zeros
of the equation (0.1), which is, at the same time, the main result of this
paragraph.
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Theorem 2.1. Let g(t) possess a derivative ¢'(t) e My (n 2 1), ¢'(t) # 0
for te(0,0) and 0 < g(0) =a2 < oo (a > 0). If {t} denotes the
sequence of zeros of any solution of (0.1), then there exists such number
M > 0 that

(2.6) (—1)i A[M + kna —tx] > 0; (—1)yw+H AH[M + kna — ] = 0
k=0,1,...,2=0,1,...,n
(2.7 {M + kna —tx} — 0 for k-

hold if and only if f [g(c0) —q(t)] dt converges.

Proof. The proof of the theorem is done by comparing the sequences
of zeros of solutions Y(7') of the equation

(2.8) Y"(T) + Q(T) Y(T) =0
with the sequence of zeros of a suitable solution y(t) of the equation
(2.9) y'(t) + a2y(t) = 0.

If we put 7 =1¢ and @(t) replaced by ¢(¢), the equation (2.8) will play
the role of the equation (0.1) in Theorem 2.1. Consequently, let further
{Tx} denote the sequence of zeros of any solution of (2.8) and {t} =
={M + kna} denote the sequence of zeros of any solution of (2.9).

1. According to Lemma 1.1 the equation (2.8) has solutions X(7'),
Y(T) such that for V(T) = X2 + Y2

(2.10) [V(T) —ale Mpn,2; (—1EVOT) >0, i=0,1,...,n—]1

holds.
Thus, for W = XY’ — X'Y it holds according to Lemma 1.2
(2.11) W2 = V2(0) @(0) =a?.a2 =1.

Similarly the equation (2.9) has solutions
(2.12) z(t) = alj2 8in a1, y(t) = all2 cos a1t

for which, as it may be instantly seen,

(2.13) v(t) = 22(t) + y*t) = a w=uzay —z'y=1
hold.

2. Transformations
(2.14) Y(T) = [V UBS); = T'(s) = V(T)

y(8) = all?u(s); t's) =a
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transform the equations (2.8) and (2.9) onto the equations
(2.15) U"8) +US) =0 u"(s) + u(s) = 0.

Let us choose the integration constants in (2.14) so that
T

t
d ar 1
@16  S(T) = f 7(% s(t) = / —O;=—(;(t—M)
M

o

where T > 0 is an arbitrary but fixed number and M > T, is, for the
time being, closely non-specified. Then

(2.17) Sg = 8(Tx) = s(ty) = s(M + kna) = kx = s kE=01,...

({Sk} = {sx} = {kn} are the sequences of zeros of suitable solutions of
(2.15)).

Ig. 1

Because M > T, with regard to (2.10)

. M M
dt d¢
T, M
and further
(2.19) 0<8S@)=V1) £ al =35

where equality occurs only for { = co. Thus, the function [S(¢) — s(t)]
is continuous, decreasing and positive in an interval (M, &) where

& > M is a suitable number, or £ = oo so that S(f) > s(t) > 0 for
te (M, §&).
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3. Suppose now that the integral f [@(c0) —@Q()] dt converges. Then

the integral f [at — V-1(t)] d¢t converges as well, because V(o) =a
and '

11 V() —a 1 [
(2.20) f{g——-l—/—(i)—}dt:f—ﬁzﬁ—dtggz—j[V(t)—a] at

holds, where the last integral converges according to Lemma 1.3.

M
The function S(M f [V(@)]-tdt (see (2.16)) is continuous and
increasing S(7) = 0, S(oo) = 00. Define now the function
r ! 1
2.21 M) = — ds.
(2.21) (M) Mf{a (t)}

@(M) is continuous, positive, decreasing and @(co) = 0, because the
mentioned integral converges. There exists then unique number M > T
such that S(M) = @(M), thus there exist a unique solution of the
equation
R M ©
dt 1 1
(222 = e vl

T, i
If M is the solution of equation (2.22), hence it follows

i

223) lim{ [ [V()]tdr — [ a1} dr = lim [S(t) — s(t)] = 0.

t—so T, M t—>w

If f [@(o0) —Q(t)] d¢ diverges, then according to Lemma 1.3, the integral

f [V(t) — a] dt also diverges and hence the divergence of integral (2.21)
follows. The equation (2.22) cannot be therefore fulfilled for any finite
number M.

Thus we have shown, that if and only if the integral f [@(c0) — @(¢)] dt
converges, there exists the solution M of the equation (2.22). According
to Lemma 2.1 it follows from (2.23)

(2.24) [t(s) —T'(s)] > O for s e (0, o0), lim [¢(s) —T'(s)] =0
8—»00

where #(s), resp. T'(S) denote the inversion function to s(t), resp. S(T).

Let us choose now such a solution Y(7'), resp. 7(t) of the equation
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= {M + kna} denotes now the sequence of zeros of the solution ¥
resp. §(¢). According to (2.17) there is Sy = s; = kz and since t; = #(s
Ty = T(Sk) it holds true

(2.25) M 4 kna — Ty =ty — Tx = t(sx) — T(sk)-

(2.8), resp. (2.9) that there holds ¥ (7o) = y(M) = 0 .{T%}, resp. {tx} =
(1),
(sx),

Since s —> oo for k& — o0, it follows from (2.25), (regarding (2. 24) and in
the proof introduced the denotation) the assertlon (2.6) for + = 0 and
the assertion (2.7).

4. Let us denote now
(2.26) A,F(s) = F(s +n) — F(s);  ALF(s) = AN F(s)].
According to [9], p. 73, there exists a number @(0 < @ < 1) such that
(2.27) AL F(s) = niFA(s + in@)

provided F()(s) exist in the open interval (s, s + i) and the lower
derivatives are continuous in the corresponding closed interval.
From (2.25) it follows

(2.28)  (—L) AU + koo — Tg) = (—1) Aift(s) — T(S)]
and hence, if we put i = 1 (#(s) = a)
(2.29) AM + kna —Ty) = ala — T'(kn + 70O) k=01,...

Because of T'(S) = V(T') and V(T) > a for T € (0, o), there is
A[M + kna — Tx] < 0 and (2.6) holds also for ¢ = 1.

5. Let now ¢ =23 ..., n. Because of t@ (s) = 0 for s > 0, from
(2.28) it follows
(—DPA(M + kaw — Ti) = (—n)i~ TD(kx + 7i0) =

(2.30) = (—m)i-1 [T((kn + i?‘[@)](i—]) — (_n)i—l V(i~1)(1;)

where 7€ (T, Tk,1) is a suitable number. According to Lemma 1.1,
however, there hold

(—DEIVeT) > 0; (—1)» V(T)= 0, i1=01...,n—1 T>0
and thus
(=1 AUM + kan — Tx] = (—am)i~t Vi-U(g) > 0 1=0,1,..., n

(—1)n+1 An+1[M + kasw — Tx] = 0.

Hence there follows, with regard to the denotation introduced in the
proof, the validity of (2.6) for¢ = 2,3, ..., n
By this the proof is finished.
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Corollary 2.1. If the conditions of Theorem 2.1 are satisfied, then to
any numbers Ty, o€ (0, 00) there exists M > O sufficiently large such
that there holds (2.6) and

(2,31) {M + kna —tx} — o for k— oo

if and only if the integral f [g(o0) — q(t)] d¢ converges.
Proof. If M is the solution of (2.22), we may see from the proof of

the theorem that, if we choose M = M + «, then it is necessary to
replaced (2.7) by (2.31).

Remark 2.1. Some steps in the proof of Theorem 2.1 are mentioned
analogously to the proof of Theorem 5.1 in [5]. This theorem, however,
cannot be used because of having stronger suppositions and in this
direction substantionally weaker assertion.

Remark 2.2. Provided we omit the condition ¢'(f) = 0 in Theorem 2.1,
the inequalities in (2.6) pass to non-sharp. It may be directly seen from
the proof of the theorem.

III. FUNCTION z(t) = V() — w(?)

This paragraph is devoted to the “monotonic dependence’ of the
function v(t), from the paragraph 1, upon the “monotonic change” of
the coefficient ¢(t) of equation (0.1).

Lemma 3.1. Let g(t) possess the derivative q'(t)e Mp,q (n = 1)
0 < g(o0) < 00, Q(t) possess the derivative Q'(t)e Mp, [q(t) —@Q(t)] e
€ Mp,1,and c = 0 be any constant. Furthermore, let v(t) be any function
defined by the relation (1.1) satisfying v(t) € Mp,. (According to Lemma
1.1 this function really exists.)

Then the differential equation

(3.1) & 4Q0) 7+ 2Q/(t) 2 = — F(1)
where

3.2) F(t) = 4v'(t) [Q(t) — q()] + 20(8) [Q'() —¢'(8)]
has a unique solution z = z(t) such that

3.3) [2(t) — c] € Mau,nya2-

Proof. We are going to show that, for the equation (3.1), the sup-
positions «), §'), ') of Lemma 0.1 and Remark 0.1 are fulfilled, if ¢(t)
is replaced by 4Q(t), go(t) = 2Q'(t), f(t) = F(¢), k = 1 and » is replaced
by n — 1.
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1. From suppositions of the lemma instantly follows that the condi-
tion «) is fulfilled, provided we show that F(f) € My 0.

For any functions ¢ (£) € M,, p () € M, ther holds with regard to
the identity

(3.4) [@(t) . p(t)]® = Z (L) @®(t) . pli-R)(z)

that the product ¢ . v is also a function of class M.

Since —(Q —q)e Mp,1, —v' € My, there holds [v'(Q —q)]e M,.
Furthermore there holds v'(c0) = 0, 0 < ¢(¢) —@(t) < oo for ¢ > 0 and
thus [v'(Q — g)] € M.

Analogously for the second member of the expression (3.2) there
holds [v(Q — ¢')] € M0, becausev e My 1, (@ —¢q') € My, 0 < v(o0) <
< oo and @’(o0) = ¢’(00) = 0.

Thus, for the function F(t) defined in (3.2) there holds F(t) e My
and the condition «) is fulfilled.

2. We are going to prove now the fulfilment of conditions §’). Let us
choose t, > 0 so that g(t) > 0, @(t,) > 0. Then for ¢ € (¢, o0)

0 = [q(t) — QM [QM)] = [g(t) — Q(to)] [Qt)]* =k < o0.

holds.
Therefore
0= — [v(t)lg) — QI QW™ dt < —k [ /() dt =
(3.5) - = k[v(to) — v(0)] < oo.
Analogously
0< f (t) [Q'(t) —¢'(t)] [Q®)]* dt <
(3.6) < v(to) [Qta)] / Q) —q®)]dt < o

From (3.5) and (3.6) it follows
,f F() [Q@)] dt = 4 f V() [Q() — g(¢)] [Q()]* dt +
+2 f 1) [Q(t) — g()] [Q(t)] 1 ¢ < oo

and the condition f’ > is therefore fulfilled.

Since [ Q'(t) [Q(t)] dt = [Ig @(t)]a < oo, there is also fulfilled the
condition y’).
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3. According to Remark 0.1 the equation (3.1) has then a unique
solution z = 2(t) of class My »,.. Because of @'(c0) = 0, there exists,
to any constant ¢ > 0, a unique solution z = z(t) of (3.1) for which
[2(t) —c] € My, pn,2 holds. It follows from the equation (3.1) by introducing
a new dependent variable z(t) — c. By that the lemma is proved.

Lemma 3.2. Let the suppositions of Lemma 3.1 be satisfied and le
further

(3.7) q'(t) # 0, [g(t) — Q)] # 0 for te (0, o).
Then for each solution z(t) of (3.1) satisfying (3.3) there holds
(3.8) (—1)i200) > 0 1=01,...,n—1.

Proof. Suppose that such a number & > 0 and such an integer
N £ n—1 exist that for z(t) satisfying (3.3) 2™ (&) = 0 holds. Since
0 < 2(00) = ¢ < oo, it holds 2(¢) = ¢ for te (§, ) (see the proof of
Lemma 0.3).

By a substitution to the equation (3.1) we get

(3.9) 20z = —40'(Q —q) — 20(@ —¢')

which leads to a contradiction because the expression 'z is non-negative,
while the right side of (3.9) is negative for t e (0, c0) with regard to
Lemma 1.1. This proved the lemma.

Remark 3.1. Conditions (3.7) of Lemma 3.2 may be replaced by any
condition, guaranteeing the invalidity of (3.9). If there is, e.g., ¢'(t) =0
for t € (&, o), then it is sufficient to suppose @'(t) % 0 for t € (§, 00).

We are going to prove now two theorems which, although having
been desived because of playing a substantial role in the proof of
Theorem 4.1, are not without interest by themselves.

Theorem 3.1. Let q(t) possess a derivative q'(t) € My (n = 1), Q(¢)
possess a derivative Q'(8)e My, [qt) — Q)] € Mp1, 0 < g(0) < o0
and ¢; > 0, ¢ = 0 be arbitrary constants. Then (0.1) resp. (0.2) has a pair
of solutions [x(t), y(t)], resp. [X(t), Y (¢)] such that
(3.10) v = 2t) + y(t) V= X%t) + Y4
satisfies

[V(E) —v(t) —cl € Mpn,2, v(00) =
(3.12) (1) vty =z (—1)yio@() 2 0 )
The pair of solutions (%, y) of (0.1), resp. (X, Y) of (0.2) is unique up to

their replacement by (a1% +b1y, cix +d1y), resp. (a2 X +-6,Y, X +d,Y),
where ag, bs, ¢, di (1 =1,2) are the constants such that a? + ¢? =

=b§+d§=1,a4b¢+0tdi=0~

Cy
0,1,...,n, ¢t > 0.
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Proof. Let ¢, > 0, ¢c; =¢; + ¢ > 0 are any constants. According to
[3], p. 182 (see Lemma 1.1) the equation (0.9) has a unique solution (¢)
and the equation

(3.13) V" +4Q@) V' +2Q't) V =0
a unique solution V(¢) such that
(3.14) [v(t) —c1] € Mpi1,nys [V(t) —c2l € M2

thus v(00) = €1, V() = ¢,. Moreover, the solutions v(t), V(t) are of the
form (3.10) and the pairs (z, y), (X, Y) are unique up to their replace-
ment by the already mentioned linear combination. There exist then
pairs (2, y), (X, ¥) such that for »(t), V(t) defined in (3.10) there holds
(3.14). Denote now

(3.15) () = V() — v(t)

where V(t), resp. v(f), denotes any solution of (3.13), resp. (0.9). The
function z(f) defined in (3.15) is a solution of the equation (3.1) and
reversely, all solutions of the equation (3.1) are of the form (3.15).

Let us choose now ¢; > 0 arbitrarily and »(¢) firmly such that the first
relation of (3.14) hold. According to Lemma 3.1 there exists, to any
constants ¢ = 0, a unique solution z(¢) such that [2(!) —c]e€ My n,2-
Therefore exists a unique solution V(¢) of (3.13), for which (3.11) holds
true. Because [v(t) —ci]€ My, 1,ny3, it holds V(o) = v(e0) 4 ¢ =
=¢; +¢=c¢;>c¢ =0 and at the same time (3.12). Hence it follows
that this solution V(t) is of class M, and with regard to the uniqueness
of the solution of (3.13) is V(¢) just that solution which fulfils the second
of the relations (3.14) and is thus of the form (3.10). By this the theorem
is proved.

Remark 3.2. If, in addition to the condition of Theorem 3.1 ¢'(¢) 5= 0
and ¢(t) 5 Q(t) for ¢ € (0, c0), then the inequalities (3.12) may be replaced
fors = 0,1, ...,n — 1 by sharp ones so that

(3.16) (—1)® V() > (—1)ioD(t) >0 ¢ =0,1,...,n—1 te(0, o)

holds.
It follows directly from Lemmas 1.1 and 3.2.

Remark 3.3. If in addition to the conditions of Theorem 3.1, we shall
suppose only ¢'(£) = 0 for t € (0, c0), then it is possible to sharpen the
inequalities (3.12) only partially so that they will be of the form ‘

(3.17)  (—1EVO@M) 2 (—1)ivd(e) >0 i =0,1,..,n, te(0 ),
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Remark 3.4. That the inequalities (3.12) may be of the form
(3.18) (—1)f V() > (—1)tod(t) 20 ¢=0,1,...,2—1, te(0, o0)

it is sufficient to demand—in Theorem 3.1, moreover—any condition
guaranteeing the invalidity of (3.9), for example the condition from
Remark 3.1.

Theorem 3.2 Let the function q(t), resp. Q(t), possess a dertvative
qt)eMy (n 2 1), resp.Q'(t) € My, [q(t) — Q)] € Mp,1 and 0 < g(c0) =
= Q(0) < 0. Then for functions V(t), v(t) defined in (3.10), satisfying
(3.14) for ¢; = c,, it holds true that the integrals

(3.19) [ g —Qwide [ [V(e) —v(e)] e
converge or diverge at the same time.

Proof. For ¢’ (t) = O the assertion of the theorem is included in
Lemma 1.3. Theorem 3.2 may be proved analogously and therefore the
proof is given more briefly. Identity (1.9) for the functions v(¢), V(t)
defined in (3.10) may be written in the form

1 3
2 _ 2 — ne ”
(3.20) qQV w 1 (v") 7} v
(3.21) QV2— W2 = i (vvyy ——il |44

where w = zy’' — ya’, resp. W = XY’ — Y X' denote the Wronskian of
solutions z, y, resp. X, Y of (3.10). Consider further only such functions
v(t), V(t) which satisfy (3.14) for ¢; = ¢,, thus v(0c0) = V(0).

According to (1.7) there holds

(3.22)  [w].[g(00)]12 = v(00) = V(o) = | W | [@(c0)] /2

and since ¢(o0) = @Q(o0), according to the supposition of the theorem
it follows from (3.22)
lw| =Wl

lw|=[W]|.
By subtraction of (3.20) and (3.21) we get after forming

g —@) = (V=0 [Jo +0w+ 1] = vour — v +

(3.23) + 71— (" — VTV’
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Let us integrate the identity (3.23) in the interval (£, c0) where ¢ > 0
is sufficiently large. Evidently it holds

(3.24) | [ oo —VPyds| = — PV | < o
t

0

(3.25) L[V —V7)ds| < | V() [ (0" —V")ds| < o
t

t
and further

0 < lim [2 o(t) + Q) [o(t) + V(©)] =

t—>w

/
(3.26) = Q(00) [o(c0) + V(c0)] =2 [w]| [Q(w)]l <o

Considering the fact that the integrals (3.24) and (3.25) converge,
0 < v2(00) < oo and (3.26) holds, in the same way as in the proof of
Lemma 1.3, the assertion of the theorem follows from (3.23).

1V. SEQUENCES OF ZEROS OF THE SOLUTIONS OF EQUATIONS
(0.1) AND (0.2)

The following theorem compares the sequences of zeros of the solutions
of two differential equations. It describes the sequence of differences of
corresponding zeros of the solutions of equations (0.1) and (0.2).

Theorem 4.1. Let q(t), resp. Q(t) possess a derivative ¢'(t) € Mp,1
(n 2 1), resp. Q(t) € My, 0 < g(00) = @Q(00) < 0, [g(t) — Q)] € Mny1
and q(t) % Q(t) for t (0, o). Let {t;}, resp. {Tx} denote a sequence of
zeros of any solution of (0.1), resp. (0.2).

Then for any fixed choice of Ty > O there exists w to sufficiently large
such that there holds

(—D)idite —Tx) > 0, (Dt Anti(l, —Tg) 2 0,
(4.1) t=0,1,...,n k=0,1,2, ...
(4.2) (tg — Tx) = 0 for k— o0

if and only if integral f [q(¢) — @(t)] dt converges.

Proof. If ¢'(t) = 0, then (4.1) and (4.2) follow from Theorem 2.1.
Theorem 2.1 is consequently included as a special case in the theorem 4.1.
We shall further suppose that ¢'(t) % 0 for ¢ € (0, o). (The case ¢'(t) =0
for te (&, ©), & > 0 will be observed in the end.) The proof will be
performed similarly as in the case of Theorem 2.1.
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1. According to Theorem 3.1 and Remark 3.2 the functions »(t), V()
defined in (3.10) satisfying (3.14), (3.11) and (3.16) exist to any constants
¢1 > 0, ¢; > 0. Let us choose now

e = [9(00)]12 = [Q(00)]7/2 = ¢

so that
|w]=|W]|=L
2. Transformations
(4.3) y(t) = [o()]2 u(s) t(s) = o(t)
Y(T) =V Ul)  T'(8) = V(T
transform the equations
(4.4) YO +qt)yt) =0 Y'(T) +Q(T) Y(T) =0
into the equations
(4.5) u’(s) + u(s) =0 U”(8) + US) =0.
Let us choose the integration constants in (4.3) such that
¢ T

d d
(+.6) o= [ so= [

to To




56

where T > 0 is arbitrary but fixed number and ¢, > T is, for the time
being, closely not determined. The transformation (4.3) realizes now the
one-to-one correspondence between the zeros of y(f) and those of u(s),
resp. zeros of Y(T') and those of U(S).

If {sx}, resp. {Sk} denotes the sequences of zeros of suitable solutions
of (4.5) and {tx}, {Tx} sequences of zeros of solutions of equations (4.4),
the principle members of which are ¢, 7 from (4.6), then

4.7) Sk = 8(T%) = s(ty) = sk E=0,1,...
Since V(t) > v(t) for ¢ € (0, co) and £, > T, it holds
to to
dr dr
0 to
(4.9) 0 <8 =[V(O]" = [v)] ! =5'(f) < © t € {to, )

where equality occurs only for ¢ = co. The function S(t) — s(¢) is there-
fore in the interval {¢y, &) where & > {, is a suitable number or § = oo,
positive and decreasing, thus it holds S(¢) > s(¢) > 0 for ¢t e (b, &).

3. Let us suppose now that the integral f [q(t) — @(t)] df converges.

Then the integral f {[v )]7t — [V(£)]"1} d¢ converges as well, because it
holds analogously as in (2.20)

O<j{[v O — V()] dt £ g(oo f[V ()] de

and the last integral converges according to the Theorem 3.2.

The function S(t,) = f (V)] dt (see 4.6) is for &, > To, as the

function of &, contmuous increasing, S(To) = 0, S(c0) = co. Further

on, define the function
fee]

' 1 1
o oo = [ {7 @

The function ¢@(ty) is for ¢ e (T, c0) continuous, positive, decreasing
and @(o0) = 0. There exists therefore a unique number #, such that it
holds S(fo) = @(fo), thus there exists a unique solution ¢, of the equation

: " at Y1 1
“1n Tf o= |t —va) @

o to
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If ¢, is this solution, then it follows

t t

. dr dr | .
@ {Tf vor— | | ~lmso

[ 0

s(t)] = 0.

If f [g(¢) —@Q(¢)] dt diverges, then, according to Theorem 3.2, the integral

f [V(t) — »(t)] dt also diverges and hence the divergence of the integral

f {[v@®)]t — [V (¢)]"1} d¢ follows. In this case the equation (4.11) cannot
be therefore satisfied for any finite number #,.
Thus, we have shown that the number ¢, satisfying (5.12) exists if

and only if the integral f [q(¢) — @(t)] df converges.
According to Lemma 2.1 it follows from (4.12)

(4.13) [t(s) — T'(s)] > O for s e (0, o0); lim [t(s) — T'(s)] =0
S—>w©

where £(s), resp. T'(S) denotes the inversion function to s(t), resp. S(7').
Let us choose such solutions ¥ (7), g(t) that for T, t, from (4.6) there
holds ¥(T) = 9(te) = 0; Let {T%}, {tx} further denote the sequences of
zeros of these solutions. According to (4.7) it holds with the above
mentioned choice {T'}, {tx}

(4.14) s = Sy = kn, te = £(8k), Ty = T(Sk) k=0,1,...

Since Sy — o0 for k — oo, the assertion (4.2) and (4.1) for ¢ = 0 follows
from (4.13).

4. By using the designation from (2.26) it holds
(4.15) (—1)t Aity — T) = (1) Ai[t(s) — T(sx)]-

Suppositions in (2.27) are satisfied for F(s) =#(s) —7T'(s) and @ =
=20,1,...,n -+ 1, and therefore

(4.16) (—1) Ai(ty — Tx) = (—=n)t [tD(sg + inO) — T (s + 1nO)]
i=01..,n+1, k=01..,0<6<1.
5. For already defined o(¢), V(T') it holds
(4.17) (—1) VO(T) > (—1)t o(T) > 0,
t=0,1,...,n—1, T e (0, )
(—1)n VOT) 2 (—1yo®(T) > 0, (—L)+ ow+(T) 2 0
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The function (—1)! @ (T) is in the interval (0, o) positive and for

1 =0,1,...,n —1 decreasing, for ¢ = » non-increasing. Consequently
for any numbers 7', ¢, for which 0 < 7' < ¢, it holds
(4.18; (—1) o(T) > (—1) oD(t) > 0 t=0,1,...,n —1

)i
(—1y» o®(T) = (—1)" o(t) > 0.
Thus from (4.10) and (4.18) it follows that for arbitrary 7', ¢ satisfying
0 < T < tit holds
(4.19) (=1 VO(T) > (—1)D v®(¢) > 0 t=0,1,..,n—1
(=1)m V(T 2 (—1)m vm)(t) > 0.
According to Lemma 0.2 (where I;p = (o, ), I; = (0, ©0)) and
Remark 0.2, it holds on the basis of (4.19) for arbitrary s > 0
(4.20) (—1)i TO(s) < (—1) £0(s) < 0 i=01,..,n
(—1)ntt P+ (8) < (—1)n+1 gnt1)(8) < 0
and then with regard to (4.16), the relation (4.1). Thus, in the case of
q'(t) # 0 the proof is finished.

6. Now, it remains to take a notice only of the case ¢'(f) % 0 for
te (0, ), ¢'(¢) = 0 for t € (&, o0). According to Remark 3.4, there exist
the functions »(), V(t) satisfying (3.18). Thus, (4.19) holds, where in the
right side the sign “>" is replaced by “=”. According to Remark 0.2
applied to the interval (&, c0) (4.20) holds in the form

(4.21) (—1)E TOS) < (—1)it(S) £ 0 i=0,1,..,n
(—1)n+1 Tn+1(S) < (___l)nﬂ t(n+1)(S) <0

and hence it follows, with regard to (4.10), the relation (4.1) and the

proof is finished.

Remark 4.1. If in addition to the conditions of Theorem 4.1 ¢'(f) €
€ Mp,2, then the inequalities (4.1) hold in the form

(4.22) (—=D)tdity —T%) > 0 t=0,1,..,n+1, k=01, ....
The function (—1)¢ 2@ (t) is namely decreasing also for ¢ = n so that
(4.18) is in this case of the form
(—D)io®(T) > (—1)totd(t) > 0 t=0,1,...,n
so that in (4.19) the sharp inequality also holds for ¢ = and therefore
(4.20) is of the form
(—1)E TO(8) < (—1)it®(S) < 0 1=0,1,...,n + 1.

Hence (4.22) follows.
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Theorem 4.2. Let all the conditions of Theorem 4.1 be satisfied. If {i}}
denotes the sequence of zeros of any solution of (0.1), then for any fixed
choice of Toe (0, ), x €0, 00 there exists a o sufﬁcwntlz/ large such
that there holds (4.1) and

(423) (fk —_ T}c) —a for k— o0

if and only if f [q(t) — @Q(t)] dt converges.
At the same time it is possible to admit q(t) = Q(t) # 0 for t € {f, o),
B > 0.

Proof. Let the conditions of Theorem 4.1 be satisfied and let

0 < f [q(t) —Q(t)] df < co. Let & denote the solution of (4.11) and ,
the solution of equation
D

(4.24) flio) = afg(o0)]t2 where f(io) = [ [v(r)]-tdr.

Such a number f, exists to any « € (0, 00) because 0 < «[g(0)]1/?2 < oo
and the function f(f) as a function of the variable f, is for & € {tp, o)
continuous, increasing, f(0) = 0, f(c0) = oo and is unique.

Let now
to

T,
4 A
(4.25) s = [ 5= [ v =@
: i 7y
Then regarding to (4.12)

t

to
Y A [ dr o)) _
wm o [ [ [y

T, to to
= lim [S(f) — s(£)] — a[g(00)]'/2
t—>
and thus
(4.27) lim [S(t) — s(t)] = o[q(c0)]t/2
t—>0

Consequently according to Lemma 2.1

(4.28) éim [t(s) — T'(8)] = &fg(o0)]"/? [v(00)]™! = a

and hence (4.23) directly follows.
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If f [q(t) —@Q(t)] d¢ diverges, then it may be seen from the proof of
Theorem 4.1 (part 3) that in this case the solution of (4.11) does not
exist and therefore f, satisfying (4.23), does not exist, too.

Now let g(¢) = Q(t) for ¢ € {8, ), # > 0. Then with regard to uni-
queness of the solution of (0.9) v(t) = V(¢) holds for ¢ € (8, c0). Because
of & > 0, with regard to (4.28), ¢(s) — 7T'(s) > 0 holds for se (0, 00>
and hence (4.23) follows.

Since v(#) fulfils the inequalities (4.18), (4.19) holds and thus also (4.1)
in an unchanged form.

By this the proof is finished.

Remark 4.2. If we put, in Theorem 4.2, ¢(t) = @Q(¢) for t e (0, o0),
then {fx}, {T'x} denote the sequences of zeros of the same or different
solutions of the same differential equation (0.1). Theorem 5.1 and
partially Theorem 2.1 of the paper [5] are thus included in the preceding
theorem. The part of the proof of Theorem 4.1 is mentioned similarly
as the proof of Theorem 5.1 in [5]. This theorem, however, cannot be
used because its assertion is weaker and at the same time supposes the
existence of integrals v(t), V(t) of desirable properties.

Remark 4.3. Theorem 4.1, resp. 4.2, defines the decomposition of
the set M of all functions ¢(f) such that 0 < g(00) < o0, ¢'(t) € M,
[1€ Mn,q2e Mp)] = | g1 — a5 | € M, (n = 1, fixed integer) on disjunc-
tive classes. so that, if M(go) denotes the set of all functions ¢q e IMN

equivalent to ¢, then ¢ €M(go),if and only if the integral f |q(t)—qo(t)|dt
converges. The inequalities (4.1) and (4.2), resp. (4.23), are then satisfied
if and only if the functions ¢(f), @(t) are of the same class.

V. THE SEQUENCES OF EXTREMANTS

If y(¢) denotes any solution of the (0.1) where ¢(t) € C2, ¢(t) > 0 for
t € (0, co), then the function Y(t) = y'(¢) . [¢(¢t)] is a solution of the
differential equation

(5.1) Y'(t) + Q) Y(t) = 0
where

39 1¢
(5.2) W =a—y oty

and conversely if Y(t) is any solution of (5.1), then there exists such
a solution g(t) of (0.1) that ¥(£) = [q(t)]"1/27’ () holds (see [1]).

Thus, if Tk is an extremant of the solution y(t) of (0.1), then is zero
of the corresponding solution Y () and conversely. The sequence {7}
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is therefore a sequence of extremants of some solution of the equation
(0.1), if and only it is the sequence of zeros of a suitable solution of (5.1).

Lemma 5.1. Let q(t) possess a derivative ¢'(t) € My,1 (n = 1), q(t) > 0
for t € (0, 00), g(o0) < oo and Q(t) be defined by the formula (5.2).
Then

(5.3) Q) eMn;  [9t) —Q(t)] € Mno
(5.4) 0< [ [gt) —Q)dt <
holds.

Proof. I have proved the validity (5.3) in the paper [10] (the first
part (5.3) follows from Lemma 3, the second part (5.3) follows from the
proof of Lemma 3). Because of identically holding

" ’ ’ 2
f—q—dt:i__f[i] dt
q q 7

we have

5 3 "\2 1 A )
oo r (e

Since ¢'¢~1 — 0 for ¢t - oo for sufficiently large ¢ there holds
ql 2 ql
(5.6) 0< 7 dt < ~q~dt =[lgql® <
¢ :

and regarding (5.5) the integral f (¢ — @) dt converges.
Let the conditions of Lemma 5.1 be satisfied.
Remark 5.1. If there is ¢'(t) 5= 0 for ¢ € (0, c0), then for this ¢
(6.7) (—1)E QU+D(t) > (—1)¢ ¢t+1)(t) > 0 t=0,1,..,n—1
holds.
It follows directly from Lemmas 0.3 and 5.1.

Theorem 5.1. Let the function q(t) possess a derivative q'(t) € Mpy1
(n 2 2), g(t) > 0, ¢'(t) # 0 for t € (0, ) and g(c0) < oo. Let {ty} denotes
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the sequence of zeros of any solution y(t) of (0.1) and {T} the sequence of
extremants of the same solution. If there is to > Ty > 0, then

(5.8) (=) Ai(ty — Ty) > 0 1=0,1,..,n; k=0,1,....

Proof. Let the function @(t) be defined by the formula (5.2). Because
q'(00) = ¢"(0) = 0, it holds g(o0) = @(c0). According to the Lemma 5.1
and Remark 5.1 [¢(t) —Q(t)] € My, Q'(t) € My, holds and q(t) # Q(¢)
for t € (0, o). The conditions of Theorem 4.1, resp. 4.2, where = is
replaced by n —1, are therefore satisfied. As above mentioned, the
sequence {Tx} of extremants of any solution of (0.1) is the sequence
of zeros of a suitable solution of (5.1) and conversely. According to
Lemma 5.1 (5.4) holds. Therefore according to Theorem 4.2 and Remark
4.1 there exists to any number Ty > 0 such a number ¢, sufficiently
large that there holds (5.8) and ({ — 7'%) — « for & — o0, where o« = 0
is any, fixed number. It remains to prove that there exists such a > 0
that, if T being an extremant of solution y(¢) of (0.1), then fort, (~ to
with designation from Theorem 4.2) defined by the equation (4.24) it
holds y(t) = 0 (with the possibility of ¢, being the first zero over 7).

Since ¢(t) > 0, only one extremant lies between any pair of con:
secutive zeros of the same solution of (0.1) and conversely only one zero
lies between any pair of consecutive extremants of the same solution
y(t) of (0.1). If {tx}, resp. {T%}, denotes the sequence of zeros, resp. of
extremants of the same solution, and f, > 7, then t; > 7% holds
therefore for all k. By this the proof is finished.

Remark 5.2. It may be seen from the proof of Theorem 4.1 that the

convergence of the integral f [q(¢) —@(¢)] dt is not necessary to be used
to the proof of Theorem 5.1; even on the contrary, the convergence of
this integral follows from Theorem 4.1, resp. 4.2.

Remark 5.3. Let the conditions of Theorem 5.1 be satisfied and let {tx}
denote now a sequence of zeros either of the same solution whose
sequence of extremants being {7}, or any other solution y(t) of the
same equation (0.1). If #, is greater or is equal to the solution of the
equation (4.11) (which is also designated by f,), then (5.8) remains in
validity. Especially (5.21) holds true always, provided £, being greater
or equal to the first zero over extrement T, of the same solution.

Lemma 5.2. Let gi(t) > 0, ¢2(t) e Mp (v 2 1) and [q:(t) —qa(t)] €
eEMy 2 ford=1,2andt > 0. :
Let further
3 (w\ 14
. t) = _— == — ==
5.9) o —n—g (Z) +5L
Then the function @i(t) — Q(t) is of the class My.
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Proof. According to the suppositions of the lemma it holds for ¢ > 0
and:=0,1,...,n +1

(5.10) 7i(t) 2 ga(t); 0 = (—D)f ql0(E) = (1) g11+0(2)
thus it holds true | g\ +1)(t) | = | g4+1(¢) |. Hence it follows

(5.11) | @) [qa(8)]2 | = | g2¥+0(8) [ga(t)]2 1=0,1, ... ,n+1.
According to Lemma 2 of [10] it holds for p < n +2 —3

@ 71(p) N (1) (Y1,x)
(5.12) | [gL] =Sl . &
'L % k=1 qx 'n

where Cx, N, I, v; are suitable numbers the detailed specification of
which not being necessary in our case. From a term by term comparison
of the expression (5.12) for the functions ¢,(t), g,(t), with regard to (5.11),
there follows the inequality
@ \(p) | (oD ) (D)
en )
L 72
Further on, it holds identically
N\ g )@ P, T\ @) (g7 \ (@D
oGS OGN
91/ i=0 9 qx
Since g'q~1 € My, (see [10], Lemma 2), all members of the sum on the
right side of (5.14) have the same sign, namely (—1)»+1, Then with
regard to (5.13) it holds
AT AYAL Y
e G NG
[ W\ /) Q1) 21 92
For (i 4 1)-th derivative ( =0,1,...,n —1) of the function @, it
holds true
. N 3 A A }(i) 1 {q;}(iﬂ)
5.16 ' G+ At T 2420 24 B T .
( ) Ql ql 2 {(q},) ql e 2 q}»
By term by term comparing of the right sides of (5.16) for = 1, 2 we get
with regard to (5.13) and (5.15)
(6.17) | @+D(t) | £ | @4+1(¢) | t=0,1,..,n—1

and since, according to Lemma 5.1, @;(t) € M,_;, the inequality

(5.18) 0= (=)@ S (-1 QUE)  i=0,1,..,n—]
follows from (5.17).
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The inequality 0 = Q2(t) < @u(?) follows, with regard to (5.11), directly
by term by term comparing of (5.9) for = 1, 2 and the proof i finished.

Lemma 5.3. Let the conditions of Lemma 5.2 be satisfied and let
7,(t) # q;(t) hold for t € (0, ). Then

(5.19) (—1)E () > (—1)¢ Q0(t) i=0,1,...,n; te(0, ).

Proof. Since g;(t) < g5(t) for t € (0, oo), it holds, with regard to the
conditions of Lemma ¢i(f) > ¢,(!) and according to Lemma 0.3, also
(—1)t qud(t) > (—1)t g2(t) for ¢ = 2,3, ..., n + 1, so that it holds

(5.20) (—1)ig{’(¢) > (—L)igP() = 0fors =0,1,...,m + 1;¢e (0, o).

Therefore non-sharp inequalities in (5.11), (5.13), (5.15), (5.17) and
a non-sharp inequality in the right part of (5.18) are possible to be
replaced by sharp ones with eventual exception of inequalities for
highest derivatives. From (5.16) it may be seen, however, that in (5.17)
and in the right part of (5.18) the sharp inequality also remains for
it =n — 1, thus (5.19) holds for 7 = 1, ..., ». The validity of (5.19) for
¢ = 0, with regard to (5.11), may be seen directly from (5.9).

Theorem 5.2. Let the function q,(t), resp. q.(t), possess a derivative
gty e My, 1, resp. qyt)ye My (n = 3) and further let [q:(t) — q.(t)] €
€ Mu,1, qi(t) > q2(t) = 0 hold for te (0, 0) and gi(0) = g2(0) < co.
Let {8, 1} for A = 1,2 denote the sequence of zeros of any solution y,(t)
of the equation

(5.21)§ . Yi + )y, =0

and {T,x} denote the sequence of extremants of the same or any other
solution of (5.21). Then for any fixed choice of T2,0 > 0 and any numbers
x €40, ), B €0, ) there exist the numbers Ty o and t, o, sufficently
large such that there holds

(6.22)  (—Li ATy —Top) > 0, (—Ln=1 An=1(T s — Typ) 2 0,
1=0,1,....,n—2; k=0,1, ...

(5.23) (T g —T26) > for k-—>oo

and further on

(5.24) (1) Aty —Top) >0 i=0,1,...m—1; k=0,1, ...

(5.25) (tig —T2k) > B for k—> o0

if and only if the integral f [91(8) — g2(¢)] At converges.
Proof. Let the functions @i(¢), @2(¢) be defined by the formula of (5.9).
According to the suppositions ¢1(0) = g¢,(c0) < co. Therefore ¢;(c0) =



65

=¢;(0) =0 (A = 1,2), and ¢i(00) = g3(00) = @i(0) = @,(c0) holds.
According to Lemma 5.1 it holds Q;(t) € My_1, @5(t) € Mp—,. According
to Lemmas 5.3 and 5.1 it holds for € (0, o) and ¢ =0, 1, ..., n — 1
(5.25) (—1)f QY (t) > (—1) QP ().

The conditions of Theorems 4.1 and 4.2 where @ ~@,, ¢ ~@, and

oo

n ~n—2 are therefore satisfied. Since f [g,(f) — @x(t)] At converges

always according to Lemma 5.1, the integral _[[Ql(t) —@(t)] d¢ con-

verges if and only if the integral f [q1(t) — g2(t)] d¢ converges. From
Theorems 4.1 and 4.2 the assertions (5.22) and (5.23) follow.
The relations (5.24) and (5.25) follow from Theorems 4.1, 4.2 and

Remark 4.1 where ¢ ~¢i, @ ~@.. The integral f [q1(8) — @2(2)] d¢
namely converges with regard to Lemma 5.1 if and only if the integral

[ [q:(t) — qa(t)] dt does.

Remark 5.4. If there is « > 0, § > 0, then regarding Theorem 4.2
the identical equality ¢,(t) = ¢.(t) for t € (y, ) (y > 0) can be admitted,
provided ¢;(¢) # 0 for ¢ € (0, o).

Remark 5.5. If in addition to the conditions of Theorem 5.2, ¢;(f) €
€ My,2, then (5.22) holds in the form

(5.26) (—1) AT, s —Top) >0 i=01,...,n—1;k=0,1,....

It follows from Remark 4.1 because in this case Q;(t) € M,,.

VI.APPLICATIONOFDERIVED RESULTSONBESSEL EQUATION

1
1. The functions (—;— nt)%Jv(t), (——2— nt)% Y,(t) form a fundameutal
system of solutions of the Bessel equation
v? —7}
(6.1), o)+ )1 ——5; [?/(t) =0. (>0

For the Wronskian w of these functions it holds |w | =1 (see [11]).
Further let y,(t) denote any non-trivial solution of (6.1),, thus

(6.2), y(t) = atl2],(t) + BELI2Y(¢)

where a, b are constants.
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Further on, let {, 1}, denote a sequence of zeros of any solutions
y»(t) of (6.1), and {7, x}§>, & sequence of extremants of the same or
any other solution of (6.1),. The function

2
-
12

(6.3), Blt) =1—

evidently possess a completely monotonic derivative ¢'(t) for | » | >
i.e. it holds
(6.4) (—1)t g%+ 0(¢) > 0, t=0,1,...,te (0, o0).

E-:

Further let {f, x}o, resp. {7, k}2, denote a sequence of zeros, resp.
extremants, of the solution 7,(t) of (6.1),, which can be, but need not be,
identical with the above mentioned solution y,(t). Lee Lorch and Peter
Szego showed that, if there is ¢,,0 < £, o then for | v | > —;— the sequence
{ts, k=1, K} o is completely monotonic and it holds (—1)tA%(Z, x—t, k) >
>0, (:=0,1,...) (see [5], p. 63, 72). In paper [10] I showed that for
the sequences of differences of extremants there holds also

(—ViAT e —Top) >0, (5, k=0,1,..)
if there is Ty > T,0. In paper [5] it is further shown that for » >
> u > —flz— there exist to any fixed sequences {f, x}¢, {tv,x} 20
integer r so that
(6.5) (—1)f Ai(ty gy —ty) >0 i,k =0,1,...

For proving the last assertion it was necessary to use the properties
of the functions J,(¢), Y,(t) reaching far to the theory of Bessel functions
the derivation of which is therefore by no means easy. The inequalities
of (6.5) follow, however, directly from Theorem 4.1, because g,(f) —

— q»(t) = (¥* — u?) t-2 and consequently for v > u = %it holds

6.6) [gut) —®]eMy; 0 < [ [gult) —gu(t)] dt < oo.

2. In the following theorem there are contained all properties of Bessel
functions (under the notion of Bessel function of order » we mean any
solution (6.2), of the equation (6.1),) mentioned in paragraph 1, and
also all their properties deduced in paper [5] as some special cases.
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fo—

Theorem 6.1. Let v, u be any numbers satisfying v > w 2 - . Let

o

{toi}o, resp. {tux)os {fur}izo denote a sequence of zeros of any
solution y,(t), resp. yu(t), Yu(t) of (6.1),, resp. (6.1),, and {T, i},
resp. {Tur}io @& sequence of extremants of the same or any other

. . 1
solution §,(t), resp. §,(t). Designate x, = v2 — 1= e — % . Then

to any pair of numbers A€ <0, o) and t,o€ (0, ), resp. T, o€ (x4,
such a number t, 0, resp. Tyo, Lu0 exists that it holds

(6.7) (—1) Ait, e —tog) >0 4,k =0,1, ...
(tux —tok) —> A for k— o0

(6.8) (=LA, —Top) >0 i, k=0,1,...
(fuk — Tor) = A for k — oo

(6.9) (=D A Ty —To) >0 4,k=0,1, ...

(Tu — T3> 4 for b — o0

The numbers tuo, &,0 and T,o are the solutions of corresponding
equations (4.24), respectively (4.11).

Proof. Since g)(t)e Mo, q,(t) e M, g,(o0) = gu(c0) =1 and (6.6)
holds, the conditions of Theorems 4.1 and 4.2 are satisfied for n = oo
and ¢ ~¢q,, @ ~ g.. Hence (6.7) directly follows. Assertions (6.8) and
(6.9) follow analogously from Theorem 5.2 where the interval (0, o) of
the variable ¢ is replaced by interval (x,, 00).

The function @,(t) is in the Bessel equation of the form

Xy

Qe —1—22—3

Xy
(82 — )2

1
Remark 6.1. Provided u > 3 it is possible to put pu = in the

preceding theorem so that the relation (6.7)—(6.9) are then related to
the sequences of zeros, resp. extremants of the same or different solutions
of the same Bessel equation. (Except the case 4 = 0 in (6.7) and (6.9)
When {tvsk}’c:;o = {t yk}’:c’”o a’nd {T yk},;‘.;o = {T”yk}lc:;o)'

Theorem 6.2. For v > %let {to,x}20 denote the sequence of zeros of
any solution y,(t) of (6.1), and {T,x}F., the sequence of extremants of

1
the same solution. If there 18 to > To > «, ((xv =92 — Z) then
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(6.10) (—)E At (b — Typ) > 0 ik =01 ...

Proof. Theorem 6.2 is the direct consequence of Theorem 5.1 for
n = oo and ¢ € («x, 00) because q, (t) € M, g,(t) > 0 for ¢t > «, and
gs(c0) =1

3. The results derived in the preceding paragraphs are possible to be
used not only to the qualitative but also to quantitative investigation
of concrete equations. The general solution of (6.1) is possible, on the
basis of transformation (4.3), to be written in the form

t
(6.11) y(t) = A[v, ()] 2 sin{ [ [v,(s)]* ds}
to

where A, t, are integration constants and v,(¢) being solution of the
equation

(6.12) v, +4)1 — v, + v, =0

satisfying [v,(f) — 1] e M.
From (6.11) we can see that the k-th zero f; of (6.11) is a root of the
equation

(6.13) fk[v,(s)]—l ds = kmn.
. h

The function f [v,(s)]7t ds is then determining the distribution of zeros
(D
of to solution (6.11),.
. 1 . .
4. Transformation ¢ = — transforms the equation (6.12), into the
x

equation

(6.14)w v+ g U, + {

— —{— -x'; i)v —_— Uy = 0

a3

7 —4p2 4 492 —1
xz

where the point denotes the derivative according to x. The equation
(6.14), has an irregular singular point of the second class in the origin
(see [4]) having thus maximum one solution, regular in the origin,
consequently the solution that is of the form

(6.15), v, =a8(ap + a1 x +ax + ...) =t"S(@o + it~ + ...) ap #0.

By a direct substitution into the equation (6.12), or (6.14), we get
$ =0, a; = 0 and for coefficients a, we get a recurrent formula
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1 n+1
(616) Apy2 = ;1-— 7&7';‘5 [4:"’2 —_ (’ﬂ/ + 1)2] (1%} n = 0, 1,
Hence it follows for £ =0, 1, ..., @, = 0 and
1.3...(2k—1
(okrz = — —zs’k(—k*lwh)‘ [4v? —12] [4v2 —32] ...
(6.17) ... [492 — (2 —1)2] ao

. 1
From (6.17) we can instantly see that if there is v =n + 5 "=

0,1,..., then for k=mn, n+1,... it holds az2 + O and thus the
series (6.15) has only finately many non-zero members. If we choose
ao = 1 then the function vy q,2(x) has for n =1, 2, ... the form

13, (2 —1
onayat) =14 2 “ﬁﬁ(‘ oy L{@n 41— 12} {2+ 12— .
E=1 A

(6.18) {20 12— 2k — 1)2} %

and vj(t) = 1. According to Lemma 1.1 the equation (6.12), has for
v > -; a unique solution v,(t) satisfying the relations (—1)¢ v,(£)® > 0
for7 = 0,1, ... and v,(c0) = 1. Just this solution, however, is expressed
fory =n + 15 (n =1,2,...) by the formula (6.18) because a,; > 0 for

k=0,1,...,n,a;x =0fork > nand t-2,€ M.
Therefore there exists such a pair of solutions (#x,1/2(t), ¥ni1,2(t)) of
the equation (6.1),,1/2 that it holds for 2 =0, 1, ...

(6.19)  @Z,2 + Va2 = Vngrz, (—1)Pe?,, > 0, vpyqy2(c0) = L

For the Wronskian wy 1;2(%n 1,2, Yni1,2) of the solutions %12, Yni12
from (6.19),

| Wair2(@ni1i25 Ynias2) = Vny2(0) [qnorj2(00)]H2 =1

then holds according to Lemma 1.2.

From asymptotic formulae for Jp 1/2(8), Yy ,1/2(8) = J-n-1/2 (see e.g.
[11], p. 199) it follows that with regard to Lemma 1.2 it is possible to

1

1 1/2 12 v
choose Tpi1/2 = ('2— ﬂt) Jn+1,2(t), Yni1/2 = (E ﬂt) In+1/2(t).

b. Let us choose now y = % in Theorem 6.1. Then evidently {f,x} =

={M + ks} where M =1t,, > 0. Let us calculate now this M for
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A = 0. M is the root of the equation (2.22) which, in our case, is of the
form :

M ©
(6.21) [ [ons2®O1 dt = A{ {1 — [vny12(0)] 1} At

thiri2,0

Forn =1,2,3,4, 5, vp,2(t) is of the form

1 3 9
vy2 =1 +§ Us,z=1+72—+t—4

6 45 225
vz =1 +t—z+*‘t;—+—t‘—‘

6

10 135 1575 11025
”9/2:1‘*‘?“4—"“’"{' —

to t8
15 315 6300 99225 893025
vz =1 4 3 + G + - o T e T T
Let us observe now more minutely the equations (6.21) for n =1, ..., 5.

The concrete calculation of the functions | [vg1/2(t)]~! dt is thus a little
laborious, but the verification of correctness does not make any troubles.
Further on, let

5 < arc tg @(t) < g-

always hold for arc tg ¢(f) where arc tg denotes the principal branche.
6. For n = 1 we have (with indefinite integrals we take one of primitive
functions)

[{l —[ws32()] 1} dt = [ (1 +¢2)71 dt = arctgt
and the equation (6.21) is therefore of the form

[t — arc tg ¢] JltI = [arc tg ]y
thus e
n
(623) M(t3,2,o) = —‘)—'—1— t_';,z.o — arc tg t3/2,0

The equation (6.13) is in this case of the form
(624) t3[2,k — arc tg t3/2,k =kn -+ t3/2,0 — arc tg t3/2'0

The solution yaj,(t) of the equation (6.1)3,, for which it holds
Y32(83/2,0) = 0, is, regarding to (6.11), possible to be written in the form
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(6.25) Y3j2(t) = At=1]/1 4 ¢2 sin (t — arc tg t — B)

where B = f32,0 —arc tg t32,0. If we choose specially t32,0 = 0 (this
being possible because such a solution really exists) then ys(t) =
= At1/2]3/,(¢) and thus

(6.26) J3pat) = Vz t-32|/1 4 t2sin (t — arc tg ¢)
4

and k-th zero j32,1 is the root of the equation

(6.27) t —arctgt =kn E=0,1,...

Thus the sequence {j3/2,1} is formed by the system of non-negative roots
of the équation ¢ = tg ¢t. Analogously the sequence {ya/2,0} of zeros of the
function

2 S
(6.28) Yip(t) = V}; t-32 /1 + 2 cos (t —arc tgt)
is formed by the system of non-negative roots of the equation
t—arctgt :g— +kn, E=0,1,...,

which is equivalent with the equation ¢ = —cotg¢.
7. For n = 2 we get

, 32 L9 23
_] -
f{l — [vs/a(t)] -1} dt f T dt = arc tg —5
2

t2—3 .
The function arc tg 5 is for t e {0, oc) continuous inclusive all

derivatives.
In this case the equation (6.21) has the solution of the form

2 —3
(6.29) M(tsj2,0) = z + ts5/2,0 — arc tg 52,0 779
2 3ts/2,0

¢

Js/2(8) and Ys/»(¢) are possible to be expressed by the formulae that
are analogous to (6.23) and (6.28).

8. For » = 3 it holds

614 + 4512 4 225
—_— -1 = =
f (= Donal} 4 ft 6 1 dbz 4 225 O = Aret8 rjalt)
15— 15¢

where @7),(t) = 15 and
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Arctg @q/2(t) =

5\1/2
arctg ¢-2(t) for [t] < (7)

7 5\1/2
5 for t = (5)

$3—15 . .
The function Arc tg 15 is continuous for ¢ € <0, o) inclusive of all
. . . t3 — 15t .
its derivatives. Because of lim Arctg ————— = — =z, the equation
t>o 62— 15 2
(6.21) has the solution
3 15t
6.30 M(tryz,0) = = 7 + tr72,0— Are tg Bao— 1820
(6.30) (t2/2,0) 5 T 20 re 6t2,,— 15

9. For n = 4 it holds

fl

“

TT
.AI'O tg (I)g/g(t) == ‘—)

10t6 + 135¢4 + 15752 4 11025 Al —

o g f
’Uglz(t

= Arc tg @oj2(t) where gqo/;(t) =

7T + arc tg gy/a(t)

& -+ 10t0 - 135¢4 + 157562 + 11025

14— 4562 + 105

o5 — 105 20

arc tg go/s(t) it ( )

NJ'

(2
for ( 21’)

The function Arc tg @o)2(t) is continuous for ¢ € {0, o0) inclusive of all
its derivatives. The equation (6.21) has then the solution

(6.31)
10. For n = 5 it holds

M(to;2,0) = 27t + to;2,0 — Arc tg @o/2(to,2,0)-

f {1._ ! }dt:
O11/2(8)

-+ 982252 4 893025

B f 15t 4 315¢6 + 63004

$10 - 15t8 + 3155 + 630014 + 99225¢2 + 893025

= Arc tg @11/2(t) where @yy/2(t) =

s — 1051 4 9451
1504 — 4202 + 945




73

arc tg ¢, 2(t) for |t| < f
7T
5 for t =4
Arc tg gy2(t) ==]' 7 4 arc tg @i)2(f) for B <t < p
3n
o for ¢t =4,
2x 4 arc tg @u2(f) for ¢t > B,

At the same time f;, B, denote the real roots of the equation
15t4 — 420t + 945 =0 (0 < B, < B,) so that B, = (14 F|133 /=
The function Arc tg @ii/2(t) is continuous for ¢ € (0, c0) inclusive of all
its derivatives. In this case the equation (6.21) has then the solution

5
(6.32) M(tiyz2,0) = 5 T+ bz — Arc tg ¢11/2(t/2,0)

11. The functions f {1 — L. dt for n > 5 are possible to be

172\t J
expressed in a similar way.

1 1 . ®,
Forvy £ n 4 5o =0,1,... (v > 72—) the series v,(t) = 2 a2k,
k-0

where ay, is given by the formula (6.17), diverges for all £. In this case,
the series is, however, an asymptotic development of the function v,(¢)
and therefore it is possible to be used to concrete calculations.

The function v3j2(t) was calculated by F. Neuman in another way
in [7].
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