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POLARS IN D I S T R I B U T I V E LATTICES W I T H T H E 
SMALLEST ELEMENT 

Fran t iSek F ia la (Brno) 

(Received January 21, 1969) 

Introduction 

Let ( ? b e a lattice ordered group (/-group). According to [1], two 
elements a, b eG are called disjoint if | a \ A | b \ = 0. F . Sik started 
with the definition in his studies of properties of /-groups (for example 
in [8]—[12]). The notion of a component in a /-group has a great im­
portance in his considerations. A s G is said to be a component in G 
if there exists 0 7̂  B g G, so that 

A = {a e G : | a | A | b | = 0 for all b e B}. 

We denote A =B'.IfA = {a}' = a', then we speak about a dual principal 
component, if A. = (a')' = a", then we speak about a principal component. 
The set r(G) of all components in G ordered by set-theoretical inclusion 
is a complete Boolean lattice in which all principal or all dual principal 
components form sublattices, denoting i7(6r) or II'(G) [8]. In F. Sik's 
considerations the notion of ultraantifilter in the lattices r(G), 11(G) 
and II'(G) shows itself as very useful. Topologies were introduced in [8] 
into the sets of all ultraantifilters in these lattices and the compactness 
of the spaces is being investigated in the first place. 

Into the set of all standard ultraantifilters in T(G) (i.e. such ultra­
antifilters for which the set-theoretical union of all components that 
belong to them, is not the whole G) a topology was in a certain way 
introduced and properties of the space were investigated ([3], [4]). 

It is shown that a number of the assertions can be expressed in 
a similar way for an arbitrary distributive lattice L with the smallest 
element. But it is necessary to find the corresponding notions. I t is 
also possible to transfer many proofs with smaller or greater arrange­
ment on the new assertions. We shall now consider the problems. 

In the first part, we define basic notions. Similarly to the definition 
of the component in an /-group, the notion of polar in a lattice L is 
introduced in 1.2. We show that the set P(L) of all polars in L is 
a complete Boolean algebra (1.8) in which the set H(L) or D(L) all 
principal or all dual principal polars form sublattices. 

In the second part, we investigate the topological spaces of all ultra­
antifilters in P(L), H(L) and D(L). We study compactness (2.9, 2.10) 
or further properties of the spaces. 
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The third part deals with the standard ultraantifilters in P(L). On 
the set of all standard ultraantifilters in P(L) a topology is defined and 
necessary and sufficient conditions for compactness (3.3), complete 
regularity (3.17), Hausdorff property (3.19) or normality (3.27) of the 
space are found. 

Notations 

If nothing else is said, then we understand by L a distributive lattice 
with the smallest element. We shall not always repeat the assumption. 
Elements of L will be denoted by small letters from the beginning of 
the alphabet. 

Lattice operations in L are denoted by u , f), the order by S • 
Lattice operations in other lattices are denoted by v , A, or by an 

index that we shall leave out when it is clear in which lattice the oper­
ation is carried out. 

Set-theoretical union and intersection are also denoted by U , f), 
inclusion Q. Symbol c characterizes a sharp inclusion. 

Instead of {a} we shall write briefly a. 

U(L) = the set of all closed elements of L. 
I(L) = the set of all ideals in L. 
P(L) = the set of all polars in L. 
H(L) = the set of all principal polars in L. 
D(L) = the set of all dual principal polars in L. 
U(L) = the set of all ultraantifilters in L. 

US(L) = the set of all standard ultraantifilters in L. 
2i(L) = the set of all elements that are not dense in L. 

1. Boolean algebra P(L) of all polars in L 

For the standard definitions and results concerning lattices the reader 
is referred to [1]. Here we shall introduce only basic notions and some 
important results. 

1.1. An ideal in an arbitrary lattice L is a non-empty subset J e L 
with the following properties: 

(1) a,beJ=>a[jbeJ. 

(2) aeJ,ceL,c^a=>ceJ. 

The set of all ideals in L is denoted by I(L) and ordered by set-theoretical 
inclusion. 



17 

For an arbitrary a e L the set 

(a] ={b:beL,b <. a} 

is obviously an ideal in L. It is called the principal ideal in L determined 
by element a. 

An ideal J in L is a prime ideal provided that if fulfils the following 
condition: 

(3) a n b e J => a e J or b e J. 

An ideal J in £ which fulfils the following condition: 
(4) / / the greatest element 1 of L exists then 1 e J, 
is called an antifilter in L. The set of all antifilters in £ is a subset of 

I(L) and consequently it is also ordered by set-theoretical inclusion. 
Its maximal elements will be called ultraantifilters in L. [By Zorn's 
lemma each antifilter in L is contained in an ultraantifilter.] The set of 
all ultraantifilters in L will be designated by U(L). It is evident that 
U(L) S I(L). 

The following statements hold ([9], 4.1—4.3): 
(a) An antifilter in a Boolean algebra B is an ultraantifilter if and only 

if it contains strictly one out of each two complementary elements of B. 
(b) Each ultraantifilter in a distributive lattice is a prime antifilter. 
(c) Each prime antifilter in a Boolean algebra is an ultraantifilter and 

viceversa. 
If £ is a lattice of subsets of a set A and J e I(L), then U J denotes 

set-theoretical union of all elements of J. If J e U(L) and U J =/-= A, 
then J is called a standard ultraantifilter in L. The set of all standard 
ultraantifilters in L is denoted by US(L). 

The term of filter is dual to the term of antifilter (with regard to 
partial ordering of L). 

1.2. Let L be an arbitrary lattice with the smallest element 0. Two 
elements a,b e L are called disjoint if a n b = 0. Non-empty subsets 
i , 5 e i are called disjoint if a n 6 = 0 for each ae A, b GB. We 
understand by a disjoint complement A' of a, non-empty subset A of L 
the following set: 

(5) A' = {b e L: b f] a = 0 for each a e A}. 

A e L is a polar in L if such a 0 ^ B g; L exists that A = B'. The 
polars of the forms {a}' = a' and (a')' = a" will be called dual principal 
and principal respectively. We shall denote P(L), H(L) and D(L) the 
set of all, all principal, all dual principal polars in L respectively. 

It follows from (5) that A' e I(L) and moreover A' is the greatest 
ideal in L disjoint from A. 

1.3. Let L be an arbitrary lattice with the smallest element 0. The 
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pseudo-complement a* of an element a e L is the greatest element disjoint 
from a, if such an element exists. The defining property of a* is: 

(6) a n 6 = 0 o b ^ a*. 

If every element ae L has a pseudo-complement (necessarily unique), 
then the lattice L is said to be pseudo-complemented lattice. 

If £ is a pseudo-complemented lattice, then the correspondence 
a ~> a* is a Galois's connection. According to [1] (IX, § 12), the following 
hold: 

(7) a ^ a**3 

(8) a* = a***, 

(9) a ^ b=>a* ^ b*, 

(10) (a U 6)* = a* n 6*, 

(11) (a n 6)* ^ a* U b*. 

The elements of L for which a = a** are called closed. A closed element 
a of i is the pseudo-complement of a*. On the other hand, if a =.&*, 
then a** = b*** = b* = a [according to (8)], consequently a is closed. 
Therefore the set U(L) of all closed elements of L consists of all pseudo-
complements of L. Obviously U(L) g L. U(L) is a lattice with regard to 
the partial ordering of L (generally not a sublattice!). It holds for 
a,beU(L): 
(12) a Vr/ b = (a U b)** = (a* n b*)*, 

(13) a A U 6 = a n b . 

Element a* is the complement of a in the lattice U(L), i.e. it holds: 

(14) a A U a * = 0 , a v r / a * = l . 
Moreover 
(15) (an b)* =a* Vub*. 

According to [1], IX, § 12, Theorem 16, the following is valid. 
1.4. Lemma. If L is a complete, distributive and pseudo-complemented 

lattice, then the set U(L) of all closed elements of L with the operations (12) 
and (13) forms a complete Boolean algebra. 

1.5. If L is a distributive lattice with the smallest element, then I(L) is 
(with regard to the set-theoretical inclusion) a complete, distributive and 
pseudo-complemented lattice ([1], IX, § 12, Ex. 5a). Let 0 ^ - i g L. 
Then ideal J (A) in L generated by the set A is received in this way: 

(16) J(A) = Vr (a], 
, a e j 
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i.e. J(A) is formed by all elements of L for which 

(17) a ^ at U ... U an 

where at (i = 1, ...,n) are arbitrary elements of A. 
It was said in 1.2 that every polar in L is an ideal in L. Now, we shall 

investigate the role of polars in L in the lattice I(L). 
1.6. Lemma. For 0 ^ A g L, the following are equivalent: 
\. A is a polar in L, i.e. A e P(L). 
2. A is a pseudo-complement in I(L), i.e. A e U[I(L)'\. 

Proof: 1 =>2. Let A e P(L) be arbitrary. Then some 0 ^ B & L 
exists, so that A = B'. We shall prove that B' = J'(B), where J(B) is 
ideal in L, generated by the set B. Clearly, B g J(B). By the definition 
(1.2) J'(B) g B'. Conversely, let a e B', beJ(B). By (17), there exist 
bi, ...,bneB, so that b ^ bi U ... U bn. It holds a n bs = 0 (i = 1, ..., n), 
hence a 0 b <; a (] (bi U ... U bn) = (a n bi) U ... U (a (] bn) = 0, then 
a n b = 0 for an arbitrary b e J(B), i.e. a e J'(B). Therefore B' g J'(H) 
and B' = J'(B). By (5), J'(B) is the greatest ideal in L disjoint from 
J(B), i.e. J(B) AiJ'(B) = 0, therefore J'(B) = J*(B). Hence A = 
= B' = J'(B) is a pseudo-complement of I(L), i.e. A E U[I(L)]. 

2 => 1. Infimum in I(L) is determined by set-theoretical intersection. 
For J G I(L), pseudo-complement J* e I(L) is the greatest ideal with 
the properties: J* AI J = J* 0 J = 0, hence 

J* —{b:b e L,b 0 a = 0 for every a e J}. 

Comparing it with (5) we get J* = J', i.e. J* e P(L). 
1.7. Remark. Every polar in L has the form of J*, where J el(L). 

Especially, for a e L, it is a' = (a]*, a" = (a]**. We shall further denote 
the polars in this way. 

The following statement follows from the results in 1.3—1.6. 

1.8. Theorem. The set P(L) of all polars in L ordered by set-theoretical 
inclusion, forms a complete Boolean algebra in which infimum is determined 
by set-theoretical intersection. Complement of A e P(L) is A*. 

1.9. Theorem. The sets H(L) and D(L) are sublattices of the lattice P(L) 
and for any a, b e L the following hold: 

(18) (a]** VP (b]** = (a U b]**, (a]** AP (b]** = (a 0 b]**, 

(19) (a]* Vp (b]* = (a n b]*, (a]* AP (b]* = (a U b]*. 

Proof: Obviously for any a,b GL (a U b] = (a] Vj (b], (a f] b] = 
= (a] A i (&]. With regard to 1.6, the operations in P(L) are identical 
with those in U[I(L)]. Then (a u b]* = ((a] Vj (b])* = (a]* A P (b]* by 
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(15)' F u l ! ! ? * JW* A P (*]*)* = ((«]* AI (b]*)* = («]** VP (b]** by 

= iai* vWA&2 S = ((a] A/ (6])*= (a]*v*(6]* fcy ( 1 5 >- ( a n 6]** = 
nf 1* w / i f ' " W e s h a 1 1 d e r i v e t h a t (a-** A P ( 6 ] * * is a complement 

r / i * * p ( ] * i n P{L)- l t i s [(«]** A P (b]**] A p [ ( a ] * V P ( b ] * ] = 
n( r) * A P ( 6 ] * * ) A ^ W * J V ^ -((»-** AH (6]**) A p(b ]* ] = 0 V P O = 

= <>> [(a]** A p (b]**] V p [(a]* Vp (b]*] = [(a]** V p ((«]* V P (6]*)] A P 

AP [(&]** Vp ((a]* Vp (6]*)] = L AP L = L. Hence (a n b]** = 
=- (a]** Ap (6]**. In this way , all equations (18), (19) have been proven. 

1.10. Theorem. Lattice P(L) of all polars in L is V -generated by sublattice 
H(L) and A -generated by sublattice D(L). 

P r o o f : Obviously for A e P(L) the following hold: 
A = VP{(a]**:aeA}, 

A =A** = ( V P { ( b ] * * : b G A * } ) * = Ap{(b ]* :be .A*} . 

2. Spaces ol ultraantifilters in P(L)„ H(L), D(L) 

In this section we shall introduce into the sets U[P(L)], U[H(L)], 
U[D(L)] of all ultraantifilters in P(L), H(L), D(L) a topology and we 
shall investigate topological properties of these spaces. Elements of 
these sets, i.e. ultraantifilters in the particular lattices, will be denoted 
b y small letters of the end of the alphabet. 

2.1. Lemma. For any x e U[P(L)] or any x e U[D(F)] it holds: 

(20) a e U x <=> (a]* e x. 

P r o o f : 1. If a e U x, then there exists such a polar A ex t ha t ae A, 
hence (a]** g A. Moreover, L = (a]* V (a]** g (a]* V A and so 
(a]* e x. 

2. If (a]* G x, then such a polar A ex exists t ha t (a]* V A = L. 
Then follows t ha t A 2 (a]**, a e (a]** g A g U #, therefore a e U #. 

2.2. Corollary. JTAC following are true for any x e U[P(L)]: 

(21) x e US[P(L)] ox(] D(L) # 0. 

(22) a G U x <=> (a]* e a; <=> (a]** e a. 

P r o o f : (21) follows immediately from 2.1, (22) follows from 2.1 and 
1.1(a). 

Let us denote with A any set of U[P(L)l U8[P(L)l U[D(L)]. 

2.3. Lemma. Let card L > 1, JAew n {U x: x e A} = 0. 
P r o o f : Let O ^ a G f l {Uar. # e z l } . Then (a]* ^ L, therefore such 

a y e .d exists t ha t (a]* G ?/. B y (20) it is a e U y and a e n {U a:: a; G zl}. 
But it is a contradiction to our supposition . Therefore n {Ua; :a ;Gzj}=0 
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2.4. An element a e L is called dense in L provided that (a]* = 0 . 
It is evident that the property is equivalent to (a]** = L. The dense 
element is e.g. the greatest element of L, if such an element exists. 
We shall denote %l(L) the set of all not dense elements in L. 

2.5. Lemma. Let card L > 1. n {[jx: x eU[H(L)]} = 0 if and only 
if the condition (23) holds: 

For any a e %l(L), a ^ 0 } such a b e %(L) exists that 

(23) a\) beM(L). 

Proof: Let aeSl\(L), a ^ 0. Then the following holds: For any 
h e 91(2.) it is a u b e 9I(£) o for any b e S&(L) it is L ^ (a u b]** = 
= (a]** Vp (6]** <=> (a]** is an element of every ultraantifilter in 
H(L) oO^aen {{jx:xe VL[H(L)]}. 

2.6. Remark. It follows from (13) that the condition (23) is fulfilled 
when the lattice L is pseudo-complemented. If the condition (23) is 
fulfilled, then H(L) contains the greatest element L, it means that L 
contains a dense element. 

2.7. Let L be any lattice with the greatest element 1. We denote 

Ua = {x: x e U(L), a EX} 

for a E L and 
EL ={Ua:aeL}. 

EL is a basis for open sets in U(L). By [6], Theorem 1, for the topological 
space ll(L) the following are true: 

(a) U(L) is a Hausdorffs space. 
(b) Every set Via is both open and closed. 
(c) The space U(L) is completely regular. 

2.8. Lemma. If L is a distributive lattice with the greatest and smallest 
elements 1 and 0 respectively and if f] {[) x: x e H(L)} = 0, then the topo­
logical space U(L) is compact if and only if L is a Boolean lattice. 

Proof: [8], Theorem 2. 

2.9. Theorem. The topological space U[P(L)] is compact. 
Proof follows from 2.8, 2.3 and 1.8. 

2.10. Theorem. The following are equivalent: 
1. The topological space VL[D(L)] is compact. 
2. The topological space U[H(L)] is compact and (23) is fulfilled. 
3. D(L) is a Boolean lattice. 
4. H(L) is a Boolean lattice. 
5. H(L) = D(L). 
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/ / One of these conditions stands, then L contains a dense element. 
Remark. Theorem 3.5 introduces a further equivalent condition. 
Proof: 1=>3 . First, we shall derive that QeD(L). If U[D(L)] is 

compact, then a finite number of elements ai , ..., ane L exists so that 
n 

U[D(L)} = (J U(atF. 
i = l 

If we denote 
a =a1{J ... \J an 

then 
(a]* = (a^* A ... A (an]*. 

Evidently (a]* e x for any x e U[D(L)]. Hence 

(){{Jx:xeU[D(L)]} 2 (a]*. 

By 2.3 0 g (a]* and obviously 0 g (a]*, therefore (a]* = 0 e D(L). It is 
the smallest element in D(L). By 2.8, D(L) is a Boolean lattice. The 
element a is dense in L, therefore the final statement is fulfilled. 

3 => 5. Firstly, let us remark: If D(L) contains the smallest element, 
it is 0 of L, because f\ (a]* = /\p (a]* = 0. If D(L) is a Boolean lattice 

aeL aeL 

then there exists to any aeL such a b e L that (a]* V (b]* = L, 
(a]* A (b]* = 0. It follows from the first equation that (a]** g (b]*, 
from the second one (a]** 2 (&]*, therefore (a]** = (b]*. Hence H(L) g 
g D(L). Analogically, we derive (a]* g (b]**, (a]* 2 (b]**, therefore 
(a]* = (b]**, i.e. H(L) 2 D(i). Hence H(L) = D(L). 

5 => 2. If D(L) = H(L), then D(D) is a Boolean lattice because for 
any aeL exists such a b e D that (a]* = (6]**, therefore (a]* V (b]* = 
= (a]* V (a]** = L, (a]* A (6]* = (a]* A (a]** = 0. D(L) is a distri­
butive lattice with the greatest and smallest elements, therefore it is 
also Boolean. By 2.3, 2.5 and 2.8, U[H(L)] is compact and (23) is true. 

2 => 4. It follows from 2.5 and 2.8. 
4 => 1. If H(L) is a Boolean lattice, then it contains the greatest 

element, which is L, because the greatest element of H(L) contains all 
principal polars in L, also the whole L. Further there is for any aeL 
such a beL that (a]** V (b]** = L, (a]** A (&]** = 0, hence 0 = 
= L* = (a]* A (b]*, L = 0* = (a]* V (6]*. Then D(L) is also a Boolean 
lattice, and VL[D(L)] is compact by 2.3 and 2.8. 

2.11. Lemma. For any aeL the following are equivalent: 
1. (a]* is a principal ideal in L. 
2. a* exists in L. 
Proof: 1 => 2. If (a]* is a principal ideal, then there exists b e L so that 

(a]* = (b], since b is the greatest element disjoint from a, i.e. b = a*. 
2 => 1. If an a* exists, then (a]* = (a*] is a principal ideal. 
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2.12. Theorem. The following are equivalent: 
1. L is a pseudo-complemented lattice. 
2. Any dual principal polar in L is a principal ideal. 
If one of these conditions holds and if L is a complete lattice, then the 

conditions 1—5 of the theorem 2.10 hold. 
Proof: 1 <=> 2. It is seen from 2.11. 
If one of the conditions holds, then (a]* = (a*] for any ae L, therefore 

the dual principal polars are determined by all pseudo-complements in L. 
From the assumption that L is complete, it follows that D(L) is a Boolean 
lattice (1.4). 

2.13. Remark. From the preceding results we can determine further 
topological properties of the defined topological spaces. First of all, the 
spaces U[P(L)] and U[D(L)] are completely regular by 2.7(c). From 
2.7(a) and 2.9 it follows that the space U[P(L)] is also normal. If any 
condition of those in the theorem 2.10 is fulfilled, then U[D(L)] is also 
normal. If the lattice L does not contain any dense element, then the 
lattice H(L) has not the greatest element, and U[H(L)] consists of one 
ultraantifilter, which is the whole lattice H(L). In this case U[H(L)] 
is also a Hausdorffspace, completely regular, normal and compact. If L 
contains a dense element, then U[H(L)] is a Hausdorff's and completely 
regular space by 2.7(a), (c). If any condition of those in the theorem 2.10 
is fulfilled, then U[H(L)] is also normal space. 

3. Standard ultraantifilters in P(L) 

The set US[P(L)] of all standard ultraantifilters in the lattice P(L) 
will be the matter of our considerations now. We shall introduce to it 
a topology by an analogical way, as there is in [3], and investigate the 
properties of the topological space. 

3.1. Every standard ultraantifilter in P(L) contains at least a dual 
principal polar (2.2). Therefore we define 

93(a]* ={X:XG US[P(L)], (a]* e x} 

for each (a]* e D(L) and put 

Z' ={%(a]*:(a]*GD(L)}. 

We could simply show that it is possible, to take S' as a basis for open 
sets in US[P(L)]. The closure in the topological space U8[P(L)] is described 
as follows: 
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If A QUS[P(L)] then 

(24) A = {x: x e Ji,[P(Z)], (a]* e x => there exists«/ e A so that («]* e t/}, 

tha t is 

(24a) A = {.e: z e W,[P(Z,)L * n D(L) £ U 2/}. 
?/eA 

Firstly, we shall investigate, when the topological space US[P(L)] is 
compact. 

3.2. Lemma. If L is an arbitrary distributive lattice, and if a, b e L, 
b fg a, then a prime antifilter x in L exists, so that a ex, b e x. 

Proof follows from [7], Satz 66. 

3.3. Theorem. The following are equivalent: 

1. The lattice D(L) contains the smallest element. 
2. The lattice H(L) contains the greatest element. 
3.H(L) n D(L) =£0. 
4. The lattice L contains a dense element. 
5. The sets U[P(L)] and US[P(L)] are equal to each other. 
6. The topological space US[P(L)] is compact. 

Proof : 1 => 2. If D(L) contains the smallest element, then it is 0 
( = one-element set constituted by the smallest element of lattice L). 
From this follows, that an element a e L exists such as (a]* = 0. Hence 
(a]** = (0]* = L e H(L) is the greatest element in H(L). 

2 => 3. If H(L) contains the greatest element, then it is the whole L. 
It is always (01* = L e D(L), therefore H(L) n D(L) =.= 0. 

3 => 4. If L does not contain any dense element, then for each a e L 
it is true that (a]* =-= 0, i.e. (a]** =-= L. Let x be an ultraantifilter in P(L), 
which contains as subset, the set H(L) g P(L) [by (18) there is such an 
ultraantifilter], i.e. H(L) s x. Then x n D(L) = 0 [by (22)], therefore 
H(L) n D(L) = 0 and 3 is not true. 

4 => 5. If a non-standard ultraantifilter in P(L) exists, and if L contains 
a dense element a, then an A ex exists, so that ae A, hence (a]** = 
= L = A and that is in contradiction to the definition of an antifilter 
(1.1). Therefore L does not contain any dense element and 4 is not true. 

5 => 6. From the definition of bases E' (3.1) and Ep (2.7) it follows 
that E' g Zp. The topological space U[P(L)] is compact ( 2.9), therefore 
also the space US[P(L)] is compact. 

6 => 1. Let us consider the covering of space US[P(L)] by the system 
of basic sets E'. By assumption, there are finitely many basic sets 
Sfai]*, 33(a2]*, ..., ^(an]*, which cover the space US[P(L)]. In othe r 

words: there are finitely many dual principal polars (&i]*? fe]*, ..'., (««]* 
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for which the following hold: If a; e U<s[P(L)] is an arbi trary element, 
then there exists such an i (1 £ i ^ n) t ha t (at]* e x. Let us pu t 

(a]* = A P W * . 
t = i 

Obviously (a]* e x for any x e U5[P(L)], i.e. 93(a]* = US[P(L)]. We shall 
demonstrate t ha t (a]* is the smallest element in D(L). Conversely, 
let (b]* E D(L) exist t ha t (a]* J (b]*. According to 3.2, there1 exists 
a prime antifilter y in P(L) so t ha t (b]* E y, (a]* E y. B y 1.1(c) y is an 
ultraantifilter in P(L) and obviously y e US[P(L)] (2.1). Because (a]* e H, 
we get into a contradiction to the statement t ha t (a]* is contained in 
any s tandard ultraantifilter in P(L). Thus (a]* is the smallest element 
in D(L). 

3.4. Remark. The conditions of the theorem 3.3 are fulfilled if L has 
the greatest element, because the greatest element 1 in L is dense in L. 
This case is for example when L is pseudo-complemented. 

3.5. Theorem. The following are equivalent: 

l.H(L)=D(L). 
2. For any set 93(a]* e E' it holds US[P(L)] \ 93(a]* e E'. If one of 

these two conditions is fulfilled, then the space US[P(L)] is 

(a) compact, 
(b) completely regular. 

P r o o f : 1 => 2. Let 93(a]* e E' be arbitrary . According to our as­
sumption, there exists such a b e L, t ha t (a]** = (b]*. B y 1.1(a) each 
ultraantifilter in P(L) contains just one of the two complemented polars 
(a]*, (a]**, and thus for x e US[P(L)] x e 33(a]* <=> (a]* e x<=> (a]** EXO 
o (b]* EXO X E 33(b]*. 

Consequently, 

33(6]* . = US[P(L)] \ S3(a]*. 

2 => 1. I t holds (0]* = L, hence US[P(L)] \ 93(0]* = U,[P(£)] e 2" . 
Thus, there exists a dual principal polar (a]* which belongs to any 
standard ultraantifilter in P(L). With regard to the proof 6 => 1 in 3.3, 
(a]* is the smallest element in D(L). Therefore every ultraantifilter in 
P(L) is standard, i.e. US[P(L)] = U[P(L)]. 

Let c E L be arbitrary. I n accordance with our assumption, there 
exists to (c]* E D(L) a dual principal polar (d]* e D(L) so t ha t 

» ( d ] * = US[P(L)] \ » (c |* . 
Consequently, , 

(25) ( c ] * * e . r o . ( f l * e * 
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for any x e US[P(L)] = lt[P(L)]. We shall prove indirectly that (c]** = 
= (d]*. Let us assume that (c]** =-= (d]*. Because (a]**, (d]* e P(L) are 
different elements, there exists a prime antifilter y in P(L) (=ul t ra-
antifilter), which contains just one of two elements (c]**, (d]* (3.2); 
for example (c]** e y, (d]* e y. (In the reverse case we should proceed 
similarly.) For y, (25) is not true, which is a contradiction, thus (c]** = 
= (d]* and (c]* = (d]**. Consequently, H(L) = D(L). 

Proof of the concluding statement (a) follows from the proof 2 => 1 
and the statement (b) is evident. 

We must carry out some additional considerations, to find certain 
necessary and sufficient conditions for the complete regularity of the 
topological space US[P(L)] and eventually to investigate some further 
properties of this space. 

3.6. Lemma. For an ideal J in L, the following are equivalent: 

1. J contains from any two complemented polars at least one. 
2- (al* £= J or (a]** e J for any ae L. 
3. a eJ or (a]* e J for any a e L. 

Proof: 1 => 2 => 3. It is evident. 
3 => 1. Let us assume that A ^ J, A* ^ J for some A e P(L). Then 

A* £ (a]* for any a e A \ J therefore a e J, (a]* g J and 3 is not 
fulfilled. 

3. 7. Lemma. FOr any ideal J =-= L, fhe following are equivalent: 

1. J is a prime ideal in L. 
2. L\ J is a filter in L. 
If one of these conditions is fulfilled, then the statements 1—3 in 3.6 hold. 

Proof: 1 => 2. Let a, b e L\ J be arbitrary. If a n b e J, then a e / 
or b G J and so aeL\J or b e L\ J which is a contradiction. Hence 
a (] b e L\ J. li a e L\ J, 6 ^ a, then ae J, thus be J, therefore 
b G L \ J. It is evident that 0 i L \ J and £ \ J =>= 0. Together L \ J 
is a filter in L. 

2 => 1. If a, b e J, then a,beL\J, thus a n b e L\ J, i.e. a n b e J-
J is also a prime ideal in L. 

Let J be a prime ideal, aeJ. As J is non-empty, 0 e J , therefore 
a n b = 0 eJ ^> b e J => (a]* s J and the condition 3 in 3.6 is fulfilled. 
The concluding statement is also proven. 

3.8. Lemma. / / card L > 1 and if x is an ultraantifilter in P(L) or 
in- D(L), then U x is a prime ideal in L. 

Proof: a, 6 ê  Ux => there exist A, Bex, so that aeA, b eB => 
=> a {j b e AVpB ex => a [} b e \jx. If ae [)x, c <; a, then i e a ; 
exists, so that a e i , thus ce A, hence ce [)x. \jx is also an ideal. If 
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a, b e [) a^then (a]* e x, (b]* e x by (20) => (a]* VP (6]* = (a n b]* e x => 
=> a n b 6 U #. U ^ is also a prime ideal. 

3.9. The notion of a prime ideal in L was defined in 1.1. The set of all 
prime ideals in L is ordered by set-theoretical inclusion. A minimal 
element of that set is called a minimal prime ideal in L. According to [5], 
Lemma 2, every prime ideal in L contains a minimal prime ideal. 

3.10. Theorem. If card L > 1, then the set of all minimal prime ideals 
in L is {[)X:XG U[D(L)]}. 

Proof: I. First of all, we shall prove that any two elements of the 
set {u x: x e VL[D(L)]} are incomparable by set-theoretical inclusion. 
Let x, y e U[D(L)], x =£ y, be arbitrary. If U x g U y, then (a]* e x => 
=> (a]* e y [by (20)], thus y g x. It follows from maximality of y that 
y = x. Similarly, we can prove U # == U x => x = y. We also get in both 
cases a contradiction to our assumption y =J= .r. Therefore U #, U ^ are 
incomparable by set-theoretical inclusion. 

II. Let J be a minimal prime ideal in L, J =*= L. According to 3.7, 
y = {(a]*: ae L \ J} is an antifilter in D(L). Let x e U[D(L)] be such 
an ultraantifilter in I)(L) that H g #. We shall derive u # = J. ae [) x => 
=> (a]* e a; [by (20)] => (a]* ey => aeL \ J => as J, therefore u x g J . 
By 3.8, U # is a prime ideal, consequently U x = J (from minimality of J). 
Let us now assume that the only minimal prime ideal in L is the whole L. 
With regard to our assumption card L > 1, the set {u x: x s VL[D(L)]} 
is non-empty and by 2.1 it follows U x =*= L for any .r e U[D(L)]. Ac­
cording to 3.8, U x is a prime ideal, and obviously [) x <= L which is 
a contradiction to the minimality of the prime ideal L. Thus, L is not 
minimal. 

III . It remains to prove that U x is a minimal prime ideal for each 
x e U[D(L)]. According to 3.8, U x is a prime ideal. Let J be a minimal 
prime ideal, so that J g U x. By II. there exists y eU[D(L)], so that 
J == u 2/ => Uy £ U#=> U^ = U?/ (by I.) and U x is a minimal prime 
ideal. 

From the part II. of the last proof it follows. 

3.11. Corollary. If card L > 1, then there exists a minimal prime 
ideal 7= L in L. 

3.12. Lemma. For ultraantifilters x, y e U[P(L)], the following are 
equivalent: 

1. U ^ £ U | / . 
2. x n 2>(L) 2 y n D(£). 

/ / one of those inclusions is sharp, then the other is sharp, too. 
Proof: 1=>2. If [)x^[)y then (a]* ex => a e [)x => ae [) y => 

=> (a]* eyby (20), thus x n D(L) i ^ n DW-
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2 => 1. If [)x £ [)y, then there exists a e [) x, ae[)y. Consequently 
(a]* GO?, (a]*ey, therefore y r\ D(L) ^ x n D(£) and the condition 2 is 
not fulfilled. 

Proof of the concluding statement: 
U x <= u y <=> there exists a e\)y, ae [)xo there exists (a]* G y, 

(a]* e . r o a ; n D(D) => V f) D(L). 
3.13. Lemma. Ifxe U[D(L)] is arbitrary, then there exists y e US[P(L)], 

so that U x = U y and x = y 0 D(L). 
Proof: Let xcU[D(D] be arbitrary. Let z be an antifiiter in P(D) 

which contains the set x. We shall denote by y an arbitrary ultraanti-
filter in P(D) which includes z. Obviously, yeUs[P(L)] and [) x ^ [) y. 
If \jx^=-\Jy, then there exists ae[)y, ae\jx. According to (20), 
(a]* e y, (a]* e x which is a contradiction to the definition of ultraanti-
filter y. Thus [)x = [)y. Consequently and according to (20) x = y n 
n D(L). 

3.14. Corollary. If card L > 1, l^en all minimal prime ideals of L are 
included in {[] x: x G US[P(L)]}. 

Proof follows from 310 and 3.13. 

3.15. Lemma. For x e US[P(L)] the following are equivalent: 

1. U y 4- U x holds for each y e US[P(L)], y 7= x. 
2. U x is a minimal prime ideal in L. 
3. xn D(L)eU[D(L)]. 
4. If (a]* G x, then there exists (b]* e x, so that 

(26) »(a]* n S ( b ] * = 0. 

Proof: 1 => 2. If [) y <£ u# for each 2/ e Xls[P(L)], then the prime 
ideal U ^ does not sharply contain any minimal prime ideal (according 
to 3.14), therefore U x is minimal. 

2 => 3 . From the assumption follows that there exists such an ultra-
antifilter z in D(L) that [)z = [)x. According to (20), the following holds: 
(a]* ex 0 D(L) oae[)xoae[)zo (a]* e z. Consequently x n D(L) = 
= z G U[D(D)]. 

3 => 4. Let (a]* ex be arbitrary. From the assumption x ft D(L) e 
G U[D(L)] follows that there exists (6]* e x, so that (a]* V (b]* = L. 
Therefore, there exists no ultraantifilter in P(L) which would include 
both (a]* and (6]*, thus (26) holds. 

4 => 1. Let the condition 1 be not true, i.e. there exist ultraantifilters 
y G US[P(L)], so that \}y <= u x. - According to 3.14 among those y's 
there exists an ultraantifilter^ we denote it by z, so that U z is a minimal 
prime ideal. By 3.12 it is z n D(I>) D « f ) D(D), i.e. for any (c]* G.r 
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also (c]* e z. Moreover there exists (a]* e D(L), so that (a]* e z, (a]* i #. 
Consequently z e 33(a]* n 33(6]* for each (6]* e a;, therefore (26) is not 
true. 

3.16. L e t ^ be a topological space. A non-empty subset T <^8P is said 
to be trivial closed set when the following holds for each closed subset 
V g ^ : 

0 ^V QT ^ V = T. 

3.17. Theorem. The following are equivalent: 

1. For any x, y e US[P(L)] either [j x = [) y or [) x, [} y are incomparable 
by set-theoretical inclusion. 

2. For each x e US[P(L)], [}x is a minimal prime ideal in L. 
3. For each x e US[P(L)], x n D(L) is an ultraantifilter in D(L). 
4. Each set 33(a]* e Z' is both open and closed. 
5. The topological space US[P(L)] is completely regular. 
6. In topological space US[P(L)] there exists a decomposition on trivial 

closed sets. 
Proof: 1 o 2 o 3 <=> 4 from 3.15. 4 =>5. Evident. 

5 => 3. If the condition 3 is not valid, then there exists at least one 
ultraantifilter x e US[P(L)], so that x f] D(L) is not an ultraantifilter 
in D(L), hence there exists (a]* e D(L), (a]* e x, so that (a]* V (6]* ^ L 
for any (6]* e x. From 3.15 it follows that 33(a]* is not closed. Let y be 
an arbitrary ultraantifilter in P(L) which includes the set {(a]*, x n D(L)}. 
We put 

A = US[P(L)] \ »(«]*. 

A is a closed set and ye A. Let cp be an arbitrary real function, defined 
on US[P(L)], so that 0 ^ <p(t) S I forte US[P(L)], <p(y) = 0, <p*(A) = 1. 
As x e A, therefore cp(x) = 1. We shall prove that cp is not continuous 
in the point x. Let us choose e = 1/2. To any 1/2-—neighbourhood of 
the point 1 (denoting Oi/2(1)) there exists no neighbourhood 33(6]* of 
the point x, so that 

<pi(33(6]*) S 0u2(l) 

because from the definition of ultraantifilter y it follows that y e 33(6]* 
for any (6]* e x. Consequently, cp(y) = 0 e 991(93(6]9|e) J Oi/2(1). Thus the 
function cp is not continuos in the point x and US[P(L)] is not comple­
tely regular. Therefore the condition 5 is not valid. 

1 => 6. We defined a decomposition on US[P(L)] in the following way: 
x, y e $ls[P(L)] belong to the same class of decomposition if x = y. We 
shall prove that this decomposition is the one on trivial closed sets. 
Let x be arbitrary. Let 0 9-= V ,g 9ls[P(Z/)] be a closed set, so that 



30 

V g x. If z e V is an arbitrary element, then 2 e x => z n D(£) e 
ga; f ] D(Z) (by (24a)) => U x g U 2 (by 3.12). According to the assump­
tion \)x = \) z, therefore z f] D(L) = x f] D(L) (by 3.12) and with regard 
to (24a) . r = 2 | V Q x, hence V = x. Thus x is a trivial closed set. 

6 => 1. Let x, y e US[P(L)] be arbitrary. If 3& is a decomposition on 
trivial closed sets in Us[P(D)], T e&, x,y e T, then x = T = y (because 
a ; eT=>x s T => x = T). The following is true 
(27) 5 = y <=> a: n D(£) = 2 / 0 D(D) (by (24a)) <=> U x = U y (by 3.12). 
If T, V e ^ , T ?-- V, # 6 T, y e V, then .r^2/=>U£^U*/by (27) If 
U# c: \)y, then x f\ D(L) ^=> y f) D(L), and thus yex^T by (24a) 
which is a contradiction to the choice of y. Similarly, we shall get 
a contradiction, if we assume that U x => \)y. Consequently U x, U y are 
incomparable by set-theoretical inclusion and the condition 1 is true. 

3.18. Lemma. Let x e US[P(L)] be an arbitrary fixed element. Then the 
following are equivalent: 

1. xeyfor each y e US[P(L)], y ^ x. 
2. u y J U x for each y e US[P(L)], y ^ x. 
3. x n D(D) is an ultraantifilter in D(L) and x is the only ultraantifilter 

in P(L) which contains x f) D(L). 
Proof: 1 <=> 2. Let y e US[P(L)] be arbitrary. It holds: 

x e y <=> x n D(D) J i / n D(L) (by (24a)) <-> U 3/ J U a; (by 3.12). 
2 => 3. Let the condition 2 be true. From this assumption it follows 
(according to 3.15) that x f] D(L) is an ultraantifilter in D(D). With 
regard to 3.12, x f] D(L) J y n D(D)for each ultraantifilter y e US[P(L)], 
y ytz x. Hence x is the only ultraantifilter in P(D) which includes x f] D(L). 

3 => 2. According to 3.15, U y <£ U x for any y e Us[P(L)], y ^ x. If 
U y = u x for some y e US[P(L)], y ^ x, then with regard to 3.12 
y n D(L) = x n D(D), hence y includes x f] D(L) what is in contradiction 
to the assumption that x is the only ultraantifilter in P(L), which 
includes x f\ D(i). Consequently, \)x ^ \)y and the condition 2 is true. 

3.19* Theorem. If card L > 1, then the following are equivalent: 

1. x = {x} for each x e US[P(L)], i.e. US[P(L)] is Tx-space. 
2. U x, U y are incomparable by set-theoretical inclusion for arbitrary 

x,yeUs[P(L)ly^x. 
3. {[) x: x e US[P(L)]} is the set of all minimal prime ideals in L (i.e. 

[)x 9-= \}y for x ^ y). 
4. x n D(D) G K[D(D)] for any x e Us[P(L)] and x is the only ultra­

antifilter in P(L) which contains x f] D(L). 
5. Topological spaces US[P(L)] and U[D(D)] are homeomorph. 
6. Topological space U8[P(L)] is Hausdorff. 
If one of these conditions holds, then the conditions 1—6 of 3.17 hold, too. 
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Proof: 1 o 2 <=> 4 follows from 3.18. 
2<s>3. The assumption card L > 1 guarantees that L is not a minimal 
prime ideal (3.11). Further, it is evident (3.8; 3.14). 

4 => 5. Let us define a mapping <p from US[P(L)] into U[D(L)] as 
follows 

p(a) - x n D(D) for a, e US[P(L)]. 

From the condition 4 it follows that <p is injective and from 3.12 that <p 
is surjective. i.e. <p is an isomorphism between the sets US[P(L)] and 
U[D(D)]. We shall prove that cp is a homeomorphism of topological 
spaces US[P(L)] and U[D(L)]. It is sufficient to prove that ^(^(a]*) == 
= U(a]* for any (a]* e D(L). Then the assertion follows from the fact 
that the open basis E' in US[P(L)] corresponds with the open basis ZD 
inU[D(L)].xe®(a]*o(a]*exo(a]*ex(\ D(L)oxf) D(L)eU(a]*o 
o cp(x) e U(a]*. 

5 .=> 6. According to 2.13, U[D(L)] is a Hausdorff's space, therefore 
US[P(L)] is also a Hausdorff's space. 

6 => 1 is evident. 
The concluding assertion follows, for example, from the condition 4. 

3.20. Corollary. If one of the conditions 1—6 of 3.19 holds, and if the 
lattice L contains a dense element, then 

(a) U[D(L)] is compact (i.e. the conditions 1—5 of 2.10 are satisfied) 
and normal. 

(b) US[P(L)] is normal. 
Proof: According to the condition 5 of 3.19, the spaces US[P(L)] 

and U[D(L)] are homeomorph. If L contains a dense element, then 
US[P(L)] is compact (3.3). Each topological space, which is Hausdorff's 
and compact, is also normal. 

3.21. We say that condition (p) is satisfied for an ultraantifilter x 
in P(L) if there exists (a]* eD(L) for any A ex, so that (a]* ex, A £ 

If the condition (p) is satisfied for x e U[P(L)], then xeU8[P(L)]. 

3.22. Theorem. For any xeU8[P(L)] the following are equivalent: 
1. x fulfils the condition (p). 
2. There exists no A e P(L), so that A U A* s U x. 
3. A exo A g [)x. 
4. For each A e P(L), A ex, there exists (b]* e x, so that A Wp (b]* = L. 
If one of these conditions holds, then the conditions 1—3 of 3.IS hold, too' 
Proof: 1 => 2. Let us assume that for a polar A eP(L), A £ []x, 

A* e \jx. According to 1.1(a), x contains exactly one of two comple­
mented polars A, A*. For example A ex. We shall prove that A J (a]* 
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for any dual principal polar (a]* e x. On the contrary, let us assume 
that A c (a]* holds for some (a]*_e x. Then a e (a]** s .A* s U a:. But 
according to (20), (a]* e x => ae [j x which is a contradiction. The 
condition 1 is not true. 

2 => 3. It is evident A e x => A s U a?. Let us assume that 4̂ e .r. 
With regard to 1.1 (a), A* e x. According to the assumption A[ u -4* J \J x, 
and since A.* g u X it follows that A ^ \Jx. Therefore the condition 3 
is satisfied. 

3 => 4. Do not let the condition 4 hold. Then there exists A ex, so that 
A VP (a]* =£ L for each (a]* e x. For the complemented polar A* it 
holds A* ex, AVp A* = L and for each (&]* eD(L) with the property 
-4* g (b]* it holds (b]* e x. We shall prove that A ^ [)x. For any c e AL 
it is A* g (c]*, therefore (c]* e x and with regard to (20) ce [)x. Con­
sequently, i g U« and moreover A ex, hence the condition 3 is not true. 

4 => 1. If the condition 1 is not true, then there exists A ex, BO that 
(a]* e x for every (a]* 2 A. For the complemented polar A* the following 
hold: A* ex, A VP_4* -= L. If _4* VP (&]* = L for some (6]* e D(L), 
then 4̂ £ (b]* and according to the assumption, it is (b]* e x. Thus 4 
is not true. 

Proof of the concluding assertion: 
With regard to the condition 4, there exists to each (a]* e x such 

a (b]* e x that (a]* VP (b]* = L which means that x n D(L) is an 
ultraantifilter in D(L). By (20) it is [}(x (] D(L)) = [)x. If y is an 
arbitrary ultraantifilter in P(L), which contains x n D(D), then U a: = 
= U y> According to the condition 3 

A ey => A g \jy => A g Ua; = > i e x . 

Hence y g aj. From the maximality of ?/ it follows y = x. Therefore, 
the condition 3 of 3.18 is true. 

3.23. Corollary. Let the condition (p) hold for each y e US[P(L)]. Then 
the conditions 1—6 of the theorem 3.19 hold, too. 

3.24. Corollary. If L contains a dense element and if the condition (p) 
holds for each x e US[P(L)], then US[P(L)] and U[D(D)] are normal. 

Proof is evident. 
Further we shall determine a necessary and sufficient condition for 

the normality of the space US[P(L)]. First the evident assertion. 

3.25. Lemma. For arbitrary (a]*, (6]* e D(L) the following are equivalent: 

1. ®(a]* n 93(6]* = 0. 
2. (a]* V (b]* = L. 
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3.26. Theorem. The following are equivalent: 
1. US[P(L)] is a normal topological space. 
2. For any two closed subsets A, B g US[P(L)], A n B = 0, e&ere exist 

subsets 2(A), 2(B) g D(D) with the following properties: 

a) S ( ^ ) g U a?, 2(B) g U y. 

b) For am/ a; e ^4, 2/ e -B i« .Mds 

a; n 0 (4) -# 0, 2/ n ®(JB) =* 0. 

c) For any (a]* e2(A), (b]* e2(B) it holds (a]* V (b]* = L. 
Proof: 1 => 2. If US[P(L)] is normal, then there exist to any two 

closed sets A, B g U5[P(D)], -4 n B = 0, such open sets Au Bx g 
g US[P(X)] that .4 g AU, # g -Bi, .4-. fl -Bi = 0 . Moreover, to each 
open set G g U5[P(I>)] there exists 2(G) g D(D), so that 

C = U 93(c]*. 

Thus holds 

A\ = U 93(a]*, Hx = U »(&]*. 
(«l*e^(.4D (fc]*6^(B,) 

We denote 

0(4) =^(-4i) n ( U *), 0(H) = 2(Bt) n ( U 2/). 

The property a) is fulfilled for 2(A), 2(B). Let xeA be arbitrary. 
Then x e A\ and hence there exists (ai]* s2(A\), so that #e93(ai]*, 
i.e. (ai]* e x. It is evident that (ax]* s2(A), then (ax]* e 0 ( 4 ) n x, that 
is 0 ( 4 ) n x =£ 0. Similarly, it will be shown that y n 0(-B) -7= 0 for any 
y eB, consequently the property b) is fulfilled. Further, let (a]* G2(A), 
(b]* e2(B) be arbitrary. Then $}(a]* g Ax, 93(6]* g Bu thus »(a]* n 
H 93(6]* = 0. According to 3.25 holds (a]* V (6]* = L, consequently 
the property c) is fulfilled. 

2 => 1. Let A, B g US[P(D)] be arbitrary closed sets, for which 
A 0 B = 0. Let us denote 

^4i = U 93(a]*, BL = U 93(6]*. 
(a]*e@W (b]*e@(B) 

At, Hi are open and 4 g 4 X , B g i?! (it follows from the property b)). 
Moreover A\ n Bx = 0 (from c)). Consequently US[P(Z)] is normal. 

3.27. Remarks. Let us consider an 2-group G. We have already said 
in the introduction, how the notion of a component in G is defined: 
A g G is a component in G if there exists 0 =-= i3 g G, so that .A = J3', 
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where 
B' = {a e G: \ a \ A | b | = 0 for each b e B}. 

In the definition of a component only absolute values of element are 
used, i.e. elements ^ 0. Consequently, any component in G is determined 
by a set of positive elements in G. In fact, if .A is a component in G, 
then there exists 0 ^ B e G, so that A = B'. Let us denote 

| B | = { | 6 | : beB}. 

Evidently, | B | g G+ and A = | B \'. 
The set jr(C7) of all components in G is ordered by set-theoretical 

inclusion. 
Let us put L = G+. L is a distributive lattice with the smallest 

element 0 ( = zero of G). It was shown in 1.8 that the set P(L) of all 
polars in L ordered by set-theoretical inclusion, forms a complete Boolean 
algebra, in which infimum is determined by intersection. 

Let us consider the relation between the sets r(G) and P(L). 
From the definition of polar in L and of component in G it follows: 

If K e r(G), then K+ e P(L). We put for A e P(L) 

K ={aeG: \a\eA}, 

Evidently K e r(G) and K+ = A. The correspondence 

KeT(G)oK+eP(L) 

is also a bijective mapping from the (non ordered) set r(G) on the 
(non ordered) set P(L). Further, it is easily seen that the mapping 
preserves ordering in both directions. Thus, it is an isomorphism of 
ordered sets F(G) and P(L). Consequently, the set r(G) ordered by set-
theoretical inclusion forms a complete Boolean algebra (see [13], Teo-
rema 1). 

Similarly, we can determine relations between S(L) and 11(G) and 
between D(L) and II'(G). From 1.9 follows the theorem 1 in [8], but we 
must leave out in the formulae (1) and (2) the part that contains group 
operation. 

From what we said, further connections follow between our results 
and those known for Z-groups. For example, some results of the second 
part correspond to the one in [8]. In the considerations, the notion of 
a weak unit of Z-group had to be replaced by the notion of a dense 
element of lattice. 

Likewise, by study of standard ultraantifilters in P(L), we get similar 
results as in [3], [4]. But it was necessary to replace the notion of a prime 
subgroup by a notion of a prime ideal. However, some assertions are 
specific only for lattices, and they can not be applied to Z-groups. 



35 

REFERENCES 

[1] B i r k h o f f G., Lattice Theory, Rev. Ed. (1948), New Ycrk. 
[2] B o u r b a k i N., Topologie génerale, Actual. Sci. Ind. 858, Paris, 1940. 
[3] F i a l a F. , Über einen gewissen Ultraantifilterraum, Math. Nachr. 33 (1967), 

H. 3/4, 231—249. 
[4] F i a l a F . , Standard—Ultraantifilter im Verband aller Komponenten einer 

l-Gruppe, Acta Math. Acad. Sci. Hung. 19 (1968), 405—412. 
[5] G r ä t z e r G., S e h m i d t E. T., On a problem of M. H. Stone, Acta Math. Acad. 

Sci. Hung. 8 (1957), 455—460. 
[6] P a p e r t D., A representation theory of lattice-groups, Proc. London Math. Soc , 

3. ser. 12 (1962), 100—120. 
[7] S z á s z G., Eгnführung in die Verbandstheorie, Budapest, 1962. 
[8] Š ik F., Compacidad de ciertos espacios de ultraantifiltros, M m. Fac. Cie. Univ. 

Habana, 1, ser. mat . , fasc. 1°, 19—25 (1963). 
[9] Š ik F., Estructura y realizaciones de grupos reticulados, I, II. Mem. Fac. Cie. 

Univ. Habana, 1, ser. mat . , fasc. 2° y 3°, 1—29 (1964). 
[10] Š ik F. , Struktur und Realisierungen von Verbandsgruppen III, Mem. Fac. Cie. 

Univ. Habana, 1, ser. ma t . , fasc. 4°, 1—20 (1966). 
[11] Š ik F., Struktur und Realisierungen von Verbandsgruppen IV, Mern. Fac. Cie. 

Univ. Habana, 1, ser. mat., fasc. 6°, 19—44 (1968). 
[12] Š ik F., Struktur und Realisierungen von Verbandsgruppen V, Math. Nachr. 33 

(1967), H. 3/4, 221—229. 
[13] Ш P I K Ф . : E meopuu cmpyкmypнo ynopядoчeнныx гpynn, Czechoslovak 

Math. J. 6 (81), 1—25 (1956). 

Department of Applied Mathematics 
Technical University at Brno 
Brno, Hilleho 6 


		webmaster@dml.cz
	2012-05-09T13:58:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




