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MONOTONIC PROPERTIES OF ZEROS AND EXTREMANTS 
OF T H E D I F F E R E N T I A L EQUATION y" + q(t) y = 0 

JAROMÍR VOSMANSKÝ, Brno 

In honour of the 70th Ыrthday anniversary of Prof. O. Borůvha. 

(Received January 23, 1969) 

1. The question of the distribution of zeros of solutions of the linear 
diŕľerential equation of the 2nd order plays an important role and has 
been studied by many authors. At the last time, by means of methods 
elaborated by O. Borůvka ([1], [2]), several problems of this kind have 
been solved. There are given certain properties of the distribution of 
zeros of oscillating solutions of the linear diŕferential equation 

(0.1) У*+q(t)У=0 

and all differential equations of the form (0.1) (thus all continuous 
functions q(t)) the solutions of which having the required properties are 
to be determined (see e.g. [7]). The already mentioned methods, however, 
are not suitable enough for the investigation of sequences of zeros of 
solutions of the concrete equation (0.1). 

Lee Lorch and Peter Szego have deduced a simple, sufficient condition 
for the monotonicity of order n in the sequence of diŕľerences of zeros 
of any solution of the equation (0.1) ([5]), which they later formulated 
on the basis of Hartman s paper [3] directly for the function q(t) ([6]). 
In the paper [10] i is shown that the same condition is a sufficient one 
also for the monotonicity of order n — 2 of the sequence of difľerences 
of extremants of any solution of the equation (0.1). 

This work studies more completely the sequences Џjc} of zeros of 
solutions of the equation (0.1), compares it with the equidistant sequence 
in the case of the equation (0.1) being oscillatory and the func ion q'(t) 
being mono onic of order n. Fur her here are s udied sequences 
{Tjc—tjc}, where {Tjc} or Џjc}, respec ively, deno es he sequence of 
consecu ive zeros or ex reman s of any solu ion of 

(0.2) Г" + Q(t) Y = 0 

in he case of func ion [q(t) — Q(t)] being mono onic of order n + 1. 
The men ioned resul s enable o divide all equations of the form (0.1) 

onto the classes consisting of the equations which have "asymptotieally 
equal" distribution of zeros. 

In § 6 the achieved results are then applied to the Bessel equation 
for | v | ^ 1/2. In spite of these results being possible to be applied to 
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a number of equations of the similar type, in this case the Bessel 
equation was ehosen from this reason that its theory was considerably 
worked out and application is thus sufficiently telling. Besides the 
number of new results for the Bessel functions, some known properties 
of the Bessel functions, the direct derivation of which reaches far to the 
theory of the Bessel functions, follow from the particular theorems, 
whereas they are deduced, in such a way, relatively simply as the 
pгoperties of solutions of the equation (0.1). 

2. The extremant of the function y(t) є C2 is meant each number tk 

where the function y(t) assumes the locally extreme value (only proper 
local extremes are considered). 

The function F(t) is said to be of the class Mn(a, Ь) or monotonic 
of the order n in (a, Ь) (see [3], p. 164), if it has n (n ^ 0) of continuous 
derivatives Fl°\ F', ..., F<n> satisfying 

(0.3) (—1)< FЩt) ^ 0 for t є (a, Ъ) i = 0, 1, ..., n. 

If the preceding inequalities are fulfilled for i = 0 , 1, ... then the function 
F(t) is called a complete monotonic in (a, Ъ) and is denoted by F(t) є 
є Лfoo(a, Ъ). The symbol Mn denotes Mn(0, oo). 

The funetion F(t) is called the function of class Mn,m(T0, oo) if there 
is F(t)є Mn(T0, co) and F(t) has for t > T0 m derivatives for which 
there hold 

(0.4) FЩt)-+0 for T->oo, i = 0 , 1 , ...,m. 

(Evidently FєMno(T0,oo) implies F є Mn,n_i(T0, oo) for n ;> 1.) 
Analogously Mnm = Mnm(0, oo). 

Further let {tk} denote the sequence and Antk an w-th difference of the 
sequence {tk}, so that 

(0.5) AЧk =tk Atk = tk+í—tk,..., Aчk = An-Чk+Í — A»~Чk 

h = 0 , 1 , 2 , ..., n = 1,2, ... 

The sequence {tk} is called monotonic of order n if 

(0.6) (—IYAЧJC ^ 0 h =0,1, . . ., i = 1, 2, ..., n. 

If there is n = oo then the sequence Џk} is called a complete monotonic. 
The notion of the sequence of zeros, resp. of extremants of the solution 

y(t) is understood any increasing sequence of consecutive zeros, resp. of 
extremants of the solution y(t). In all the work, provided it is not 
explicitly mentioned otherwise, we suppose t > 0. 

3. If x(t), y(t) denotes a pair of independent solutions of the equation 
(0.1) and w = xy' —%'У = const Ф 0, it is possible, by the transforma-
tion 
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(0.7) y(t) = [v(t)]^2 u(s), ť(s) = v(t), v(t) = x2(t) + y2(t), 

to transform the equation (0,1) onto the equation with constant coef-
ficients 

(0.8) u"(s) + w2u(s) = 0 

([2], p. 229; [5], p. 59.) 
Further it is known that, under the supposition of 0 < q(co) < co, 

q' є Mn (n ^ 0), the equation (0.1) has such a pair of solutions x(t), 
y(t) to any constant cг > 0 that for v(t) = x2 + y2 there holds [v(t) — cx] є 
є MПiП+2. The function v(t) is determined uniquely. The triad x2, xy, y2 

denotes then a fundamental system of solutions of Appeľs equation 

(0.9) v" + 4q(t) v' + 2q'(t) v = 0 

which has a unique solution v(t) of the already mentioned properties 
([3], p. 182). 

4. In this work there is substantially made full use of theorems proved 
by P. Hartman, Lee Lorch and P. Szego, which we mention, even 
though in a little adapted form. 

Lemma 0.1. ([3] Theorem 12Aте, 12.2^, p. 171) 
Let n ^ 0, k Ţž 1 and let the following conditions are fulfilled 
<x) q(t) possess a derivative q'(t) of class Mn, 0 < q(oo) < oo, f(t) є 

є Mn+h0 and qj(t) є Mn+1, for j = 0, V . . . ,* — 1 . 
Further let there exist positive continuous functions ei(t), ..., ejc(t) such 

that for t -> oo and m = l, ..., k there holds 

00 

ß) f sm-i[q(s)]-í F(s)ås=0(єm(t)) 
t 

lc~~l OO 

y) 2 / 8n-i[q(8)]-i qj(s)ek-j(s) ds=o(єm(t)) 
j^Q t 

Then the differential equation 

k—í 

(0 10) v&+2) + q(t) t><*>— 2 (— l) j+k»W vU) = (—l)kf(ł) 
7 = 0 

has a unique solution v = v(t) of class Mn+Je,n+k+2, satisfyгng 

(0.11) vЩt) = 0(єk-j(t)) as í-> oo, j = 0, 1, ..., k — 1 

Remaгk 0.1. If we choose Єj(t) = f/-* foгj = 1, ..., Ł then the condi-
tions ß), y) turn into the conditions 
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00 

ß') \fť<-mt)[q( + )]-idt\ < oo 
00 

/ ) I / tkЧ-гЪ{t) Ы + )]-1 àt | < oo for j = 0, ..., k — 1. 

The solution v(t) satisfying v(t) є Mn+kfП+k+2 is, in this case, unique. 

Lemma. 0.2. ([5], Lemma 5.1, p. 64) 
Let an open гnterval Is of the variáble s be mapped onto an open 

interval It, resp. Iт Ьy a mapping ť(s) = v(t), resp. T'(s) = V(T), where 
v(t), V(T) are the given positive functions such that v^n)(t), V^n)(T) exist 
in an open interval Itт = It П Iт • Further suppose that the inequalities 

(0.12) (—1)* VЩT) ^ (—1)* vЩt) > 0 i = 0, 1, ..., n 

are fulfilled for t, T eltт, where t, T in (0,12) correspond to the same 
value s. Then 

(OAЗ) (—1)* -Г<*+->(«) ^ (—1)* ^ + 1 >(s) > 0 i = 0, 1, ..., n 

for sels. 

ïtemark 0.2. ([4], p. 70, Lemma 2.2, p. 58) 
Lemma 0.2. remains valid if we replace, in the right part of the 

inequalities (0.12) and (0.13), the sign " > " simultaneously by the sign 
"Ş>". Simüarly the sign " ; > " in the left side of the inequalities (0.12) 
and (OAЗ) may be replaced at the same time by the sign " > ", resp. " = " . 

In addition to it we mention some simple properties of the monotonic 
functions of the order n, more often used in the following. 

Lemma 0.3. Let [f(t)—c]eMn,0 (n È̂  1), where 0 <; c < oo and 
f'(t) фOforte (0, oo). Then 

(0.14) (-i)if(iҳt) > 0 i = 0 , 1, ..., w — 1 

Proof: Suppose that there exist the integer N ŞI n — 1 and the 
numb r f > 0 such that fШ)(Ç) = 0. Because the function (—1)(-V). 
ßN)(t) is non-negative and non-increasing, ßNì(t) = 0 holds for t ^ | . 
Consequently, on the interval <f, oo) there is f(t) polynomial of the 
degгee maximum N — 1. Because of [f(t) —c]e MПf0 there is f(co) = 
c < oo. Therefore it is necessary f(t) = c for t ;> | , which is in 
contradiction with the supposition f'(t) Ф 0. This proved the lemma. 

Remark 0.3. If there is n ^ 0, q' eMn, q'(Ç) =0 ( | > 0), then 
equallу q'(t) = 0 for t ^ | and for the solution v(t) є Mn of the equation 
(0.9) there holds v(t) == const. for t ^ £. Similarly if there is v(t) = 
= x2 + y2 = const. Ф 0 for ř > | , then q(t) is also a constant ([5], p. 72). 
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I. FUNCTION v(t) 

As it was stated, if x(t), y(t) denote two linearly independent solutions 
of the equation (0.1), then x2, xy, y2 form a fundamental system of 
solutions of equation (0.9). We prove now the existence of the integral 
v = v(t) of equation (0.9), which is of the form v = x2 + y2 and fulfils 
the second part of the inequalities (0.12). From the properties of the 
function v(t), namely with regard to the transformation (0.7) it is 
possible to deduce the distribution of zeros of solutions of (0.1). 

Lemma 1.1. Let q(t) possess a derivative q'(t) of class Mn (n ^ 1), 
q'(t) ^ 0 for t e (0, oo) 0 < q(oo) < oo and C\ > 0 be an arbitrary 
constant. Then the equation (0.1) has a pair of solutions x(t), y(t) such 

(IT) v(t) =x2(t) +y2(t) > 0 

satisfies 

(1.2) [v(t)—c1]eMnin+2 

(1.3) (—l)«i>«)($) > 0 i = 0 , 1, ...,n — 1. . 

The pair of solutions (x ,y) is unique up to their replacement by (ax + by, 
ex + dy), where a, b, c, d are constants such that a2 + c2 = b2 + d2 = I, 
ab + cd = 0. 

Proof: The equation (0.9) fulfils the suppositions of Lemma 0.1 and 
P. Hartman has shown ([3], p. 182) that this unique solution v(t) e Mn 

of the equation (0.9) is of the form (1.1) inclusive of uniqueness and 
conditions for a, b, c, d. It remains to prove the validity of the inequality 
(1.3). This, of course, directly follows from (0.9) and lemma 0.3 because 
q'(t) * 0. 

I t is necessary to know the value of the Wronskian w = xy' — x'y for 
every transformation function v = x2 + y2 in order that we may study 
the transformation (0.7) in more details. 

Lemma 1.2. Let q(t) possess a derivative q'(t) e Mn (n ^ 1) and 
0 < q(oo) < oo. Let (x, y) denote a pair of solutions of the equation (0.1) 
satisfying 

(1.4) V = X2 + y2, [v(t) — Cl] e Mn.n-,2-

If w(x, y) = xy' — x'y denotes their Wronskian, then for all pairs of 
solutions (xi, t/i) of the equation (0.1) which satisfies 

(1.5) x{ + y\ = x2 + y2 = v(t) e Mn 



42 

there hold 

(1.6) | w(x, y)\ = \ w(x1,y1) \ = w ( = const) 

(1.7) w =v(oo) [q(oo)]1!2. 

Proof: Solutions x, y form a fundamental system of solutions of 
equation (0.1). Thus there hold 

xt = anx + a12y, yx = a21x + a22y 
Therefore 

M%u Vi) =x1y[—x[y1 = 

= (anx + a12y) (a21x
f + a22y') — (anx' + auy') (anx + a22y) = 

= («11«22 — <l>l2Q2l) (%y' —X'y) = («11«22 — «12«2l) w ( ^ , */)• 

The first equality in (1.5), with regard to Lemma 1.1, implies 

«H + «ll = «12 + ^ 2 = 1, «11%2 + 2̂1̂ 22 = 0. 

Under these conditions the expression (ana22 — 1̂2̂ 21) can assume only 
the values + 1 , and therefore (1.6) holds. 

Denote now Q(t) = x2 + y2, where (x, y) denote any pair of indepen­
dent solutions of the equation (0A). Then 0 complies the differential 
equation 

(1.8) Q" =—q(t)Q +^v2O-3 

where w = xy' --- yx' denotes the Wronskian of a pair (x, y). ([1], p. 201.) 
Let now v(t) = Q2(t). From (1.8) it follows that v = v(t) fulfils the 
identity (Mamman's identity) 

(1.9) v"v — - v'2 + 2q(t) v2 = 2w2. 
z 

For the integral v(t) satisfying (1.4), however, there hold v(oo) = Ci, 
t/(oo) = 0 , v"(oo) = 0 and therefore from (1.9) there follows (1.7). 

Lemma 1.3. Let q(t) possess a derivative q'(t) e Mx and 0 < q(oo) < 00. 
If v(t) denotes the solution of (0.9), for which [v(t) —Ci] e Mi 3 holds, then 
the integrals 

00 00 

(1.10) / fe(co) - q(t)] At, f [v(t) - 0(00)] at 

converge or diverge at the same time. 
Proof. The identity (1.9) is possible to be written in the form 

(1.11) q(t) v2(t)-w2 = i [v'(t)Y — i v"(t) v(t). 
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By the integration (1.11) we get, for v(t) e Mi and t, sufficiently large 

00 00 

J(t) = f Ms) v2(s) —w2] ds=j [v(s) v'(a)]? — j Jv(s) v"(s) ds 

t t 

(1.12) 

Because [v(t) —c{\ e Mij3 we have 

00 00 

(1A3) 0 S f v(s) v"(s) ds S v(t) f v"(s) ds = —v(t) v'(t). 
t t 

From (1.12) and (1A3) it follows that | J(t) | ^ —v(t) v'(t) < oo that is 
integral J(t) is convergent. 

On the other hand there identically holds 

(1.14) q(t) [v2(t) — v2(ao)] = [q(oo) —q(t)] ^2(oo) + q(t) v2(t) —q(oo) v2(oo) 

Hence using (1.7) we get 

(1.15) v(t) — «(oo) = t>*(oo) [q(oo)—q(t)]{q(t) [v(t) + t;(oo)]}-i + 
+ [q(t) v2(t) -w2] {q(t) [v(t) + v(co)]}~K 

Since for t > t0, t0 sufficiently large 

(1.1,6) 0 ^ 2q(t0) v(oo) S q(t) [v(t) + v(oo)] S 2q(oo) v(t0) < oo, 
holds, by the integration (1A5) in the interval (t, oo) we get 

OO 00 

0 £ I [v(s) — »(oo)] ds ^ [2q(t0)]-i »(ao) / [gr(co) — q(s)] ds + 

(1.17) ' +[2q(t0)v(co)]-i\J(t)\-
00 

If there is 0 :g f [q(oo) —q(s)] ds < oo, then with regard to the fact 
t 00 

that the integral J(t) converges, also the integral f [v(s) — v(oo)] ds 
converges. l 

Similarly 
00 t 00 

/ [v(s) — v(oo)] ds ^ ^(OQ) [2q(oo) v(t0)]~i f [q(oo) —q(s)] ds — 
t t 

(1.18) -[2q(<x>)v(t0)]-i\J(t)\. 
00 

If f b(°°) —<l(s)] &S diverges, then with regard to the convergence of 
t CO 

the integral J(t), the divergence of the integral f [v(s) —v(oo)] ds follows 
t 

from (1.18). This proved the Lemma. 
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I I . T H E D I S T R I B U T I O N OF ZEROS OF SOLUTIONS 
OF THE EQUATION (0.1) 

We compare now the sequence {£#} of zeros of any solution of (0.1) 
with an equidistant sequence. To this purpose we first deduce the lemma 
proving necessary properties of the mapping (0.7). 

Lemma 2.1. For the functions s(t), S(T), let S(T0) = s(t0) = 0 hold, 
where 0 < T0 < t0 < co and 

(2.1) * S(t) > s(t) > 0 s'(t) > S'(t) > 0 s"(t) £ Ofor t e (0, oo). 

Let further hold 

0 £ lim [S(t) —s(t)] =A<oo, 0 < s'(oo) = S'(oo) = a < oo 
8—>00 

and let t(s) = s'1^), resp. T(S) = S-*(T) denote an inversion function 
to the function s(t), resp. S(T). Then 

(2.2) t(s) > T(s) > 0 for se (0, oo) 

(2.3) Mm [t(s) — T(s)] = - lim [S(T) — s(T)] = — 
s->oo a T-+OO a 

holds. 
Proof. Since 0 < s'(co) = S'(co) < oo and consequently 5(00) = 

= S(oo) = 0 0 , the functions t(s), T(S) are defined for s, Se(0,oo). 
Since S(T0) = s(t0) = 0 there is T0 = T(0), t0 = t(0) and with regard to 
the fact that t0 > T0 > 0 there holds 0 < T(0) < t(0). From the con­
tinuity of functions T(S), t(s) it follows that T(s) < t(s) for s e (0, £) 
where f > 0 is a suitable number, or | = oo. Suppose that such | < 00 
exists that T(£) = t(l-) = r\ (rj < 00, because o < t'(oo) = T'(oo) < 00). 
Then it holds f = S(T(£)) = s(t(^)), thus there exists the number rj < co 
such that S(rj) = s(rj), which is in contradiction with the supposition 
S(t) > s(t) for t e (0, oo). Because T(0) = T0 > 0 and T(S) is increasing, 
(2.2) holds. 

Let f, T correspond to the same value s, resp. S. Since s"(t) ^ 0, 
for s ^ 0 and t ^ t0, T ^ T0 with regard to (2.1), it holds 

(2.4) s'[T] ^ [S(T)—s(T)] [t(S) — T(S)]~i S s'(t). 

Since t, T -^ oo for s -> oo and s'(oo) = a, from (2.4) there follows 

(2.5) [S(T) — s(T)] [t(S) — T(S)]-1 -> a for s -> oo , 

and hence (2.3). By that the lemma is proved. 
Now we prove the first result concerning the distribution of zeros 

of the equation (0.1), which is, at the same time, the main result of this 
paragraph. 
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Theorem 2.1. Let q(t) possess a derivative q'(t) e Mn (n ^ 1), q'(t) ^ 0 
for t e (0, oo) and 0 < q(oo) = a~2 < oo (a > 0). If {tk} denotes the 
sequence of zeros of any solution of (0.1), then there exists such number 
M > 0 that 

(2.6) (—1)* A\M + kna — tk] > 0; (—l)w+1 An^[M + forca —**].> 0 

i = 0 , 1, .... t = 0 , 1, ...,n 

(2.7) {if + kna — tk} -> 0 for k ~> oo 
00 

AoW i/ awe? Ofifo/ if / [q(oo) —mq(t)] dt converges. 
Proof. The proof of the theorem is done by comparing the sequences 

of zeros of solutions Y(T) of the equation 

(2.8) Y"(T) + Q(T) Y(T) = 0 

with the sequence of zeros of a suitable solution y(t) of the equation 

(2.9) y"(t) + a~2y(t) = 0. 

If we put T =t and Q(t) replaced by q(t), the equation (2.8) will play 
the role of the equation (0.1) in Theorem 2.1. Consequently, let further 
{Tic} denote the sequence of zeros of any solution of (2.8) and {tk} = 
= {M + kna} denote the sequence of zeros of any solution of (2.9). 

1. According to Lemma 1.1 the equation (2.8) has solutions X(T)> 
Y(T) such that for V(T) = X2 + Y2 

(2.10) [V(T)-a]eMn,n+2; (—1)« V«>(T) > 0, i = 0, 1, ..., n — 1 

holds. 

Thus, for W = XY' — X'Y it holds according to Lemma 1.2 

(2.11) W2 = V2(oo)Q(oo) =a2 .a~2 = 1. 

Similarly the equation (2.9) has solutions 

(2.12) x(t) = al/2 sin a~% y(t) = a1'2 cos a~H 

for which, as it may be instantly seen, 
(2.13) v(t) = x2(t) + y2(t) =a w = xy' — x'y = 1 
hold. 

2. Transformations 

(2.14) Y(T) = [V(T)]H2 U(S); ' T'(s) = V(T) 

y(t) =a1'2u(s); t'(s) =a 
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transform the equations (2.8) and (2.9) onto the equations 

(215) U"(S) + U(S) = 0 u"(8) + u(s) = 0. 

Let us choose the integration constants in (2.14) so that 

T t 

(2.i6, w-/-.% *)-/^_lff-io 
T0 M 

where T0 > 0 is an arbitrary but fixed number and M > T0 is, for the 
time being, closely non-specified. Then 

(2.17) Sk = S(Tk) = s(tk) = s(M + kna) = kn = sk k = 0, V ... 

({Sk} = {sk} = {kn} are the sequences of zeros of suitable solutions of 
(2.15)). 

Fig.l 

Because M > T0, with regard to (2.10) 

(2.18) S(M) = J 

and fuгther 
2'o 

(2.19) 0 < 

át 
~V(t) 

м 
( d t -

J w 
S(M) = 0 

0 < S'(t) = V~i(t) S a"1 = s'(t) 

where equality occurs only for t = oo. Thus, the function [S(t) —s(t)] 
is continuous, decreasing and positive in an interval <M, | ) where 
£ > M is a suitable number, or f = oo so that S(t) > s(t) > 0 for 
t e <Jf, f). 
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00 

3. Suppose now that the integral / [Q(oo)—Q(t)]dt converges. Then 
00 

the integral f [a~l — V~x(t)] dt converges as well, because V(oo) = a 
and 

00 00 00 

,220) /{v-w}*-/-^*^/1^-*1* 
holds, where the last integral converges according to Lemma 1.3. 

M 

The function S(M) = / [V(t)]^ dt (see (2.16)) is continuous and 
To 

increasing 8(T0) = 0, $(oo) = oo. Define now the function 

00 I 1 1 1 
(2-21) ^-Ju—vwi 
(p(M) is continuous, positive, decreasing and 99(00) = 0 , because the 
mentioned integral converges. There exists then unique number M > T0 

such that S(M) = (p(M), thus there exist a unique solution of the 
equation 

/V/>wh 
To M 

If M is the solution of equation (2.22), hence it follows 

t 1 

(2.23) lim { / [V(r)]-i dr — f a^) dr = lim [8(t) — s(t)] = 0. 
t—>-GO To M t-+co 

00 

If / [Q( 00) — Q(t)] dt diverges, then according to Lemma 1.3, the integral 
00 

/ [V(t) —a] dt also diverges and hence the divergence of integral (2.21) 
follows. The equation (2.22) cannot be therefore fulfilled for any finite 
number M. 

00 

Thus we have shown, that if and only if the integral f [Q(oo) — Q(t)] dt 
converges, there exists the solution M of the equation (2.22). According 
to Lemma 2.1 it follows from (2.23) 

(2.24) [t(s) — T(s)] > 0 for s e (0, oo), lim [*(*) — T(s)] = 0 
«->oo 

where t(s), resp. T(8) denote the inversion function to s(t)t resp. 8(T). 
Let us choose now such a solution Y(T), resp. y(t) of the equation 
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(2.8), resp. (2.9) that there holds Y(T0) = y(M) = 0 . {Tk}, resp. {tk} = 
= {M + kna} denotes now the sequence of zeros of the solution Y(T), 
resp. y(t). According to (2.17) there is 8k = sk = kn and since tk = t(sk), 
Tk = T(8k) it holds true 

(2.25) M + kna — Tk = tk — Tk = t(sk) — T(sk). 

Since sk -> oo for k -> oo, it follows from (2.25), (regarding (2.24) and in 
the proof introduced the denotation) the assertion (2.6) for i = 0 and 
the assertion (2.7). 

4. Let us denote now 

(2.26) A„F(a) = F(a + n) —F(s); AiF(s) = A,[A^F(s)]. 

According to [9], p. 73, there exists a number 0(0 < 0 < 1) such that 

(2.27) AiF(s) = 7t«.FW(* + inO) 

provided FW(s) exist in the open interval (s, s + in) and the lower 
derivatives are continuous in the corresponding closed interval. 

From (2.25) it follows 

(2.28) (—1)< A<(M + kna — Tk) = (—1)< A\t(sk) - T(8k)] 

and hence, if we put i = 1 (t'(s) = a) 

(2.29) A(M + kna — Tk) =n\a — T,(hn + n6) k=0,l, ... 

Because of T'(S) = V(T) and V(T) > a for Te (0, oo), there is 
A[M + kna — Tk]<0 and (2.6) holds also for i = 1. 

5. Let now i = 2,3 . . ., n. Because of tW (s) == 0 for s > 0, from 
(2.28) it follows 

(2 30) (~~l)t At(M + han ~ Tk) = {~7l^~l T(i)(h7Z + ni0} = { ' } = (—ny~i [Tf(kn + in0)]«-D = (—n)^ F«-->(T) 

where te (Tk, Tk+i) is a suitable number. According to Lemma 1.1, 
however, there hold 
(—\)iV«\T) > 0; (—1)» V<»>(.T)= 0, i = 0,1 . . . , w—1 T > 0 
and thus 

(—1)<Zl̂ [M + to — Tjt] = (—n¥~l
 VV~V(T) > 0 i =0,1,..., n 

(—l)n+i A^\M + kan — Tk] ^ 0. 

Hence there follows, with regard to the denotation introduced in the 
proof, the validity of (2.6) for i = 2, 3, ..., n. 

By this the proof is finished. 
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Corollary 2.1. If the conditions of Theorem 2.1 are satisfied, then to 
any numbers T0, a e (0, oo) there exists M > 0 sufficiently large such 
that there holds (2.6) and 

(2,31) {M + hna —tk}-^oc for k -> oo 
00 

if and only if the integral J [q(oo) —q(t)] dt converges. 
Proof. If M is the solution of (2.22), we may see from the proof of 

the theorem that, if we choose M = M + a, then it is necessary to 
replaced (2.7) by (2.31). 

Remark 2.1. Some steps in the proof of Theorem 2.1 are mentioned 
analogously to the proof of Theorem 5.1 in [5]. This theorem, however, 
cannot be used because of having stronger suppositions and in this 
direction substantionally weaker assertion. 

Remark 2.2. Provided we omit the condition q'(t) ^ 0 in Theorem 2.1, 
the inequalities in (2.6) pass to non-sharp. I t may be directly seen from 
the proof of the theorem. 

I I I . FUNCTION z(t) = V(t) — v(t) 

This paragraph is devoted to the "monotonic dependence" of the 
function v(t), from the paragraph 1, upon the "monotonic change" of 
the coefficient q(t) of equation (0.1). 

Lemma 3.1. Let q(t) possess the derivative q'(t) e Mn+X (n ^ 1) 
0 < a(oo) < oo, Q(t) possess the derivative Q'(t)eMn, [q(t)—Q(t)] e 
6 Mn+X, and c ^ 0 be any constant. Furthermore, let v(t) be any function 
defined by the relation (1.1) satisfying v(t) € Mn+\. (According to Lemma 
1.1 this function really exists.) 

Then the differential equation 

(3.1) z'" + 4Q(t) z' + 2Q'(t) z = — F(t) 

where 

(3.2) F(t) = 4v'(t) [Q(t) — q(t)] + 2v(t) [Q'(t) — q'(t)] 

has a unique solution z = z(t) such that 

(3.3) [z(t)—c]eMn>n+2. 

Proof. W7e are going to show that, for the equation (3.1), the sup­
positions a), /?'), Y') °f Lemma 0.1 and Remark 0.1 are fulfilled, if q(t) 
is replaced by 4Q(t), q0(t) = 2Qf(t), f(t) = F(t), k = 1 and n is replaced 
by n — 1. 
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1. From suppositions of the lemma instantly follows that the condi­
tion a) is fulfilled, provided we show that F(t) e Mnf0. 

For any functions cp (t) e Mn, \p (t) e Mn ther holds with regard to 
the identity 

i 

(3.4) [<p(t). ip(t)]M = 2 (I) <PWV) • &*-*>(*) 
k=0 

th at the product cp . ip is also a function of class Mn. 
Since —(Q — q) e Mn+1, —v' e Mn, there holds [v'(Q — q)] e Mn. 

Furthermore there holds v'(oo) = 0, 0 < q(t) —Q(t) < oo for t > 0 and 
thus [*/(#— q)]EMn,0. 

Analogously for the second member of the expression (3.2) there 
holds [v(Q' — q')] e Mn,0, because v e Mn+1, (Q' — q') e Mn, 0 < v(oo) < 
< oo and <2'(co) = q'(oo) = 0. 

Thus, for the function F(t) defined in (3.2) there holds F(t) e Mw,0 

and the condition a) is fulfilled. 

2. We are going to prove now the fulfilment of conditions /?'). Let us 
choose t0 > 0 so that q(t0) > 0, Q(t0) > 0. Then for te(t0, oo) 

0 S [q(t) —Q(t)] [Q(t)]~i ^ [q(t0) -Q(t0)] [Qito)]-1 =k < co. 
holds. 

Therefore 
OO 00 

0 S — f v'(t) [q(t) —Q(t)] [Q(t)]~i dt^—hf v'(t) dt = 
to to 

(3.5) - = k[^0) — v(oo)] < oo. 

Analogously 
00 

0< J v(t)[Q'(t)— q'(t)][Q(t)]-idt< 
to 

00 

(3.6) < v(t0) [Q(t0)]-i f [Q'(t) — q'(t)] At < oo 
h 

From (3.5) and (3.6) it follows 
00 00 

/ F(t) m)]-1 dt= 4 / v'(t) [Q(t)~q(t)] [Q(t)]~i dt + 
to to 

00 

+ 2 / v(t) [Q(t) ~q(t)] [Q(t)]-i dt<oo 
to 

and the condition f}' > is therefore fulfilled. 
00 00 

Since / Q'(t) [WW-1 d< = [lgQ(t)fr < oo, there is also fulfilled the 
condition y'). 



51 

3. According to Remark 0.1 the equation (3.1) has then a unique 
solution z = z(t) of class Mn,n+2. Because of Q'(co) = 0, there exists, 
to any constant c > 0, a unique solution z = z(t) of (3.1) for which 
[z(t) —c] e Mnfn+2 holds. It follows from the equation (3.1) by introducing 
a new dependent variable z(t) —c. By that the lemma is proved. 

Lemma 3.2. Let the suppositions of Lemma 3.1 be satisfied and le 
further 

(3.7) q'(t)^0, [q(t)—Q(t)]^0 for t s (0, oo). 

Then for each solution z(t) of (3.1) satisfyinq (3.3) there holds 

(3.8) (_i)<3<«>($) > o i = 0 1, . . . ,n — 1. 

Proof. Suppose that such a number | > 0 and such an integer 
N ^ n — 1 exist that for z(t) satisfying (3.3) «W(|) = 0 holds. Since 
0 S z(oo) = c < oo, it holds z(t) = c for t e (f, oo) (see the proof of 
Lemma 0.3). 

By a substitution to the equation (3.1) we get 

(3.9) 2Q'z = -4v'(Q —q)— 2v(Q' — q') 

which leads to a contradiction because the expression Q'z is non-negative, 
while the right side of (3.9) is negative for t e (0, oo) with regard to 
Lemma l.L This proved the lemma. 

Remark 3.1. Conditions (3.7) of Lemma 3.2 may be replaced by any 
condition, guaranteeing the invalidity of (3.9). If there is, e.g., q'(t) = 0 
for t G < f, oo), then it is sufficient to suppose Q'(t) ^0 for t e <f, oo). 

We are going to prove now two theorems which, although having 
been desived because of playing a substantial role in the proof of 
Theorem 4.1, are not without interest by themselves. 

Theorem 3.1. Let q(t) possess a derivative q'(t)eMn+i (n ^ 1), Q(t) 
possess a derivative Q'(t)eMn, [q(t)—Q(t)]e Mn+i, 0 < q(co) < oo 
and Ci > 0, c ^ 0 be arbitrary constants. Then (0.1) resp. (0.2) has a pair 
of solutions [x(t), y(t)], resp. [X(t), Y(t)] such that 

(3.10) v = xHt) + y2(t) V = X*(t) + Y*(t) 

satisfies 
[V(t)—v(t) —c]eMn>n+2, v(cc) = ci 

(3.12) (—1)* V«Ht) ^ (—1)< vM(t) ^ 0 i = 0, 1, ..., n, t > 0. 

The, pair of solutions (x, y) of (0.1), resp. (X, Y) of (0.2) is unique up to 
their replacement by (aiX+biy,cxx+diy), resp. (a2X +b2Y, c2X +d2Y), 
where ai, bi, Ci, dt (i -= 1, 2) are the constants such that af + c\ = 
= h\ + d\ == 1, Oih + (Hdi =0. 
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Proof. Let Ci > 0, c2 = Ci + c > 0 are any constants. According to 
[3], p. 182 (see Lemma 1.1) the equation (0.9) has a unique solution v(t) 
and the equation 

(3.13) V" + 4Q(t) V + 2Q'(t) V =0 

a unique solution V(t) such that 

(3.14) [v(t) — d] e Mn+1>n+3 [ V(t) — c2] e Mn,n+2 

thus v( oo) = Ci, V( oo) = c2. Moreover, the solutions v(t), V(t) are of the 
form (3.10) and the pairs (x, y), (X, Y) are unique up to their replace­
ment by the already mentioned linear combination. There exist then 
pairs (x, y), (X, Y) such that for v(t), V(t) defined in (3.10) there holds 
(3.14). Denote now 

(3.15) z(t) = V(t)—v(t) 

where V(t), resp. v(t), denotes any solution of (3.13), resp. (0.9). The 
function z(t) defined in (3.15) is a solution of the equation (3.1) and 
reversely, all solutions of the equation (3.1) are of the form (3.15). 

Let us choose now Ci > 0 arbitrarily and v(t) firmly such that the first 
relation of (3.14) hold. According to Lemma 3.1 there exists, to any 
constants c j> 0, a unique solution z(t) such that [z(t)—c] e Mni7l+2. 
Therefore exists a unique solution V(t) of (3.13), for which (3.11) holds 
true. Because [v(t)—cx] e Mn+i>n+3, it holds V(oo) = -v(oo) + c = 
= c\ + c = c2 > c *>. 0 and at the same time (3.12). Hence it follows 
that this solution V(t) is of class Mn and with regard to the uniqueness 
of the solution of (3.13) is V(t) just that solution which fulfils the second 
of the relations (3.14) and is thus of the form (3.10). By this the theorem 
is proved. 

Remark 3.2. If, in addition to the condition of Theorem 3.1 q'(t) =7-. 0 
and q(t) ^ Q(t) for t e (0, oo), then the inequalities (3.12) may be replaced 
for i = 0, 1, ..., n — 1 by sharp ones so that 

(3.16) (—1)<*> F«)(«) > (—1)M<)(0 > 0 i =0, 1, ...,n — 1 t e (0, oo) 

holds. 
It follows directly from Lemmas 1.1 and 3.2. 

Remark 3.3. If in addition to the conditions of Theorem 3.1, we shall 
suppose only q'(t) ^ 0 for t e (0, oo), then it is possible to sharpen the 
inequalities (3.12) only partially so that they will be of the form 

(3.17) (—1)*" F<*>(0 ^ (—1)< v^(t) > 0 i = 0, 1, ..., n, te (0 oo). 
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Remark 3.4. That the inequalities (3.12) may be of the form 

(3.18) (—1)< V«){t) > (—1)< v^(t) £ 0, i = 0, 1, ...,n — 1, t e (0, oo) 

it is sufficient to demand—in Theorem 3A , moreover—any condition 
guaranteeing the invalidity of (3.9), for example the condition from 
Remark 3.L 

Theorem 3.2 Let the function q(t), resp. Q(t), possess a derivative 
q'(t) e Mn (n > 1), resp. Q'(t) e Mn, [q(t) —Q(t)] e Mn+l and 0 < q(oo) = 
= Q(oo) < oo. Then for functions V(t), v(t) defined in (3.10), satisfying 
(3.14) for Ci = c2, it holds true that the integrals 

OO 00 

(3.19) / [q(t) -Q(t)] d* / \V(t) — v(t)] dt 

converge or diverge at the same time. 

Proof. For q' (t) = 0 the assertion of the theorem is included in 
Lemma 1.3. Theorem 3.2 may be proved analogously and therefore the 
proof is given more briefly. Identity (1.9) for the functions v(t), V(t) 
defined in (3.10) may be written in the form 

1 3 
(3.20) qv2 —w2=j (vv'Y — - vv" 

(3.21) QV2—W2 = i ( V V ' ) ' — | - VV" 

where w = xy' —yx', resp. W = XY' — YX' denote the Wronskian of 
solutions x, y, resp. X, Y of (3.10). Consider further only such functions 
v(t), V(t) which satisfy (3.14) for Ci = c2, thus v(co) = V(oo). 

According to (1.7) there holds 

(3.22) \w\ . [q(oo)]-1'2 = v(oo) = V(oo) = \W\ [Q(oo)]"1/2 

and since g(oo) = Q(oo), according to the supposition of the theorem 
it follows from (3.22) 

| w | = | W |. 

\w\ = \W\. 

By subtraction of (3.20) and (3.21) we get after forming 

v2(q -Q)=(V-v)\jv" + Q(v + 7)1 — | V(vu" — V") + 

(3.23) + j (W — vvy. 
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Let us integrate the identity (3.23) in the interval (l, oo) where t > 0 
is sufficiently large. Evidently it holds 

00 

(3.24) I / (vv' — VV')'ds | = | [vv' — VV']? \ < oo 
t 

00 00 

(3.25) I / V(v" — V") ds\<,\ V(t) f (v" — V") ds \ < oo 
t t 

and further 

\"Av"(t)+Q(t)[v{t) + V(t)\ = 

(3.26) = Q(oo) Moo) + F(oo)] = 2 [ w \ [Q(oo)] < oo. 

. -. Гз „ 
0 < lim -— v 

t-+æ L 4 

Considering the fact that the integrals (3.24) and (3.25) converge, 
0 < #2(oo) < oo and (3.26) holds, in the same way as in the proof of 
Lemma 1.3, the assertion of the theorem follows from (3.23). 

IV. SEQUENCES OF ZEROS OF T H E SOLUTIONS OF EQUATIONS 
(0.1) A N D (0.2) 

The following theorem compares the sequences of zeros of the solutions 
of two differential equations. It describes the sequence of differences of 
corresponding zeros of the solutions of equations (0.1) and (0.2). 

Theorem 4.1. Let q(t), resp. Q(t) possess a derivative q'(t) e Mn+1 

(n ^ 1), resp. Q'(t)eMn, 0 < q(oo) = Q(oo) < oo, [q(t) — Q(t)] e Mn+1 

and q(t) ^ Q(t) for t e (0, oo). Let {tk}, resp. {Tk} denote a sequence of 
zeros of any solution of (0.1), resp. (0.2). 

Then for any fixed choice of T0 > 0 there exists >a t0 sufficiently large 
such that there holds 

(—iy A*(tk — Tk) > 0, (—1)»+- An+i(tk — Tk) ^ 0, 

(4.1) i = 0 , 1 , ...,n; h = 0 , 1 , 2 , ... 

(4.2) (tk — Tk)->0 for k -> oo 
oo 

if and only if integral f [q(t) — Q(t)] dt converges. 

Proof. If q'(t) = 0, then (4.1) and (4.2) follow from Theorem 2.1. 
Theorem 2.1 is consequently included as a special case in the theorem 4.1. 
We shall further suppose that q'(t) =£ 0 for t e (0, oo). (The case q'(t) = 0 
for t 6 <f, oo), | > 0 will be observed in the end.) The proof will be 
performed similarly as in the case of Theorem 2.1. 
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1. According to Theorem 3.1 and Remark 3.2 the functions v(t), V(t) 
defined in (3.10) satisfying (3.14), (3.11) and (3.16) exist to any constants 
Ci > 0, c2 > 0. Let us choose nowr 

so t h a t 

2. Transformations 

(4.3) y(t)=[v(t)}^u(s 

cx = fe(oo)]-W2 = [Q(oo)]-i/-= <* 

\w\ = \W\ =1. 

t'(s) = v(t) 

Y(T) = [V(T)]i/2 U(S) T'(S) = V(T) 

transform t h e equations 

(4.4) y"(t) + q(t) y(t) = 0 Y"(T) + Q(T) Y(T) = 0 

into t h e equations 

(4.5) u"(s) + u(s) = 0 U"(S) + U(S) = 0. 

Let us choose the integration constants in (4.3) such t h a t 

(4.6) «(*) -Iж smЧ 
h To 

dr 

Ђ Ђ t<> ч t2 t3 

Fig. 2 
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where T0 > 0 is arbitrary but fixed number and t0 > T0 is, for the time 
being, closely not determined. The transformation (4,3) realizes now the 
one-to-one correspondence between the zeros of y(t) and those of u(s), 
resp. zeros of Y(T) and those of U(S). 

If {sk}, resp. {Sk} denotes the sequences of zeros of suitable solutions 
of (4.5) and {tk}, {Tk} sequences of zeros of solutions of equations (4.4), 
the principle members of which are t0, T0 from (4.6), then 

(4.7) Sk = S(Tk) = s(tk) =sk k=0,l, ... 

Since V(t) > v(t) for t e (0, oo) and t0 > T0, it holds 
to to 

(4.8) 
TO to 

(4.9) 0 < S'(t) = [V(t)]~i __ [v(t)]~- = s'(t) < oo te <*0, oo> 

ío řo 

Яtø) = í ттгт > Í -JT = SM = *o = 0 J V(r) J v(r) 

where equality occurs only for t = oo. The function S(t) —s(t) is there­
fore in the interval (t0, £) where f > t0 is a suitable number or f = oo, 
positive and decreasing, thus it holds S(t) > s(t) > 0 for te(t0, £). 

00 

3. Let us suppose now that the integral / [q(t) — Q(t)] dt converges. 
00 

Then the integral f {[v(t)]-i — [V(t)]"1} dt converges as well, because it 
holds analogously as in (2.20) 

00 00 

0 < / {Mt)]~l — [V(t)]-1} dt _ . ( » ) / [V(t) - v(t)] dt 

and the last integral converges according to the Theorem 3.2. 
to 

The function S(t0) = f [V(l)]"1 dt (see 4.6) is for t0 > T0, as the 
To 

function of t0, continuous, increasing, S(T0) = 0, S(co) = oo. Further 
on, define the function 

00 

(4.10, ^ . f ' ^ _ _ £ - } _ 
^O 

The function <p(t0) is for te(T0,oo) continuous, positive, decreasing 
and 95(00) = 0 . There exists therefore a unique number t0 such that it 
holds S(fo) = ^(^0), thus there exists a unique solution t0 of the equation 

( 4 1 1 » / -m-f \k-m\d'-
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If t0 is this solution, then it follows 

t t 

(4.12) l i m ( f - g - — [-£-} = Urn [S(t)-8{t)]=0. 
t-+°o ( J V(r) J v(r) J ,_«, 

- *o to 

oo 

If / fe(0 —Qify] && diverges, then, according to Theorem 3.2, the integral 
00 

f [V(t) —v(t)] dt also diverges and hence the divergence of the integral 
00 

f {[MO]-1 — [^W]-1} dt follows. In this case the equation (4.11) cannot 
be therefore satisfied for any finite number t0. 

Thus, we have shown that the number t0 satisfying (5.12) exists if 
00 

and only if the integral f [q(t) — Q(t)] dt converges. 
According to Lemma 2.1 it follows from (4.12) 

(4.13) [t(s) — T(s)] > 0 for s e (0, oo); lim [t(s) — T(s)] = 0 
£->oo 

where t(s), resp. T(S) denotes the inversion function to s(t), resp. S(T). 
Let us choose such solutions Y(T), y(t) that for T0, t0 from (4.6) there 
holds Y(T0) = y(t0) = 0; Let {Tk}, {tk} further denote the sequences of 
zeros of these solutions. According to (4.7) it holds with the above 
mentioned choice {Tk}, {tk} 

(4.14) Sk=Sk = hjt, tk=t(sk), Tk = T(Sk) h=0, V.... 

Since Sk -> oo for h -> oo, the assertion (4.2) and (4.1) for i = 0 follows 
from (4.13). 

4. By using the designation from (2.26) it holds 

(4.15) (—1)« J % — Tk) = (—1)« A%[t(sk) — T(sk)]. 

Suppositions in (2.27) are satisfied for F(s) = t(s) — T(s) and i = 
= 0, 1, ...,.»& + 1 , and therefore 

(4.16) (—1)* A*(tk — Tk) = (—nf [t(»(sk + inO) — T^(sk + inS)] 

i = 0 , 1, ..., n + 1, 4 = 0 , 1, ..., 0 < 6 < 1. 

5. For already defined v(t), V(T) it holds 

(4.17) (—1)* F«)(T) > (—L)*vM(T) > 0, 

i =0, 1, ...,n — 1, Te(0, oo) 

(—1)» VW(T) ^ {—l)"tt»)(T) > 0, (—1)*+- v(n+»(T) £ 0 
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The function (—\)1 v^(T) is in the interval (0, co) positive and for 
i = 0 , 1, ..., n — 1 decreasing, for i = n non-increasing. Consequently 
for any numbers T, t, for which 0 < T < t, it holds 

(4A8j (-iyv^(T) > (—iyvW(t) > 0 i =0, 1, ...,n — 1 

(_l)n^(n)(T) ^ (_l)nv(n)(j) > 0. 

Thus from (4.10) and (4A8) it follows tha t for arbi t rary T, t satisfying 
0 < T < tit holds 

(4A9) (— \y V(0(T) > (—1)«) vM{t) > 0 i = 0, 1, ..., n — 1 

( _ l ) n V^(T) ^ (-l)»v(*)(«) > 0. 

According to Lemma 0.2 (where ItT = (̂ o, oo), Is = (0, co)) and 
Remark 0.2, it holds on the basis of (4.19) for arbi trary s > 0 

(4.20) (—1)« TW(8) < (—1)* t«)(s) < 0 i = 0, 1, ..., n 

(_ l )n+ i T(n+1)(S) ^ (_l)W+ij(n+i)(S) < 0 

and then with regard to (4.16), the relation (4.1). Thus, in the case of 
q'(t) z£ 0 the proof is finished. 

6. Now, it remains to take a notice only of the case qf(t) =fc 0 for 
t e (0, f), q'(t) .== 0 for t e <f, oo). According to Remark 3.4, there exist 
the functions v(t), V(t) satisfying (3.18). Thus, (4.19) holds, where in the 
right side the sign " > " is replaced by "*> ". According to Remark 0.2 
applied to the interval < | , oo) (4.20) holds in the form 

(4.21) ;(—1)* T<*>(S) < (—1)< W(S) ^ 0 i = 0, 1, ..., w 

(_ l )n+ i Tn+1(S) ^ ( _ l ) ^ + i ^ + i ) ( S ) ^ o 

and hence it follows, with regard to (4.10), the relation (4.1) and the 
proof is finished. 

Remark 4.L If in addition to the conditions of Theorem 4.1 q'(t) e 
G Mn+2, then the inequalities (4.1) hold in the form 

(4.22) (—\)iA*(th — Tk) > 0 i = 0 , 1 , . . . , n + 1, h = 0, 1, . . . . 

The function (—1)* v^(t) is namely decreasing also for i = n so t ha t 
(4.18) is in this case of the form 

(_1)< vd)(T) > (—1)< v^(t) > 0 i = 0, 1, ..., n 

so tha t in (4.19) the sharp inequality also holds for i = n and therefore 
(4.20) is of the form 

(_ l ) f 2W(flf) < (—1)* W(S) < 0 i = 0, 1, ..., n + 1. 

Hence (4.22) follows. 



59 

Theorem 4.2. Let all the conditions of Theorem 4.1 be satisfied. If {ik} 
denotes the sequence of zeros of any solution of (0.1), then for any fixed 
choice of T0e (0, oo), oc e 0, oo there exists a t0 sufficiently large such 
that there holds (4.1) and 

(4.23) (ik — Tk)-xx for k -> oo 
oo 

if and only if f [q(t) — Q(t)] dt converges. 

At the same time it is possible to admit q(t) == Q(t) ^ O/Or t e </?, oo), 
$ > 0. 

P roof . Let the conditions of Theorem 4A be satisfied and let 
00 

0 < f l°(t) —Q(t)1 d£ < oo. Le t to denote the solution of (4.11) and i0 

the solution of equation 

T> 
(4.24) f(i0) = a[g(oo)]1/2 where f(i0) = / [v(r)]~i dr. 

to 

Such a number i0 exists to any a e (0, oo) because 0 < a[a(oo)]1/2 < oo 
and the function f(i0) as a function of the variable i0 is for i0e (t0, oo) 
continuous, increasing, /(O) = 0, /(oo) = oo and is unique. 

Le t now 
to To 

,4.25, ,{l) = f±-=f ^ = Sm. 
To To 

Then regarding to (4.12) 

t To t 
{ C dr C dr C v(r) } 

(4-26) °-2:{JyiP>-J«r-J-3r}-
= lira [S(l) _ , ( ( ) ] _ « ( j ( o o ) ] > » 

t-too 

and thus 

(4.27) lim [S(t) — s(t)] = a[?(oo)]i/2 

t—•oo 

Consequently according to Lemma 2.1 

(4.28) lim [*(*) — T(S)] = 
S-*oo 

and hence (4.23) directly follows. 

(4.28) lim [t(s) — T(S)] = a[g(oo)]W2 ^(oo)] - 1 = a 
S-*oo 
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00 

If / [_?(0 — Q(t)] d& diverges, then it may be seen from the proof of 
Theorem 4.1 (part 3) that in this case the solution of (4.11) does not 
exist and therefore i0, satisfying (4.23), does not exist, too. 

Now let q(t) == Q(t) for t e </?, oo), /3 > 0. Then with regard to uni­
queness of the solution of (0.9) v(t) ^- V(t) holds for t e </?, oo). Because 
of a > 0, with regard to (4.28), t(s) — T(s) > 0 holds for s e (0, oo> 
and hence (4.23) follows. 

Since v(t) fulfils the inequalities (4A8), (4A9) holds and thus also (4A) 
in an unchanged form. 

By this the proof is finished. 

Remark 4.2. If we put, in Theorem 4.2, q(t) = Q(t) for t e (0, oo), 
then {tjc}, {Tjc} denote the sequences of zeros of the same or different 
solutions of the same differential equation (0.1). Theorem 5.1 and 
partially Theorem 2.1 of the paper [5] are thus included in the preceding 
theorem. The part of the proof of Theorem 4A is mentioned similarly 
as the proof of Theorem 5A in [5], This theorem, however, cannot be 
used because its assertion is weaker and at the same time supposes the 
existence of integrals v(t), V(t) of desirable properties. 

Remark 4.3. Theorem 4A, resp. 4.2, defines the decomposition of 
the set 301 of all functions q(t) such that 0 < q(ob) < oo, q'(t)eMn, 
[ax e Mn, q2 e Mn] => \ q[ — q2 \ e Mn (n ^ 1, fixed integer) on disjunc­
tive classes so that, if Wfl(q0) denotes the set of all functions q e 9M 

GO 

equivalent to q0, then q eWfl(q0), if and only if the integral / | q(t) —q0(t) \ dt 
converges. The inequalities (4.1) and (4.2), resp. (4.23), are then satisfied 
if and only if the functions q(t), Q(t) are of the same class. 

V. THE SEQUENCES OF EXTREMANTS 

If y(t) denotes any solution of the (0.1) where q(t) e C2, q(t) > 0 for 
t 6 (0, oo), then the function Y(t) = y'(t) . [q(t)]~x^ is a solution of the 
differential equation 

(5.1) Y°(t)+Q(t) Y(t)=0 

where 

(5.2, «,_,_»£ + ! £ 

and conversely if Y(t) is any solution of (5.1), then there exists such 
a solution y(t) of (0.1) that Y(t) = [q(t)Y^2y (t) holds (see [1]). 

Thus, if Tjc is an extremant of the solution y(t) of (0.1), then is zero 
of the corresponding solution Y(t) and conversely. The sequence {Tjc} 
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is therefore a sequence of extremants of some solution of the equation 
(0.1), if and only it is the sequence of zeros of a suitable solution of (5.1). 

Lemma 5.1. Let q(t) possess a derivative q'(t) e Mn+i (n ^ 1), q(t) > 0 
for t e (0, oo), q(co) < oo and Q(t) be defined by the formula (5.2). 

Then 

(5.3) Q'(t) e Mn^ ; [q(t) — Q(t)] e Mn0 

00 

(5.4) 0 < / [q(t)—Q(t)]dt < oo 

holds. 
Proof. I have proved the validity (5.3) in the paper [10] (the first 

part (5.3) follows from Lemma 3, the second part (5.3) follows from the 
proof of Lemma 3). Because of identically holding 

we have 

Since q'q'1 -> 0 for t -> oo for sufficiently large t there holds 

oo oo 

(5.6) 0 < j |^)2d< < J ^-dt = [lg g]» < 00 

and regarding (5.5) the integral J (q — Q) dt converges. 

Let the conditions of Lemma 5.1 be satisfied. 

Remark 5.1. If there is q'(t) ^ 0 for t e (0, oo), then for this t 
(5.7) (—i)t Q(i+i)(t) > (—1)* tf*+»(t) > 0 * = 0, 1, ..., n — 1 

holds. 
It follows directly from Lemmas 0.3 and 5.1. 

Theorem 5.1. Let the function q(t) possess a derivative q'(t) e Mn+i 
(n ;> 2), q(t) > 0, q'(t) ^ 0 for t e (0, oo) and q(oo) < oo. Let {tk} denotes 
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the sequence of zeros of any solution y(t) of (OA) and {Tjg} the sequence of 
extremants of the same solution. If there is t0 > T0 > 0, then 

(5.8) ( _ i ) M % — TJC) > 0 i=0, 1, . . . , n ; k=0,l,.... 

Proof . Let the function Q(t) be defined b y the formula (5.2). Because 
a'(oo) = g"(oo) = 0, it holds g(oo) = Q(oo). According to the Lemma 5.1 
and Remark 5.1 [q(t) —Q(t)] e Mn,0, Q'(t) e Mn_x holds and q(t) ^ Q(t) 
for t e (0, oo). The conditions of Theorem 4.1, resp. 4.2, where n is 
replaced by n — I, are therefore satisfied. As above mentioned, t he 
sequence {Tjc} of extremants of any solution of (OA) is the sequence 
of zeros of a suitable solution of (5.1) and conversely. According to 
Lemma 5.1 (5.4) holds. Therefore according to Theorem 4.2 and Remark 
4.1 there exists to any number T0 > 0 such a number t0 sufficiently 
large t ha t there holds (5.8) and (tjc — Tjc) -> a for k -> oo, where a ^ 0 
is any , fixed number. I t remains to prove tha t there exists such a > 0 
tha t , if To being an extremant of solution y(t) of (OA), then for t0 (~ i0 

with designation from Theorem 4.2) defined b y the equation (4.24) it 
holds y(t0) = 0 (with the possibility of t0 being the first zero over T0). 

Since q(t) > 0, only one extremant lies between any pair of con­
secutive zeros of the same solution of (OA) and conversely only one zero 
lies between any pair of consecutive extremants of the same solution 
y(t) of (OA). li {tjc}, resp. {FV}, denotes the sequence of zeros, resp. of 
extremants of the same solution, and t0 > T0, then tjc > Tjc holds 
therefore for all k. B y this the proof is finished. 

Remark 5.2. I t may be seen from the proof of Theorem 4 A t ha t the 
oo 

convergence of the integral J [q(t) —Q(t)] &t is not necessary to be used 
to the proof of Theorem 5 A ; even on the contrary , the convergence of 
this integral follows from Theorem 4 A , resp. 4.2. 

Remark 5.3. Let the conditions of Theorem 5 A be satisfied and let {tjc} 
denote now a sequence of zeros either of the same solution whose 
sequence of extremants being {Tjc}, or any other solution y(t) of the 
same equation (OA). If t0 is greater or is equal to the solution of the 
equation (4A1) (which is also designated by t0), then (5.8) remains in 
validity . Especially (5.21) holds t rue always, provided t0 being greater 
or equal to the first zero over extrement T0 of the same solution. 

Lemma 5.2. Let qx(t) > 0, q\(t) e Mn+l (n ^ 1) and [qi(t) —q2(t)] e 
e Mn+2 for X = 1,2 and t > 0. 

Let further 

Then the function Qx(t) — Q2(t) is of the class Mn. 
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Proof. According to the suppositions of the lemma it holds for t > 0 
and i —0,1, ..., n + 1 

(5.10) q±(t) _z q2{t); 0 g (_l)« ffl(i+i>(*) £ (—1)« g2«+D(#) 

thus it holds true | 2i«+D(*) | ^ | tf2<*+1)(£) |. Hence it follows 

(5.11) | ?1<*+->(0 ^ ( O ] - 1 I ^ I g^+1)(f) [g^)]"1 i = 0, 1, ..., n + 1. 

According to Lemma 2 of [10] it holds for p < n + 2 — i 

1<1>>I £ 
= 2,1(7*--

*=il # 
(5.12) Ш вř"ł) <// ы 

îл 

/вL.l<P) 

where (7*, N, £• #/,£ are suitable numbers the detailed specification of 
which not being necessary in our case. From a term by term comparison 
of the expression (5.12) for the functions qi(t), q2(t), with regard to (5.11), 
there follows the inequality 

(513) I i t) 
Further on, it holds identically 

<-> m'tr-imrar-
Since q'q'1 e Mn+i (see [10], Lemma 2), all members of the sum on the 
right side of (5.14) have the same sign, namely (—1)^+1. Then with 
regard to (5.13) it holds 

(^•15) ШГMIШ 
For (i + l)-th derivative (i = 0, 1, ..., n — 1) of the function Qx ^ 
holds true 

<••»> • «*-«- - !TO" + i£r 
By term by term comparing of the right sides of (5.16) for = 1", 2 we get 
with regard to (5.13) and (5.15) 

(5.17) | Q^i+1)(t) \ <{ | &«+->(*) I i = 0, 1, ..., n — 1 

and since, according to Lemma 5.1, Q'x(t) e Mn_i, the inequality 

(5.18) 0 S (—1)« Qi<i+1>(t) ^ (—1)« Q2u
+1\t) i = 0 ,1 , ..., n — 1 

follows from (5.17). 
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The inequality 0 S <M0 S Qi(t) follows, with regard to (5.11), directly 
by term by term comparing of (5.9) for X = 1, 2 and the proof is finished. 

Lemma 5.3. Let the conditions of Lemma 5.2 he satisfied and let 
q[(t) == q2(t) hold for t e (0, oo). Then 

(5.19) (_i)< Q^(t) > (—l)* Q2«){t) i = 0, 1, ..., n; t e (0, oo). 

Proof. Since q[(t) < q2(t) for t e (0, oo), it holds, with regard to the 
conditions of Lemma q\(t) > q2(t) and according to Lemma 0.3, also 
(_!)* qid)(t) > (—1)* g2<*>(*) for i = 2, 3, ..., n + 1,' so that it holds 

(5.20) (—l)*gf(0 > (—1)^^(0 ^ Ofori = 0 , 1, ...,n + l ; l e ( 0 , oo). 

Therefore non-sharp inequalities in (5.H), (5A3), (5.15), (5.17) and 
a non-sharp inequality in the right part of (5.18) are possible to be 
replaced by sharp ones with eventual exception of inequalities for 
highest derivatives. From (5.16) it may be seen, however, that in (5A7) 
and in the right part of (5.18) the sharp inequality also remains for 
i == n — 1, thus (5.19) holds for i = 1, ..., n. The validity of (5.19) for 
i = 0, with regard to (5.11), may be seen directly from (5.9). 

Theorem 5.2. Let the function q\(t), resp. q2(t), possess a derivative 
q\(t) e Mn+1, resp. q2(t) e Mn (n ^ 3) and further let [q\(t)—qz(t)]e 
e Mn+i, qi(t) > q2(t) ^ 0 hold for te (0, oo) and qi(oo) = #2(00) < 00. 
Let {t^,k} for X = 1, 2 denote the sequence of zeros of any solution yx(t) 
of the equation 

(5.21)| Vx+qx{t)yx=0 

and {TXfk\ denote the sequence of extremants of the same or any other 
solution of (5.21). Then for any fixed choice of T2f0 > 0 and any numbers 
a e <0, oo), /? e <0, oo) there exist the numbers Tly0 and l1>0, sufficently 
large such that there holds 

(5.22) (—1)< A*(Tlfk — T2,k) > 0, (—l)n-i A»-*(Tltk — T2,k) ^ 0, 

i = 0 , 1, ...,n — 2; k = 0, 1, ... 

(5.23) (Thk — T2,k)-+oc for k -> 00 

and further on 

(5.24) (—i)iAi(tl9k — T2,k)>0 i = 0 , 1, ...,n — 1; k = 0, 1, ... 

(5.25) (thk — T2,k)-+P for k->oo 
00 

if and only if the integral f [qi(t) —q2(t)] dt converges. 
Proof. Let the functions Qi(t), Q2(t) be defined by the formula of (5.9). 

According to the suppositions £1(00) = q2(oo) < 00. Therefore qx(oo) = 
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= q"x(co) = 0 (A = 1,2), and qi(oo) = q2(co) = Qi(oo) = ©2(00) holds. 
According to Lemma 5.1 it holds Q[(t) e Mn_\, Q2(t) e Mn~2. According 
to Lemmas 5.3 and 5.1 it holds for t e (0, 00) and i = 0 , 1, ..., n — 1 

(5.25) (_1)<0«> W > (—l)<Q?(t). 

The conditions of Theorems 4.1 and 4.2 where Q~Q2, q^Qi and 
00 

n ~n — 2 are therefore satisfied. Since / [gA(l) — Qk(t)] dt converges 
00 

always according to Lemma 5.1, the integral J [Qi(t)—Q2(t)]dt con-

verges if and only if the integral f [qi(t) — qz(t)] dt converges. From 
Theorems 4.1 and 4.2 the assertions (5.22) and (5.23) follow. 

The relations (5.24) and (5.25) follow from Theorems 4.1, 4.2 and 
00 

Remark 4.1 where q~qi, Q~Q2. The integral / [qi(t)—Q2(t)]dt 
namely converges with regard to Lemma 5.1 if and only if the integral 

00 

/ [qi(t) — Qiit)] dt does. 

Remark 5.4. If there is a > 0, /? > 0, then regarding Theorem 4.2 
the identical equality qi(t) == q2(t) for t e (y, 00) (y > 0) can be admitted, 
provided q[(t) ^ 0 for t e (0, 00). 

Remark 5.5. If in addition to the conditions of Theorem 5.2, q[(t) e 
G Mn+2, then (5.22) holds in the form 

(5.26) (—l)iA*(Tlfk — T2tk) > 0 i=0, l,...,n — 1; k=0, 1, . . . . 

It follows from Remark 4.1 because in this case Q[(t) e Mn. 

VI. APPLICATION OF D E R I V E D R E S U L T S ON B E S S ^ L EQUATION 

/ 1 \ i / 1 \ i 
1. The functions l-^-^l Jv(t), (-^-^1 Yv(t) form a fundamental 

system of solutions of the Bessel equation 

1 

(6.1). У"Џ) 
ł2 

y{t) = 0 . (t > 0). 

For the Wronskian w of these functions it holds | w j = 1 (see [11]). 
Further let yv(t) denote any non-trivial solution of (6.1),,, thus 

(6.2), yv(t) = at^2Jv(t) + bt^2Yy(t) 

where a, b are constants. 
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Further on, let {tv,k}kLo denote a sequence of zeros of any solutions 
yv(t) of (6.1 )v and {Tv,k}ff=0 a sequence of extremants of the same or 
any other solution of (6.l)v. The function 

(6.3), g,(t) = l — 

evidently possess a completely monotonic derivative q'(t) for | v \ > —-, 
Li 

i.e. it holds 

(6.4) (—IY g«+"(t) > 0, i = 0, 1, ..., * 6 (0, oo). 

Further let {J?-»,A,}£L0> resp. {Tv,k}kLo denote a sequence of zeros, resp. 
extremants, of the solution yv(t) of (6.1 )„, which can be, but need not be, 
identical with the above mentioned solution yv(t). Lee Lorch and Peter 

Szego showed that, if there is tv,o < tv,o then for | v \ > — the sequence 
* A 

{tVfk—tVfk}^0 is completely monotonic and it holds (—\)iAi(tVtk—tV)k) > 
> 0 , (i = 0, 1, ...) (see [5], p. 63, 72). In paper [10] I showed that for 
the sequences of differences of extremants there holds also 

(_ l ) i Ai(TVfk — TVtk) > 0, (i, Jfc = 0, 1, ...) 

if there is TVfo > TVf0. In paper [5] it is further shown that for v > 

> / / > - — there exist to any fixed sequences {̂ ,*,}£L0> {̂ ,*}*Lo 
Jit 

integer r so that 

(6.5) {—i)iA%>k+r—tVfk) > 0 i ,k = 0, 1, ... 

For proving the last assertion it was necessary to use the properties 
of the functions Jv(t), Yv(t) reaching far to the theory of Bessel functions 
the derivation of which is therefore by no means easy. The inequalities 
of (6.5) follow, however, directly from Theorem 4.1, because q^(t) — 

— qv(t) = (v2 — jbL2) t~2 and consequently for v > JLI ^ — it holds 

00 

(6.6) [qp{t)—qSJ] e ^oo; 0 < / [q^t) —qv(t)] dt < oo. 

2. In the following theorem there are contained all properties of Bessel 
functions (under the notion of Bessel function of order v we mean any 
solution (6.2)v of the equation (6.1 )„) mentioned in paragraph 1, and 
also all their properties deduced in paper [5] as some special cases. 
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Theorem 6.1. Let v, /bi be any numbers satisfying v > [x *> — . Let 

{^,*}£.o> resP- 0/i.*}f-o> {h,k}k~o denote a sequence of zeros of any 
solution yv(t), resp. y^t), y^t) of (6.1)„, resp. (6.1)^, and {TVfk}f0, 
resp. {Tpfk}f^0 a sequence of extremants of the same or any other 

solution yv(t), resp. y^t). Designate xv = v2 — —, otp = fi2 — — . Then 

to any pair of numbers X e < 0 , oo) and tVf0 e (0, co), resp. TVf0 e (a^) 
such a number t^^, resp. T^f0, ^> 0 exists that it holds 

(6.7) ( — 1 ) M % , * — tVfk) > 0 i,k =0,1, ... 

(t/ifk — tpje) -> h for k -> oo 

(6.8) (—\fAi(l,fk—TVfk) > 0 i,k =0,1, ... 

(iMk — T^) ->*. for k -> oo 

(6.9) (—l)*Ai(Tlt,k — T9tk)>0 i,k=0,l,... 

(T„,k — TVfk) -> A for k -> oo 

The numbers tMf0, t^o awrf JT^>0 ewe fhe solutions of corresponding 
equations (4.24), respectively (4.11). 

P roo f . Since qx(t) e Moo , q^t) e M^, qv(oo) = q^oo) = 1 and (6.6) 
holds, the conditions of Theorems 4.1 and 4.2 are satisfied for n = co 
and q ~qv, Q r^q^. Hence (6.7) directly follows. Assertions (6.8) and 
(6.9) follow analogously from Theorem 5.2 where the interval (0, oo) of 
the variable t is replaced by interval ( ^ , oo). 

The function Qv(t) is in the Bessel equation of the form 

Qv(t) = l - ^ L - 3 Xv 
t2 (t2 — ocv)

2 ' 

Remark 6.1. Provided />*>—-, it is possible to put [A = v in the 

preceding theorem so tha t the relation (6.7)—(6.9) are then related to 
the sequences of zeros, resp. extremants of the same or different solutions 
of the same Bessel equation. (Except the case A = 0 in (6.7) and (6.9) 
when {tVfk}^0 = {tofao and {T^}^ = {TVfk}^0). 

Theorem 6.2. For v > —let {tVtk}kL0 denote the sequence of zeros of 

any solution yv(t) of (6.1 )„ and {TVfk}k=i0 the sequence of extremants of 

the same solution. If there is t0 > T0 > ocv i ocv = v2 — — J then 



(6.10) (—)« A* (tv>k — Tv>k) > 0 i, k = 0,1 . . . 

Proof. Theorem 6.2 is the direct consequence of Theorem 5.1 for 
n = oo and t e (ocv oo) because q̂  (t) e Jf«,, <?„(£) > 0 for t > a* and 
^(oo) = 1 

3. The results derived in the preceding paragraphs are possible to be 
used not only to the qualitative but also to quantitative investigation 
of concrete equations. The general solution of (6.1) is possible, on the 
basis of transformation (4.3), to be written in the form 

t 

(6.11) yv(t) = A[vv(t)]H2 sin{ / [vv(s)y* ds} 
to 

where A, t0 are integration constants and vv(t) being solution of the 
equation 

(6.12) v"; + 4 

satisfying [vv(t) — 1] e M&. 
From (6.11) we can see that the k-th zero tk of (6.11) is a root of the 

equation 
tk 

(6.13) / [vv(s)]-*ds =lcn. 
to 

f 

The function J [vv(s)]~x ds is then determining the distribution of zeros 
*0 

of to solution (6.H)„. 

4. Transformation t = — transforms the equation (6.12)„ into the 
x 

equation 
6 .. ( 7 — 4v2 41 . 4v2 — 1 

(6.14> Lv + -vv + { + — vv — - vv = 0 
X [ X2 X4) X3 

where the point denotes the derivative according to x. The equation 
(6.14),, has an irregular singular point of the second class in the origin 
(see [4]) having thus maximum one solution, regular in the origin, 
consequently the solution that is of the form 

(6.15)„ vv = xs(a0 + axx + a2x + ...) = t~s(a0 + atf-1 + ...) a0 =fi 0. 

By a direct substitution into the equation (6.12)„ or (6.14)„ we get 
$ == 0, ai = 0 and for coefficients an we get a recurrent formula 
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(6.16) an+2 = \ ~ \ i > 2 — (n + l)2] an n = 0 , 1 , ... 
4 n + 2 

Hence it follows for k = 0 , 1, ..., a2jc+1 = 0 and 

a2k+2 = - - ^ - | = - - - [** - 1-] [ 4 ^ - 32] ... 

(6.17) ... [4v2 — (2£ — l)-]ao 

From (617) we can instantly see t ha t if there is v = n + —, TO = 

0,1, . . . , then for k = n, w + 1, . . . it holds a2A,+2 + 0 and thus the 
series (6.15) has only finately many non-zero members. If we choose 
a0 = 1 then the function vn+lt2(x) has for n = 1, 2, ... the form 

n l o /ok I) 

vn+m(t) = 1 + 2^^jtT-L{(^ + l)2 -1 2 } . {(2n + l )2-32} ... 

(618) ... {(2n + l ) 2 — (2k — l)2} t~2k 

and vi(t) = 1. According to Lemma 1.1 the equation (612)„ has for 

v > - - a unique solution vv(t) satisfying the relations (—1)* vv(t)^ > 0 

for i = 0 , 1, ... and v„(oo) = 1. Jus t this solution, however, is expressed 

for v = n + — (n = 1, 2, ...) by the formula (6.18) because a2jc > 0 for 

k = 0, 1, ..., n, a2jc = 0 for k > n and r 2 ^ e Moo.o-
Therefore there exists such a pair of solutions (xn+ii2(t), yn+1/2(t)) of 

the equation (6T)w+i/2 t ha t it holds for i = 0 , 1, ... 

(619) xl+lj2 + yl+m = %+i/2, (—1)?: < % 2 > 0, vn+1/2(oo) = 1. 

For the Wronskian ivn+1}2(xn+ll2, yn+lj2) of the solutions z n + i / 2 , yn+lj2 

from (6.19), 

i Wn+lj2(xn+ll2, yn+ll2) = %+i/2(oo) [gn+i/2(oo)]1/2 = 1 

then holds according to Lemma 1.2. 

From asymptotic formulae for Jn+1j2(t), Yn+1i2(t) = J-n-m (see e.g. 
[11], p . 199) it follows t ha t with regard to Lemma 1.2 it is possible to 

(I \ 1/2 n \ i /2 
choose Xn+112 = I g- nt\ Jn+ll2(t), yn+m = I -%ni\ Yn+m(t). 

5. Let us choose now p = — in Theorem 6.1. Then evidently { ,̂fc} = 
-W 

= {M + kit) where M = t^^ > 0. Let us calculate now this M for 
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X = 0. M is the root of the equation (2.22) which, in our case, is of the 
form 

M oo 

(6.21) / [%+1,2(0h1 d* = / {1 — [»w+1/2(t)]-i} dt 
-n+1 ,2 ,0 - V 

For n = 1, 2, 3, 4, 5, #n+i,2(£) is of the form 

1 3 9 
#3/2 = 1 + - #5/2 = ! +y 2 - + 7T 

. , 6 45 225 
#7/2 = 1 + — + --T- + t2 t4 ' £6 

10 135 1575 11025 
V 9 ' 2 ^ 1 + T + T~ + - T «*" 

15 315 6300 99225 893025 
#11/2 = 1 + — + — - + - — + —^- + — ^ 

Let us observe now more minutely the equations (6.21) for n = 1, ..., 5. 
The concrete calculation of the functions J [#n+i/2(£)]_1 dt is thus a little 
laborious, but the verification of correctness does not make any troubles. 

Further on, let 

- < arctg <p(t) S Y 

always hold for arc tg <p(t) where arc tg denotes the principal branche. 
6. For n = 1 we have (with indefinite integrals we take one of primitive 

functions) 

J {1 — [#3/2(£)]-1} d£ = J (1 + t2)-1 dt = arc tg t 

and the equation (6.21) is therefore of the form 

[t — arc tg t] M = [arc tg *]£ 
*3/2,0 

thus 

(6.23) Jf(*3/2,o) =-$-,+ £3/2,0 —arc tg£3/2,0 

The equation (6.13) is in this case of the form 

(6.24) £3/2,* — arc tg t3,2tk = kn + £3/2,0 — arc tg £3/2f0 

The solution y$ii(t) of the equation (6.1)3/2, for which it holds 
2/3/2̂ 3/2,0) = 0, is, regarding to (6.11), possible to be written in the form 



71 

(6.25) H3/2W = -4r- }rl + 1 T sin (t — arc tg t — B) 

where B = £3/2,o — arctgf3/2,o- If we choose specially £3/2,0 — 0 (this 
being possible because such a solution really exists) then 1/3/2(0 = 
= Atll2J3l2(t) and thus 

(6.26) «̂ 3/2(0 =•• I /— l-3/2 y r + ~ p s i n (̂  _ a r c tg t) 

and k-th zero J3/2,*, is the root of the equation 

(6.27) * — arc tg t = for £ = 0 , 1 , . . . 

Thus the sequence {̂ 3/2,*} is formed by the system of non-negative roots 
of the equation t = tgt. Analogously the sequence {̂ 3/2,0} of zeros of the 
function 

(6.28) 73/2(0 = ] / - - t-V2 yT+t2 cos (t — arc tg 0 

is formed by the system of non-negative roots of the equation 

7C 

t — arc tg t = — + kn, k = 0, 1, ..., 

which is equivalent with the equation t = —cotg t. 

7. For n = 2 we get 

-3 
/ {1 - K2M]-1} dt = f f 4 ^ 3 + ^ 9 dí = are tg *-

Зí 
12 3 

The function arc tg ——— is for t e <0, 00) continuous inclusive all 
ot 

derivatives. 
In this case the equation (6.21) has the solution of the form 

(6.29) M(t5/2,o) = -J- + £5/2,0 — arc tg ^ Q
2 ; 0 ~ 3 

-"« ^ 5 / 2 , 0 

J5/2(0 and Y5/2(0 a r e possible to be expressed by the formulae that 
are analogous to (6.23) and (6.28). 

8. For n = 3 it holds 

/{i - M)]-} * -- / 1 f 6 ( t^+ 2 L d < =^ *g ^/-w 
where 937/2(0 = &2_l5

 a n d 
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A r c t g 9?7/2(0 

/ 5 \ 1 / 2 
arctg9?7/2(*) for \t \ < I — I 

Ť - «-(!)"* 
7i + are tg 927/2(0 for * > (Г 

£3 15£ 
The function Arc tg — —— is continuous for * e <0, oo) inclusive of all 

^ 6*2 — 15 
p i5£ 3 

i ts derivatives. Because of lim Arc tg—— — = — TZ, the equation 
«->oo w 15 L 

(6.21) has the solution 

mV2,o) =~n+ tV2>0 - Arc tg *? 2>° _ 1 5^2 '0 
(6.30) 

9. For ?i == 4 it holds 

J l %2(t)j J 

Arc tg 979/2(0 where 959/2(0 

arc tg 959/2W 

^7/2,0 — 1 5 

10*6 + 135*4 + I575*2 + 11025 

*8 + 10*6 + 135*4~+ 1575*2 + 11025 ' 

t4_45£2 i 105 

;d* = 

Arc tg 9*9/2(0 

Ш 3 — 1 0 5 * 

for ì * | < 

and 

л 

71 + a r c t g 939/2(0 

for 

foг 

* 
2 1 \ i / 2 

r) 

"(т) 
(W 

T h e function Arc tg <p9\2{t) is continuous for * e <0, 00) inclusive of all 
its derivatives. T h e equation (6.21) has then the solution 

(6.31) -M(*9/2,o) =2TZ + *9/2,o — Arc tg 999/2(̂ /2,0)-

10. F o r n = 5 it holds 

- / 

J \ »11/2(0І 
15*8 + 315*6 + 6300*4 + 99225*- + 893025 

*lo~+ 15^8 + 3 1 5 ^ + 6300*4 + 99225*2 + 893025 
d* = 

= Arc tg 9911/2(0 where 9?n/2(0 
£5 _ Ю5*з + 945* 

1 5 * 4 — 4 2 0 * 2 + 9 4 5 
and 
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arctgç> l l / 2(ŕ) 
n 

~~Г 
ì 

Are tg (pm2(t) =) n + are tg (pn[2(t) 

T 
^ 2n + arctgc?u/2(í) 

for 11 I < či 

for t = /3i 

for / ? ! < * < l32 

for ř = 02 

for í > p2 

At the same time /Si, 8̂2 denote the real roots of the equation 
15f4 — 420l + 9 4 5 - 0 (0 < j3{ < p2) so that /3 lf2 = (14 +]/'l33)ll2' 
The function Arc tg <pni2(t) is continuous for £ e <(), 00) inclusive of all 
its derivatives. In this case the equation (6.21) has then the solution 

5 
(6.32) M(tn/2,o) = ^ n + ln/2,0 — Arc tg 1̂1/2(̂ 11/2,0) 

(1 1 - 1 11. The functions 1 s 

expressed in a similar way 
Vn+mlt) \ 

àt for n > 5 are possible to be 

For v 
1 
*>n == 0, 1, ... (^ > — I the series г\(t) = 2 a2kť 

\ 2 / Ä; =0 

2Äг 

where a2fc is given by the formula (6.17), diverges for all t. In this case, 
the series is, howTever, an asymptotic development of the function vv(t) 
and therefore it is possible to be used to concrete calculations. 

The function v^i(t) was calculated bv F. Neuman in another way 
in [7]. 
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