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Consider a two-person noncooperative game JT = {{1, 2}, (Ai, A2), 
(fi, fi)} with real payoffs1) (denote by Ai the finite set of all i's pure 
strategies, by St the At's probability simplex, construct cartesian 
products A = :Ai ® A2 and S = :Si ® S2, prolong the function fi 
from vert S on the whole S (in a natural way) and denote by E c: S 
the set of all Nash JH\s equilibria ((xx, x2) e E iff for all xx e Si, x2 e S2 it 
holds ft(xi, x2) S fi(xi, x2),f2(xi,x2) S fi(xi, x2) —see [4])). We say 0t 

is at -inclusive (see [6] or [5]) if &t maps St into ^(St+i) (i mod 2) in 
such a way that it holds [xt, yt G relint T,T e ^(at) => 0t(xt) = 0t(yi)] 
and [xi e relint L, yt e relint T, L, T e F(at), L c: T => either 0i(xt)c: 
^^(Vi) o r @i(xt) -̂  @i(yi)]> where at is a polyhedral partition of Si. 
Define &t on St by 0i(xt) ={xi+ieSi+i \ft+i(xt, xi+x) > fi+i(xt, vl) for 
all v1 G vert Si+i} (i mod 2), construct Bj = {(xt, z) e (aff $$) (x) E1 | ^ e 
eaffSs, 2GE 1, z ^/j-+i(^, ?̂ )} for each R e v e r t Si+i and put B = 
= : fl ify. Evidently R/s are halfspaces in E o a r d y 4 *, R a polyhedral 

i 
set, the orthogonal projection of R's boundary (into aff/S|) is a polyhedral 
partition of aff Si (its intersection with Si denote by ai) and 0t is â -
inclusive. Evidently (£1, x2) e E iff <2>i, 02 have in (#1, x2) a coincidence 
(i.e. ^1 e ^2(^2), #2 e #i(#i)). Choose for each T e ^(at) one point rt(T) e 
G relint T and the set of all ri(T)'$ denote by Xt (i.e. rt(T) one-one maps 
W(at) onto Xt). Because of [xx, xx e relint T, x2,x2e relint £, T e ^(ax), 
L e ^(a2), (xi, x2) e E => (xx, x2) G E] (because 0t is o>inclusive and it 
holds [(relint U) fl 0t(xt) =£ 0, U e J ^ + i ) => U G ^(<Pi(s«))]) and 
E ^0 (see [4]), K being closed, we have proved the following statement 

*) A Euclidean n-dimensional space denote by En and the smallest space 
containing X cz En by aff X. A nonvoid intersection of a finite number of halfspaces 
is called a polyhedral set (say P), vert P is the set of all its vertices, ^(P) the set 
of all its nonvoid faces (of all dimensions k, 0 ^ k ^ dim P), relint P the set of all 
its inner (in the space aff P) points (for x e En it is relint {x} — {#}). For X c : En , 
dim X = n, a polyhedral partition a of X is a finite set of n-dimensional polyhedral 
sets Pis such tha t \J Pi = X and [Pi n Pj ^ 0, Pi, Pj e a => Pi () Pj e^(Pt) 0 
0 ^(Pj)]. The set of all P»'s faces (for all dimensions k, 0 ^ k ^ n, and all Pi 6 a) 
is denoted by ^(a). 
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(the constructions of ^(0*1), ^(a2), Xx, X2, (Xx ® X2) n E and H are 
simple linear programming tasks): 

Theorem:2) E = (J [T-J(^I) ® t~2(x2)] where the sum operates on the 
set B of all (xx,x2) e (Xx ® X2) n E with maximal (in cz)r-\(x1) ® T^fe). 

R E F E R E N C E S 

[1] H. W. K u h n : An algorithm for equilibrium points in bimatrix games. Proc. 
Mat, Аcad. Sci., 47 (1961), 1657—1662. 

[2] C E. L e m k e — J . T. H o w s o n : Equilibrium points of bimatrix games. J. Soc. 
Indust. Аppl. Math., 12 (1964), 413—423. 

[3] H. M i l l s : Equilibrium points in finite games. J . Soc. Indust. Аppl. Math., 8 
(1960). 397—402. 

[4] J . F . N a s h : Non cooperative games. Аnn. Math. 54 (1951), 286—295. 
[5] V. P o l á k : Mathematical politology. Fac. Sci. Ш E P , Brno, 1968. 
[6] V. P o l á k — N . P o l á k o v á : Notes on game theory equilibria. Агchivum mathe-

maticum (Brno), 4 (1967), 165—176. 
[7] N. N. V o r o b j e v : Equilibrium points in bimatrix games. Teor. Verojat. i ee 

Primen., 3 (1958), 318—331. 

Institute of Mathematics 
University J. E. Purkynë 
BrnOj Czechoslovakìa 

2) Several constructions of E are known (see [7], [3], [1], [2]). This paper presents 
(using ideas of [5] and [6]) the "inclusive" approach to the results of [7], 
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